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Abstract In the course of the ongoing digitalization of

production, production environments have become

increasingly intertwined with information and communi-

cation technology. As a consequence, physical production

processes depend more and more on the availability of

information networks. Threats such as attacks and errors

can compromise the components of information networks.

Due to the numerous interconnections, these threats can

cause cascading failures and even cause entire smart fac-

tories to fail due to propagation effects. The resulting

complex dependencies between physical production pro-

cesses and information network components in smart fac-

tories complicate the detection and analysis of threats.

Based on generalized stochastic Petri nets, the paper pre-

sents an approach that enables the modeling, simulation,

and analysis of threats in information networks in the area

of connected production environments. Different worst-

case threat scenarios regarding their impact on the opera-

tional capability of a close-to-reality information network

are investigated to demonstrate the feasibility and usability

of the approach. Furthermore, expert interviews with an

academic Petri net expert and two global leading compa-

nies from the automation and packaging industry comple-

ment the evaluation from a practical perspective. The

results indicate that the developed artifact offers a

promising approach to better analyze and understand

availability risks, cascading failures, and propagation

effects in information networks in connected production

environments.

Keywords Smart factory � Information network �
Information network analysis � IT availability risks � Petri

nets

1 Introduction

A recent worldwide survey by PricewaterhouseCoopers

(PwC) among 2000 participants from nine major industrial

sectors and 26 countries showed that 54% of the partici-

pants considered business interruptions due to cyber-se-

curity breaches the main challenge for smart factories

(PwC 2016a). Thereby, in contrast to traditional factories,

smart factories enhance production systems through hori-

zontal and vertical integration of information systems

Accepted after three revisions by Jan Mendling.

Electronic supplementary material The online version of this
article (https://doi.org/10.1007/s12599-019-00610-6) contains sup-
plementary material, which is available to authorized users.

D. Miehle

Technical University of Munich, Boltzmannstraße 3,

85748 Garching bei München, Germany

e-mail: daniel.miehle@tum.de

B. Häckel
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representing a central characteristic of the Industry 4.0

vision (Acatech 2013). In this context, additional IT

availability risks arise from digitalization and intercon-

nection of production (Amin et al. 2013). As production

infrastructures in smart factories become increasingly

intertwined with information and communication technol-

ogy (ICT), the operational capability of smart factories

increasingly depends on the high availability of informa-

tion systems (Lucke et al. 2008). Thereby, concepts such as

the Internet of Things (IoT) and Cyber-Physical Systems

(CPS) intensify the digital interconnection of production

via intra- and inter-organizational information networks

(Acatech 2013).

On the one hand, the comprehensive interconnection

and resulting real-time availability of information enable

innovative production principles and business models

offering extensive advantages (e.g., increased flexibility

and efficiency of production) (Iansiti and Lakhani 2014).

On the other hand, however, highly interconnected smart

factories are becoming more vulnerable to IT availability

risks (e.g., due to the removal of protective air gaps or

interconnection of production and office environments)

(Smith et al. 2007; Amiri et al. 2014; Smith et al. 2007).

Moreover, the integration of Internet-based applications

(e.g., cloud computing) and the growing collaboration with

value chain partners (customers or vendors) reinforce this

threat potential due to the growing number of possible

access points for malicious cyber-attacks (Smith et al.

2007; Yoon et al. 2012). This was also found by the study

of PwC as the number of cyber-attacks on businesses rose

by 38% in 2015 (PwC 2016b). Consequently, companies

face the challenge to cope with this increased threat

potential. In addition to intentional attacks, unintentional

errors (e.g., technical defects or human errors) can heavily

compromise the availability of information networks

directly and indirectly.

As physical production processes in smart factories are

highly dependent on the underlying information network,

threats can affect the operational capability of both infor-

mation and production networks (Broy et al. 2012). In

addition, threats now also include the propagation of

locally occurring interruptions within interconnected

information and production networks even without physi-

cal connections (Smith et al. 2007). Thus, informational

dependencies that arise from the increasing interconnection

and use of real-time information are becoming more

important. Moreover, information-based systemic risks that

may spread across smart factory boundaries in intercon-

nected digitalized networks are also identified as one of the

most important challenges in the field of computer science

and business informatics, where they are known as the

‘‘grand challenges’’ (Buhl and Penzel 2010; Mertens and

Barbian 2015). Accordingly, IT availability risks have

become one of the most important threats in smart factories

(Amiri et al. 2014).

