7,413 research outputs found

    Towards building information modelling for existing structures

    Get PDF
    The transformation of cities from the industrial age (unsustainable) to the knowledge age (sustainable) is essentially a ‘whole life cycle’ process consisting of; planning, development, operation, reuse and renewal. During this transformation, a multi-disciplinary knowledge base, created from studies and research about the built environment aspects is fundamental: historical, architectural, archeologically, environmental, social, economic, etc is critical. Although there are a growing number of applications of 3D VR modelling applications, some built environment applications such as disaster management, environmental simulations, computer aided architectural design and planning require more sophisticated models beyond 3D graphical visualization such as multifunctional, interoperable, intelligent, and multi-representational. Advanced digital mapping technologies such as 3D laser scanner technologies can be are enablers for effective e-planning, consultation and communication of users’ views during the planning, design, construction and lifecycle process of the built environment. For example, the 3D laser scanner enables digital documentation of buildings, sites and physical objects for reconstruction and restoration. It also facilitates the creation of educational resources within the built environment, as well as the reconstruction of the built environment. These technologies can be used to drive the productivity gains by promoting a free-flow of information between departments, divisions, offices, and sites; and between themselves, their contractors and partners when the data captured via those technologies are processed and modelled into BIM (Building Information Modelling). The use of these technologies is key enablers to the creation of new approaches to the ‘Whole Life Cycle’ process within the built and human environment for the 21st century. The paper describes the research towards Building Information Modelling for existing structures via the point cloud data captured by the 3D laser scanner technology. A case study building is elaborated to demonstrate how to produce 3D CAD models and BIM models of existing structures based on designated technique

    Development of a simulator for 3D pattern recognition scanners

    Get PDF
    Shape reconstruction using coded structured light is considered one of the most reliable techniques to recover object surfaces. The aim of the thesis was to develop a simulator capable of emulating such a model. Different types of objects were used for testing the algorithms in order to compare the results obtained with real scanners. The implementation recurs to GPU computing to take advantage of the high computational power. The thesis was carried out in collaboration with Euclid Labs.ope

    Endoscopic optical coherence tomography with a flexible fiber bundle

    Full text link
    We demonstrate in vivo endoscopic optical coherence tomography (OCT) imaging in the forward direction using a flexible fiber bundle. In comparison to current conventional forward looking probe schemes, our approach simplifies the endoscope design by avoiding the integration of any beam steering components in the distal probe end due to 2D scanning of a focused light beam over the proximal fiber bundle surface. We describe the challenges that arise when OCT imaging with a fiber bundle is performed, such as multimoding or cross-coupling. The performance of different fiber bundles with varying parameters such as numerical aperture, core size and core structure was consequently compared and artifacts that degrade the image quality were described in detail. Based on our findings, we propose an optimal fiber bundle design for endoscopic OCT imaging

    SIRF: Synergistic Image Reconstruction Framework

    Get PDF
    The combination of positron emission tomography (PET) with magnetic resonance (MR) imaging opens the way to more accurate diagnosis and improved patient management. At present, the data acquired by PET-MR scanners are essentially processed separately, but the opportunity to improve accuracy of the tomographic reconstruction via synergy of the two imaging techniques is an active area of research. In this paper, we present Release 2.1.0 of the CCP-PETMR Synergistic Image Reconstruction Framework (SIRF) software suite, providing an open-source software platform for efficient implementation and validation of novel reconstruction algorithms. SIRF provides user-friendly Python and MATLAB interfaces built on top of C++ libraries. SIRF uses advanced PET and MR reconstruction software packages and tools. Currently, for PET this is Software for Tomographic Image Reconstruction (STIR); for MR, Gadgetron and ISMRMRD; and for image registration tools, NiftyReg. The software aims to be capable of reconstructing images from acquired scanner data, whilst being simple enough to be used for educational purposes

    The Digital Anatomist Information System and Its Use in the Generation and Delivery of Web-Based Anatomy Atlases

    Get PDF
    Advances in network and imaging technology, coupled with the availability of 3-D datasets such as the Visible Human, provide a unique opportunity for developing information systems in anatomy that can deliver relevant knowledge directly to the clinician, researcher or educator. A software framework is described for developing such a system within a distributed architecture that includes spatial and symbolic anatomy information resources, Web and custom servers, and authoring and end-user client programs. The authoring tools have been used to create 3-D atlases of the brain, knee and thorax that are used both locally and throughout the world. For the one and a half year period from June 1995–January 1997, the on-line atlases were accessed by over 33,000 sites from 94 countries, with an average of over 4000 ‘‘hits’’ per day, and 25,000 hits per day during peak exam periods. The atlases have been linked to by over 500 sites, and have received at least six unsolicited awards by outside rating institutions. The flexibility of the software framework has allowed the information system to evolve with advances in technology and representation methods. Possible new features include knowledge-based image retrieval and tutoring, dynamic generation of 3-D scenes, and eventually, real-time virtual reality navigation through the body. Such features, when coupled with other on-line biomedical information resources, should lead to interesting new ways for managing and accessing structural information in medicine

