26,763 research outputs found

    Modeling IT Availability Risks in Smart Factories

    Get PDF
    In the course of the ongoing digitalization of production, production environments have become increasingly intertwined with information and communication technology. As a consequence, physical production processes depend more and more on the availability of information networks. Threats such as attacks and errors can compromise the components of information networks. Due to the numerous interconnections, these threats can cause cascading failures and even cause entire smart factories to fail due to propagation effects. The resulting complex dependencies between physical production processes and information network components in smart factories complicate the detection and analysis of threats. Based on generalized stochastic Petri nets, the paper presents an approach that enables the modeling, simulation, and analysis of threats in information networks in the area of connected production environments. Different worst-case threat scenarios regarding their impact on the operational capability of a close-to-reality information network are investigated to demonstrate the feasibility and usability of the approach. Furthermore, expert interviews with an academic Petri net expert and two global leading companies from the automation and packaging industry complement the evaluation from a practical perspective. The results indicate that the developed artifact offers a promising approach to better analyze and understand availability risks, cascading failures, and propagation effects in information networks in connected production environments

    Regionalized implementation strategy of smart automation within assembly systems in China

    Get PDF
    Produzierende Unternehmen in aufstrebenden Nationen wie China, sind bestrebt, die ProduktivitĂ€t der Produktion durch eine Verbesserung der Lean Produktion mit disruptiven Technologien zu erreichen. Smart Automation ist dabei eine vielversprechende Lösung, allerdings können Unternehmen aufgrund von mangelnden Ressourcen oft nicht alle Smart Automation Technologien gleichzeitig implementieren. Ebenso beeinflusst eine Vielzahl an Einflussfaktoren, wie z.B. Standortfaktoren. Dementsprechend herausfordernd ist die Auswahl und Priorisierung von Smart Automation Technologien in Form von EinfĂŒhrungsstrategien fĂŒr produzierende Unternehmen. Der Stand der Forschung untersucht nur unzureichend die Analyse der Interdependenzen zwischen Standortfaktoren, Smart Automation Technologien und Key Performance Indikatoren (KPIs). DarĂŒber hinaus mangelt es an einer Methode zur Ableitung der EinfĂŒhrungsstrategie von Smart Automation Technologien unter BerĂŒcksichtigung dieser Interdependenzen. Entsprechend trĂ€gt diese Arbeit dazu bei, eine regionalisierte EinfĂŒhrungsstrategie von Smart Automation Technologien in Montagesystemen zu ermöglichen. ZunĂ€chst werden die Standortfaktoren, Smart Automation Technologien und KPIs identifiziert. In einem zweiten Schritt werden, mit Hilfe von qualitativen und quantitativen Analysen, die Interdependenzen bestimmt. Anschließend werden diese Interdependenzen auf ein Montagesystem mittels hybrider Modellierung und Simulation ĂŒbertragen. Im vierten Schritt wird eine regionalisierte EinfĂŒhrungsstrategie durch eine Optimierung und eine Monte-Carlo-Simulation abgeleitet. Die Methodik wurde im Rahmen des deutsch-chinesischen Forschungsprojekts I4TP entwickelt, das vom Bundesministerium fĂŒr Bildung und Forschung (BMBF) unterstĂŒtzt wird. Die Validierung wurde erfolgreich mit einem produzierenden Unternehmen in Beijing durchgefĂŒhrt. Die entwickelte Methodik stellt einen neuartigen Ansatz zur EntscheidungsunterstĂŒtzung bei der Entwicklung einer regionalisierten EinfĂŒhrungsstrategie fĂŒr Smart Automation Technologien in Montagesystemen dar. Dadurch sind produzierende Unter-nehmen in der Lage, individuelle EinfĂŒhrungsstrategien fĂŒr disruptive Technologien auf Basis wissenschaftlicher und rationaler Analysen effektiv abzuleiten