This has also been shown by numerous incidents. One

well-known example is the Stuxnet worm, which infected

the industrial control system of a nuclear power plant in

Iran in 2011 (The New York Times 2011). Today, attacks

can heavily impede the production of a factory and are a

threat of upmost relevance as e.g., 70% of the companies of

a recent study state that they were attacked within the last

two years (BSI 2017). The same study revealed that every

second successful attack causes production downtimes or a

loss of operations. In this context, the locky or WannaCry

ransomware (e.g., Merkur 2018) is another impressive

example, how intentional attacks can spread within a

company, even when starting at only one weak point.

Thereby, the weak point does not have to be directly

connected to production components, as, for instance,

malicious attackers targeted the industrial control system of

a steel mill via the office network to compromise the

operation of blast furnaces in 2014 (BSI 2014). Moreover,

errors can lead to far-reaching disturbances: for instance,

an incorrect software update forced a nuclear power plant

into an emergency shutdown for 48 h in the US in 2008

(Washington Post 2008) and a technical defect of a single

hard disk resulted in a server shutdown for 19 h in three

clinics in Germany (BSI 2016).

Considering the technical developments and described

threat scenarios, companies face the challenge of dealing

with increasingly complex information networks regarding

IT availability risk and their inherent dependency structures.

Thereby, especially the dynamic behavior including cas-

cading failures and stochastic propagation effects are of

critical importance as single point failures can spread in the

entire network and cause severe damage in the smart factory,

e.g., in terms of production downtime and economic dam-

age. Accordingly, companies are confronted with new

challenges regarding a comprehensive risk management.

Thereby, companies have to go through the four phases of

risk management including (1) identification, (2) quantifi-

cation, (3) control, and (4) monitoring (Hallikas et al. 2004).

For this, companies require appropriate methods for the

modeling and simulation of such information networks (Lasi

et al. 2014) capturing the peculiarities of information net-

works in smart factories as a first step. As necessary concepts

for an appropriate modeling of information networks do not

exist so far, we state the following research question.

RQ How can the information network of a smart factory

be modeled to depict and simulate IT availability

risks?

Following the design science research (DSR) approach

(Hevner et al. 2004), we introduce a stochastic Petri net

approach, which enables a structured depiction of
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information networks in smart factories. This allows the

analysis of IT availability risks and the identification of

weak spots within the information network. Our approach

depicts the structure of information networks by modeling

single components and informational dependencies

between them. Hence, our approach facilitates the risk-

oriented analysis of single components as well as of the

whole information network. Further, it enables the simu-

lation and analysis how different patterns of information

networks are affected by certain threat scenarios and how

propagation effects occur and spread in different patterns

(e.g., the security level of components). For example, with

regard to the mentioned examples, our approach could have

been used preventively to model, simulate, and analyze the

information network in the course of risk management. On

this basis, weak points for attacks and critical dependencies

would have become apparent, for which targeted security

measures could then have been taken. Although this would

not have made a 100% protection possible, a reduction of

risk, for example by reducing the probability of a suc-

cessful attack, would have been possible. This is particu-

larly important in smart factories, as the vulnerability of

smart factories increases significantly due to the increasing

dependency relations within the information network.

Following the publication schema suggested by Gregor

and Hevner (2013), this paper is organized as follows. In

the next section, we provide an overview of related work

regarding smart factories and IT availability risks. Based

on the literature, we derive design objectives and require-

ments for an appropriate modeling approach. In Sect. 3, we

specify Petri nets (PN) as the modeling language used in

our approach. Section 4 describes our modeling approach

as one essential artifact of our research. In Sect. 5, we

evaluate our modeling approach by performing a feature

comparison and demonstrating the applicability and feasi-

bility of our artifact by simulating an exemplary informa-

tion network based on a real-world setting. Further, to

complement the evaluation from a naturalistic perspective,

we integrate the insights of interviews with two experts

from global leading companies in the robotic automation

and packaging industry, and an academic PN expert.