    Robots for Exploration, Digital Preservation and Visualization of Archeological Sites

    Get PDF
    Monitoring and conservation of archaeological sites are important activities necessary to prevent damage or to perform restoration on cultural heritage. Standard techniques, like mapping and digitizing, are typically used to document the status of such sites. While these task are normally accomplished manually by humans, this is not possible when dealing with hard-to-access areas. For example, due to the possibility of structural collapses, underground tunnels like catacombs are considered highly unstable environments. Moreover, they are full of radioactive gas radon that limits the presence of people only for few minutes. The progress recently made in the artificial intelligence and robotics field opened new possibilities for mobile robots to be used in locations where humans are not allowed to enter. The ROVINA project aims at developing autonomous mobile robots to make faster, cheaper and safer the monitoring of archaeological sites. ROVINA will be evaluated on the catacombs of Priscilla (in Rome) and S. Gennaro (in Naples)

    Novel PET Systems and Image Reconstruction with Actively Controlled Geometry

    Get PDF
    Positron Emission Tomography (PET) provides in vivo measurement of imaging ligands that are labeled with positron emitting radionuclide. Since its invention, most PET scanners have been designed to have a group of gamma ray detectors arranged in a ring geometry, accommodating the whole patient body. Virtual Pinhole PET incorporates higher resolution detectors being placed close to the Region-of-Interest (ROI) within the imaging Field-of-View (FOV) of the whole-body scanner, providing better image resolution and contrast recover. To further adapt this technology to a wider range of diseases, we proposed a second generation of virtual pinhole PET using actively controlled high resolution detectors integrated on a robotic arm. When the whole system is integrated to a commercial PET scanner, we achieved positioning repeatability within 0.5 mm. Monte Carlo simulation shows that by focusing the high-resolution detectors to a specific organ of interest, we can achieve better resolution, sensitivity and contrast recovery. In another direction, we proposed a portable, versatile and low cost PET imaging system for Point-of-Care (POC) applications. It consists of one or more movable detectors in coincidence with a detector array behind a patient. The movable detectors make it possible for the operator to control the scanning trajectory freely to achieve optimal coverage and sensitivity for patient specific imaging tasks. Since this system does not require a conventional full ring geometry, it can be built portable and low cost for bed-side or intraoperative use. We developed a proof-of-principle prototype that consists of a compact high resolution silicon photomultiplier detector mounted on a hand-held probe and a half ring of conventional detectors. The probe is attached to a MicroScribe device, which tracks the location and orientation of the probe as it moves. We also performed Monte Carlo simulations for two POC PET geometries with Time-of-Flight (TOF) capability. To support the development of such PET systems with unconventional geometries, a fully 3D image reconstruction framework has been developed for PET systems with arbitrary geometry. For POC PET and the second generation robotic Virtual Pinhole PET, new challenges emerge and our targeted applications require more efficiently image reconstruction that provides imaging results in near real time. Inspired by the previous work, we developed a list mode GPU-based image reconstruction framework with the capability to model dynamically changing geometry. Ordered-Subset MAP-EM algorithm is implemented on multi-GPU platform to achieve fast reconstruction in the order of seconds per iteration, under practical data rate. We tested this using both experimental and simulation data, for whole body PET scanner and unconventional PET scanners. Future application of adaptive imaging requires near real time performance for large statistics, which requires additional acceleration of this framework

    Using of modern technologies for visualization of cultural heritage

    Get PDF
    This paper explores the historical evolution and contemporary applications of photogrammetry and laser scanning in cultural heritage preservation, focusing on the restoration of the Shush synagogue in Iraqi Kurdistan. It traces the development of documentation techniques, highlighting photogrammetry's pivotal role and the impact of the digital revolution. The case study of Project Shush illustrates the practical use of geomatics techniques, advanced 3D modeling, and collaboration with NGOs and authorities. The methodology outlines the use of technologies like terrestrial laser scanners (BLK360, Zeb-Revo) and UAVs, emphasizing their mobility and accuracy. Results detail the project stages, showcasing the creation of a detailed 3D model and the use of Unreal Engine for visualization. The conclusion emphasizes the importance of 3D documentation in cultural heritage and celebrates the success of the Shush synagogue restoration as a testament to technological advancements in preservation. Our research has shown that the joining of different 3D object documentation technologies significantly improves the quality and speeds up the workflow. Comparison of partial point clouds in software Cloudcompare on a case study of a smaller historic building showed differences in the internal structure in centimeters, while for the external parts that were covered with vegetation the differences reached up to decimeters
    • 

    corecore