    Market fields structure & dynamics in industrial automation

    Get PDF
    There is a research tradition in the economics of standards which addresses standards wars, antitrust concerns or positive externalities from standards. Recent research has also dealt with the process characteristics of standardisation, de facto standard-setting consortia and intellectual property concerns in the technology specification or implementation phase. Nonetheless, there are no studies which analyse capabilities, comparative industry dynamics or incentive structures sufficiently in the context of standard-setting. In my study, I address the characteristics of collaborative research and standard-setting as a new mode of deploying assets beyond motivations well-known from R&D consortia or market alliances. On the basis of a case study of a leading user organisation in the market for industrial automation technology, but also a descriptive network analysis of cross-community affiliations, I demonstrate that there must be a paradoxical relationship between cooperation and competition. More precisely, I explain how there can be a dual relationship between value creation and value capture respecting exploration and exploitation. My case study emphasises the dynamics between knowledge stocks (knowledge alignment, narrowing and deepening) produced by collaborative standard setting and innovation; it also sheds light on an evolutional relationship between the exploration of assets and use cases and each firm's exploitation activities in the market. I derive standard-setting capabilities from an empirical analysis of membership structures, policies and incumbent firm characteristics in selected, but leading, user organisations. The results are as follows: the market for industrial automation technology is characterised by collaboration on standards, high technology influences of other industries and network effects on standards. Further, system integrators play a decisive role in value creation in the customer-specific business case. Standard-setting activities appear to be loosely coupled to the products offered on the market. Core leaders in world standards in industrial automation own a variety of assets and they are affiliated to many standard-setting communities rather than exclusively committed to a few standards. Furthermore, their R&D ratios outperform those of peripheral members and experience in standard-setting processes can be assumed. Standard-setting communities specify common core concepts as the basis for the development of each member's proprietary products, complementary technologies and industrial services. From a knowledge-based perspective, the targeted disclosure of certain knowledge can be used to achieve high innovation returns through systemic products which add proprietary features to open standards. Finally, the interplay between exploitation and exploration respecting the deployment of standard-setting capabilities linked to cooperative, pre-competitive processes leads to an evolution in common technology owned and exploited by the standard-setting community as a particular kind of innovation ecosystem. --standard-setting,innovation,industry dynamics and context,industrial automation

    Integration of RFID and Industrial WSNs to Create A Smart Industrial Environment

    Get PDF
    A smart environment is a physical space that is seamlessly embedded with sensors, actuators, displays, and computing devices, connected through communication networks for data collection, to enable various pervasive applications. Radio frequency identification (RFID) and Wireless Sensor Networks (WSNs) can be used to create such smart environments, performing sensing, data acquisition, and communication functions, and thus connecting physical devices together to form a smart environment. This thesis first examines the features and requirements a smart industrial environment. It then focuses on the realization of such an environment by integrating RFID and industrial WSNs. ISA100.11a protocol is considered in particular for WSNs, while High Frequency RFID is considered for this thesis. This thesis describes designs and implementation of the hardware and software architecture necessary for proper integration of RFID and WSN systems. The hardware architecture focuses on communication interface and AI/AO interface circuit design; while the driver of the interface is implemented through embedded software. Through Web-based Human Machine Interface (HMI), the industrial users can monitor the process parameters, as well as send any necessary alarm information. In addition, a standard Mongo database is designed, allowing access to historical and current data to gain a more in-depth understanding of the environment being created. The information can therefore be uploaded to an IoT Cloud platform for easy access and storage. Four scenarios for smart industrial environments are mimicked and tested in a laboratory to demonstrate the proposed integrated system. The experimental results have showed that the communication from RFID reader to WSN node and the real-time wireless transmission of the integrated system meet design requirements. In addition, compared to a traditional wired PLC system where measurement error of the integrated system is less than 1%. The experimental results are thus satisfactory, and the design specifications have been achieved

    From supply chains to demand networks. Agents in retailing: the electrical bazaar

    Get PDF
    A paradigm shift is taking place in logistics. The focus is changing from operational effectiveness to adaptation. Supply Chains will develop into networks that will adapt to consumer demand in almost real time. Time to market, capacity of adaptation and enrichment of customer experience seem to be the key elements of this new paradigm. In this environment emerging technologies like RFID (Radio Frequency ID), Intelligent Products and the Internet, are triggering a reconsideration of methods, procedures and goals. We present a Multiagent System framework specialized in retail that addresses these changes with the use of rational agents and takes advantages of the new market opportunities. Like in an old bazaar, agents able to learn, cooperate, take advantage of gossip and distinguish between collaborators and competitors, have the ability to adapt, learn and react to a changing environment better than any other structure. Keywords: Supply Chains, Distributed Artificial Intelligence, Multiagent System.Postprint (published version

    Manufacturing Value Modelling, Flexibility, and Sustainability: from theoretical definition to empirical validation

    Get PDF
    The aim of this PhD thesis is to investigate the relevance of flexibility and sustainability within the smart manufacturing environment and understand if they could be adopted as emerging competitive dimensions and help firms to take decisions and delivering value
    • 

    corecore