Finally, in Sect. 6, we discuss the results and limitations of

our research and provide an outlook on future research.

2 Theoretical Background and Design Objectives

In this section, we review current literature on smart fac-

tories and categorize IT availability risks and threats in

smart factories. Based on the literature, we define design

objectives (DO) to lay the foundation for the development

of our artifact in correspondence with our research

question.

2.1 Smart Factories

The investigated body of literature comprises infrastruc-

tural aspects (Lucke et al. 2008; Yoon et al. 2012; Zuehlke

2010; Colombo and Karnouskos 2009), characteristics

(Brettel et al. 2014; Radziwon et al. 2014; Schuh et al.

2014), as well as challenges (Amin et al. 2013; Broy et al.

2012; Cardenas et al. 2009; Sridhar et al. 2012; Sadeghi

et al. (nd)) regarding smart factories. Although widely used

in literature and practice (Radziwon et al. 2014), there is no

common definition of the term smart factory, so far. Based

on the analysis of different definitions, Radziwon et al.

(2014) define the smart factory as a ‘‘manufacturing solu-

tion that provides such flexible and adaptive production

processes that will solve problems arising on a production

facility […].’’ Hermann et al. (2015) define the smart fac-

tory as a ‘‘factory where CPS communicate over the IoT

and assist people and machines in the execution of their

tasks’’ and describe, that ‘‘within the modular structured

Smart Factories […], CPS monitor physical processes,

create a virtual copy of the physical world and make

decentralized decisions’’. And adopting the idea of IoT,

Zuehlke (2010) describes a smart factory that is composed

of smart objects that are able to ‘‘self-organize to fulfil a

certain task’’ by interacting with each other via wireless

communication infrastructures. These definitions reflect the

specific characteristics of smart factories, such as their

modular and decentralized design, which enables func-

tionalities like production flexibility, reconfigurability, and

adaptability and that distinguish a smart factory from a

conventional factory (Brettel et al. 2014; Radziwon et al.

2014; Zuehlke 2010).

In contrast to traditional factories, smart factories

enhance manufacturing systems through horizontal and

vertical integration representing a fundamental character-

istic of the industry 4.0 vision (Acatech 2013). Horizontal

integration refers to the integration of IT systems across

value chains both within a company and between several

different companies. This results in the creation of new

internal and external connections for data analysis or sup-

ply chain operations as well as the abandoning of air gaps.

Vertical integration refers to the integration of IT systems

across the different levels of the automation pyramid (cf.

Fig. 1). Through the integration of production-oriented

CPSs, so called Cyber-Physical Production Systems

(CPPSs), the levels of the automation pyramid (i.e., field to

business level) gradually vanish and are replaced by net-

worked and decentrally organized services (Brettel et al.

2014; Monostori 2014). CPPSs integrate computing and

communication capabilities in physical production envi-

ronments realizing the fusion of the cyber and physical

world (Lee et al. 2015; Wang et al. 2016). Accordingly,

CPPSs are able to sense, monitor, and control physical
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production in an autonomous manner and interact with

each other in real-time (Brettel et al. 2014). Based on the

described characteristics in existing literature, we obtained

the following detailed structure of a smart factory as shown

in Fig. 2.

The structure of a smart factory comprises a physical

production environment and an information network. Fol-

lowing the definition of IT infrastructure (Weill and Vitale

2002), we characterize an information network in the

context of smart factories as a horizontally and vertically

integrated network of hardware, software, and service

components (i.e., information network components) sup-

porting IT-enabled processes in the physical production

environment. The physical production environment con-

sists of several production components (e.g., smart indus-

trial robots, smart machines, and smart transport systems)

that perform one or multiple tasks and can be combined

flexibly according to the requirements of a product (Lasi

et al. 2014; Lucke et al. 2008). Production components are

equipped with a multitude of sensors and/or actuators that

are connected to programmable logic controller (PLC) as

well as to higher level IT services and data storages via the

information network (Lee et al. 2015; Lucke et al. 2008;

Zuehlke 2010). The information network seamlessly

connects so far separated information network components

within a company and across company borders enabling a

flexible and reconfigurable production (Lucke et al. 2008;

Yoon et al. 2012). Sensors and actuators translate signals

between the physical and cyber world. Thus, they can be

considered as bridge components that are part of both the

production environment and the information network (Hao

and Xie 2009). Thereby, sensors gather physical production

data (e.g., temperature, pressure) for tasks such as quality

management or predictive maintenance (e.g., checking oil

level). Actuators execute production tasks based on control

commands from PLCs (Lee et al. 2015; Zuehlke 2010).

PLCs ensure the self-control of certain tasks and the

exchange of relevant production data between machines

and between information network components such as IT

services (Lucke et al. 2008). IT services include applica-

tions such as enterprise resource planning (ERP) or man-

ufacturing execution systems (MES). The server

infrastructure for IT services and data storage can either be

hosted on premise or in the cloud (Colombo and Kar-

nouskos 2009; Yoon et al. 2012; Zuehlke 2010). Applica-

tions will increasingly be running in the cloud in the future.

In addition, there are numerous external interfaces to value

chain partners that are essential for the increased flexibility

CPS-Based Automation

Field Level

Operational Level

Process Control Level

Plant Management Level

Business Level ERP

MES

SCADA

PLC

Sensors / Actors

Automation Pyramid

Physical Production
Environment

ERP

MES

SCADA

Analytics

…

ERP: enterprise-resource-planning
MES: manufacturing execution system

PLC: programmable logic controller
SCADA: supervisory control and data acquisition

PLC

Fig. 1 Vertical integration –

Decomposition of automation

hierarchy – own illustration

based on VDI (2013)

Information Network
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Information Flow

Production
Machine
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PLC
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PLC
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IT-Service
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Fig. 2 Basic structure of a smart factory – own illustration based on Lucke et al. (2008) and Yoon et al. (2012)
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of the production system and the optimization of produc-

tion processes extending the information network of a

smart factory (Broy et al. 2012; Acatech 2013). In con-

clusion, the information network consists of a multitude of

different types of information network components

increasing the overall complexity of production facilities.

For one thing, ‘‘a networked machine is more valuable

than isolated ones’’ and enables the creation of ‘‘au-

tonomous and intelligent applications’’ (Wan et al. 2013).

At the same time, however, the increasing vertical and

horizontal integration of ICT and the growing importance

of real-time information in smart factories lead to infor-

mation networks with complex and manifold informational

dependencies. Hence, a structured modeling approach is

required to provide transparency and to allow the identifi-

cation of critical components and dependencies. Therefore,

the modeling approach should provide a formal represen-

tation to support companies with the analysis of informa-

tion networks in smart factories. This enables a detailed,

simulation-based analysis and the comparability of differ-

ent information network designs. Further, a graphical rep-

resentation of the modeling approach would be beneficial

as it enables a transparent representation of the mode of

operation of a modeled information network component.

As information networks can be of different sizes in

dependence of the size of the overall production facility

(ranging from a few hundred components to several tens of

thousands components, e.g., Siemens Electronics Factory

in Amberg with[ 1.000 PLC components besides other IT

components (Siemens 2017)), the modeling approach

should be able to depict single components, subnetworks

(e.g., production cells), and entire smart factory networks.

Thereby, we understand scalability as the ability of our

modeling approach to handle an increasing number of

components. Against this background, we define the fol-

lowing design objectives.

DO:1 Graphical and formal representation: To enable

the depiction and simulation-based analysis of IT

availability risks, the modeling approach has to

provide an appropriate formal and mathematical

representation of information networks in smart

factories and a graphic representation of the

modeling approach.

DO:2 Scalability: To depict information networks of

different sizes and complexity, the modeling

approach should capture single components, sub-

networks, and entire smart factory networks in a

scalable and comprehensible manner.

2.2 IT Availability Risks and Threats in Smart

Factories

In this subsection, we describe IT availability risks in smart

factories. Following the definition of risk by Kaplan and

Garrick (1981), we differentiate between availability risks

and threats. Threats describe the source of availability

risks, whereas availability risks describe the effects, more

specifically the damage potential. Thus, a threat is an event

that can compromise components of information networks

and even cause the entire smart factory to fail (BSI 2016).

As shown in Fig. 3, threats in smart factories include both

intentional attacks and unintentional errors (Amin et al.

2013).

An attack is any intentional threat event that may result

in loss of the functionality of a component (Amin et al.

2013). According to the motivation of potential attackers,

the following types of attacks can be distinguished. Inter-

nal attacks (e.g., social engineering) are executed by

attackers from inside the organization (i.e., employees),

whereas external attacks (e.g., malware infections, attacks

on control components or Denial-of-service (DoS) attacks)

are executed by attackers from outside the organization

(e.g., cybercriminals) (Cardenas et al. 2009). Thereby,

production machines are an easy target for attackers as they

usually run custom and often obsolete software solutions

and, thus, are rather poorly secured. An error is any

unintentional threat event that may result in loss of the

functionality of a component (Amin et al. 2013). Errors can

be differentiated between technical errors (e.g., technical

defects), operator errors (e.g., erroneous entry of data),

and organizational errors (e.g., incorrect software update)

(Amin et al. 2013).

To better understand availability risks in smart factories

and their relations to threats, vulnerabilities, and counter-

measures as well as reinforcers, we describe their relations

as depicted in Fig. 4.

As already mentioned, threats are defined as the source

of availability risks. By exploiting the vulnerabilities of a

component, threats can compromise directly and indirectly

specific components of the information network. The

resulting informational risks (e.g., availability issues, loss

of data) can be evaluated, for instance, by means of the

remaining availability of the information network. Coun-

termeasures can reduce the vulnerabilities of components

and informational risks, for instance, to avert operational

interruptions. We adopt the idea of reinforcers introduced

by Keller and König (2014, p 6), which are caused mainly

by the underlying network structure. Thereby, reinforcers

(e.g., structural design, propagation effects) can increase

the vulnerabilities of components and availability risks.

Informational dependencies that arise from (1) the high

number of interconnected components and (2) the
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increasing use of real-time information reinforce in par-

ticular the vulnerabilities of components in smart factory

information networks.

Thereby, especially IoT and smart manufacturing tech-

nologies cause increased vulnerabilities and change

requirements on IT security in smart factories (Wengert

et al. 2016). Tupa et al. 2017 argue that ‘‘the connection of

cyber-space, sophisticated manufacturing of technologies

and elements, and using outsourcing of services [are] the

main factors increasing vulnerability’’ and that ‘‘the

implementation of Industry 4.0 has shown that the con-

nections between humans, systems and objects have

become a more complex, dynamic and real-time optimized

network’’. Accordingly, ‘‘the concept of Industry 4.0 gen-

erates new categories of risks […] because of the increase

of vulnerabilities and threats’’ (Tupa et al. 2017). Conse-

quently, all components of the information network are

critical as ‘‘industrial control systems are becoming the

target for malicious cyber intrusions’’ (Wengert et al.

2016). For example, SCADA systems, that were initially

designed to operate on closed networks, are increasingly

based on cloud technology resulting in increased inter-

connectivity and, ultimately, vulnerability (Eden et al.

2017). Thus, ‘‘the challenge to maintain availability will

increase as manufacturing evolves from a centralized

system supported by external suppliers to a distributed

system in which production occurs closer to the point of

use’’ increasing potential points of failure (Wengert et al.

2016). Additionally, due to the highly interconnected

structure of information networks in smart factories, the

failure of a component can cause the failure of another

component resulting in cascading failures (Amin et al.

2013). These cascading failures reinforce the initial failure

and cause new threats that can lead to the loss of the

operational capability of the entire information network

(Danziger et al. 2016).

Despite the theoretical and practical relevance of cas-

cading failures in smart factories, corresponding research

remains insufficient until today and do not address the

specific characteristics of information networks in smart

factories. For instance, Zambon et al. (2011) developed a

risk assessment method for business processes that con-

siders the IT architecture and dependencies between IT

components. Sathanur and Haglin (2016) introduce a cen-

trality measure that indicates the influences of each node

on the network by considering direct and indirect com-

promise through attack propagating. Amin et al. (2013)

provide a framework for assessing security risks that can be

caused by attacks or error based on a game-theoretic

approach. However, these approaches only allow a static

analysis and thus, neglect dynamic effects like cascading

failures within information networks. Other research

Threats 

Initial Threats 

Attacks 
Internal Attacks 

External Attacks 

Errors 

Technical Errors 

Operator Errors 

Organizational Errors 
Propagation Effects 

Timing Failures 

Attack Propagation 

Fig. 3 Classification of threats in smart factories – own illustration

Availabiltiy
Risk

Components

Vulnerabilities

own

exploit

cause

reduce / increase

reduce / increase

increase

to

compromise

Countermeasures / 
Reinforcers 

Threats

Fig. 4 Availability risk

relations in smart factories –

own illustration based on

Common Criteria (2006) and

Keller and König (2014)
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analyses informational risks that exist in the context of

supply chain networks and critical infrastructures. For

instance, Wagner and Neshat (2010) develop an index to

evaluate the vulnerability of supply chain processes to

informational risks. However, they focus on a static anal-

ysis and do not explicitly consider propagation effects in

smart factories. In addition, they analyze the vulnerability

of the overall network and do not focus on the criticality of

single components. Since propagation effects are interde-

pendent and dynamic, Buldyrev et al. (2010) consider the

spread of information risks within interdependent networks

analyzing the criticality of nodes for network stability.

Although this approach meets requirements like cascading

failures, it does not take into account the characteristics of

smart factory information networks like different compo-

nent states. Thus, to the best of our knowledge, there is no

appropriate approach for the modeling of smart factory

information networks that considers adequately network

structures, inherent dependencies, and cascading failures.

Therefore, in our approach, we consider cascading

failures through two types of propagation effects, namely

deterministic (i.e., timing failure) and stochastic effects

(i.e., attack propagation). First, deterministic timing fail-

ures occur if a supporting component is not able to transmit

necessary information to other dependent components

within a specified time constraint. Second, after an attack

successfully compromised a component (e.g., the memory

of a production machine), the affected component can

compromise other connected components within the

information network, what we refer to as stochastic attack

propagation. Further, we consider the error of components

by means of stochastic time to error and the corresponding

recovery of failed components by means of stochastic time

to recovery that allows us to consider the resilience of

smart factories within the modeling approach and the

analysis of different security measures.

To determine whether an information network compo-

nent is available and, thus, to determine the operational

capability of smart factories, possible states of a component

have to be defined (Arshad et al. 2006). Therefore, a com-

ponent can exhibit only one state at a certain point in time in

our modeling approach. Thus, our modeling approach

considers time as discrete. For this, there is an absolute

clock that defines a time line consisting of equidistant points

in time. The time unit between two points in time can be

defined depending on the application. For example, it seems

reasonable to define it as 1 min in our application example

as we do not consider a hard real-time constraint. In case of

a hard real time constraint, for instance in case of critical

safety properties of a system, it could also be defined as a

millisecond or a second. Based on the described threats in

smart factories, the following states of a component result:

operational (OP), on hold (OH), failed after attack (FA),

and failed after error (FE). As shown in Table 1, these

states and the resulting availability of a component, are

defined by two attributes: (1) function executable, which

indicates whether a component is technically able to exe-

cute its function; and (2) information accessible, which

indicates whether necessary information is accessible

within a given (real-time) constraint.

We consider a component to be operational if it can

execute its function and necessary information is accessible

on time. In contrast, a component is on hold if it is tech-

nically able to execute its function, but necessary infor-

mation is not accessible punctually (e.g., due to the failure

of a supporting component). Further, attacks and errors can

affect the operational capability of a component. In this

case, a component is no longer able to execute its function

and hence, exchange information with other components.

In this case, it does not matter if necessary information is

accessible as the component is not able to execute its

function. According to the source of the failure, we dis-

tinguish between the states failed after attack and failed

after error. We assume that a component is available if it

exhibits the state s 2 OPf g and unavailable if it exhibits

one of the other states s 2 OH;FA;FEf g.

To apply appropriate countermeasures against IT

availability risks, companies need to determine the state of

each component. In particular, the resulting dynamic

behavior of information networks (i.e., state changes ini-

tiated by threats) is of upmost importance and has to be

captured. Thereby, both deterministic (e.g., timing failures)

and stochastic (e.g., attack propagation or time to error)

effects influence the dynamic behavior in different man-

ners. For example, while deterministic timing failures

occur after a predictable time span of a component’s

unavailability, the propagation of an attack depends on the

underlying stochastic propagation probabilities. Hence, the

consideration of both deterministic and stochastic effects is

required. Therefore, we state the following design

objective.

DO:3 Threats: To enable the analysis and comparability

of different threats in smart factories, the model-

ing approach has to capture the characteristics of

different threats and corresponding propagation

effects.

2.3 Requirements for the Modeling Approach

Based on the described design objectives, we derive

requirements for an adequate modeling approach. These

have been discussed in the course of the conducted expert

interviews and were confirmed by the experts. The

requirements substantiate the design objectives and exem-

plify relevant characteristics that an adequate modeling
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approach has to exhibit. By means of the derived require-

ments, it is possible to evaluate the developed modeling

approach regarding its suitability to answer the stated

research question.

DO:1 Graphical and formal representation

R:1 Graphical notation: To enable a visual and

comprehensible depiction of the operational

mode of the modeling approach, the mod-

eling approach should provide a graphical

notation.

R:2 Mathematical definition: To enable the

simulation of information networks and

the analysis of failure propagation after

attacks and errors (e.g., calculation of ITIL-

Availability-Management-KPIs), the mod-

eling approach should provide an exact

mathematical definition.

DO:2 Scalability

R:3 Modeling module: To enable the scalability

of the approach and the comprehensible

modeling of large information networks, the

modeling approach should be able to depict

an information network component as a

generic modeling module.

DO:3 Threats

R:4 Operational states: To enable the availabil-

ity analysis of information networks, the

modeling approach has to capture the com-

ponent states (see Table 1).

R:5 Dynamic behavior: To depict the dynamic

behavior of information networks, the mod-

eling approach has to capture propagations

effects, i.e., the propagation of attacks and

timing failures, in discrete time steps.

R:6 Stochastic behavior: To depict the stochas-

tic behavior of threats, the modeling

approach has to consider the probability of

a successful attack and its propagation as

well as exponentially distributed timing

aspects such as ‘‘time to error’’ and ‘‘time

to recovery’’ after an error of a component

occurs.

2.4 Methods for the Modeling and Analysis

of Networks

Despite its high theoretical and practical relevance,

research on the formal modeling of information networks

in smart factories remains insufficient. Accordingly, the

analysis and optimization of information networks

regarding IT availability risks remain major challenges. In

the following, we provide an overview of formal modeling

approaches dealing with networks that are subject to ran-

dom failures, cascading failures, and exogenous shocks in

the context of supply chain and critical infrastructure net-

works as they may provide adequate starting points.

Graph theory represents a basis for the formal modeling

of networks. Here, each actor of a network is represented

by a node and dependencies between actors are represented

as edges between two nodes (Wagner and Neshat 2010).

For instance, Buldyrev et al. (2010), Faisal et al. (2007),

and Wagner and Neshat (2010) use graph theory to identify

and quantify risks in supply chains and critical infrastruc-

ture networks. Wagner and Neshat (2010) provide an index

to measure the vulnerability of supply chains and Faisal

et al. (2007) develop a framework to quantify information

risks in supply chains based on graph theory. However,

these approaches do not consider dynamic aspects and,

thus, are not appropriate for the analysis of propagation

effects in information networks of smart factories. In

contrast, Buldyrev et al. (2010) develop a framework that

considers the dynamics of cascading failures in interde-

pendent networks. However, the approach only considers

functional and non-functional states of network actors and

neglects more detailed operational states. An extension of

the graph theory is the random graph developed by Erdös

and Rényi (1960)that combines graph theory and proba-

bility theory to analyze complex networks that are subject

to random failures (Albert et al. 2000; Ash and Newth

2007; Gao et al. 2012). However, random graph approa-

ches do not allow the depiction of given real-world infor-

mation network structures as nodes are connected

randomly (Gao et al. 2012). Altogether, the presented

approaches focus on the analysis of the overall network

and, hence, do not allow the fine granular identification and

analysis of critical components, what is a prerequisite for

the development of sensible countermeasures. Further-

more, PN enable the formal modeling of networks

Table 1 Component states

State Operational (OP) On hold (OH) Failed after attack (FA) Failed after error (FE)

Function executable Yes Yes No No

Information accessible Yes No Yes/no Yes/no

Component available Yes No No No
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considering dynamic and stochastic aspects (Arns et al.

2002). Wu et al. (2007) introduce the disruption analysis

network (DA_NET) approach based on PN to model and

quantify the propagation of disruptions in supply chains.

Extending the DA_NET approach, Fridgen et al. (2014)

provide a modular modeling approach that enables the

simulation and quantification of exogenous shocks in

supply networks considering dynamic and stochastic

aspects. Although these approaches provide a solid foun-

dation in modeling, they do not consider the peculiarities of

information networks in smart factories (e.g., operational

states, timing failures). However, there is also a growing

number of scientific literature that deals with the descrip-

tion and quantification of security risks in smart factories

(Amin et al. 2013; Broy et al. 2012; Cardenas et al. 2009;

Sadeghi et al. (nd); Sathanur and Haglin 2016). For

instance, based on a game-theoretic approach, Amin et al.

(2013) provide a framework for assessing security risks to

CPS that can be caused by security attacks or random

errors. Sathanur and Haglin (2016) introduce a centrality

measure for the assessment of vulnerability in CPS by

considering direct compromise and indirect compromise

through attack spread. However, these approaches neglect

different operational states and important aspects such as

dynamic behavior of propagation effects. Nevertheless, to

enable the assessment of IT availability risks in a sensible

manner, informational dependencies within information

networks must be considered. To the best of our knowl-

edge, there exists no formal modeling approach for the

depiction of information networks in smart factories.

Therefore, in this paper we focus on the modeling of

information networks considering IT availability risks. Our

approach enables the simulation of different information

network settings and different threats in an integrated

manner.

3 Modeling Approach Based on Petri Nets

To address the raised research question, we follow the

guidelines for DSR from Hevner et al. (2004) and apply the

DSR methodology from Peffers et al. (2007) to develop a

modeling approach as design artifact (Offermann et al.

2010). Therefore, the DSR methodology (Peffers et al.

2007) suggests the following six activities for the devel-

opment of artifacts: (1) identify problem; (2) define design

objectives for solution; (3) design and develop; (4)

demonstrate; (5) evaluate; and (6) communicate. Step 1

was already addressed in Sect. 1 by highlighting the rele-

vance of formalized modeling approaches for the depiction

and simulation of information networks in smart factories.

In Sect. 2, we deduced design objectives for our artifact as

well as requirements for the modeling approach (step 2) to

ensure that our artifact helps to solve the research question.

In this section, we start with the design and development of

our artifact (step 3).

We base our modeling approach on PN that were

developed by Carl Adam Petri (1962) as PN fulfill the

postulated requirements (cf. sect. 2). PN provide an intu-

itive graphical notation as well as a formal notation

enabling the mathematical analysis of information net-

works (van der Aalst 1998), fulfilling requirements R.1 and

R.2. As existing PN approaches do not consider specific

characteristics of smart factory information networks, we

build on different PN approaches as a basis for the devel-

opment of our modeling approach under consideration of

the possessed requirements. First, to handle the complexity

of large information networks and to enhance practicabil-

ity, we adapt the concept of modularization developed for

supply chains (Fridgen et al. 2014) fulfilling requirement

R.3. Further, as PN consist of passive places and active

transitions that symbolize states and actions (i.e., state

changes), respectively, they fulfill requirement R.4. To

cover dynamic behavior, firing delays are associated to

transitions, specifying the duration of activities (Murata

1989). Several concepts regarding firing delays can be

distinguished. For instance, Ramchandani (1974) devel-

oped timed Petri nets that associate a deterministic firing

delay to each transition. Merlin (1974) introduced time

Petri nets (TPN) that use time intervals to describe lower

and upper bounds for the duration of activities. In

stochastic Petri nets (SPN), an exponentially distributed

firing delay is assigned to transitions (Molloy 1981). Fur-

ther, Marsan et al. (1984) introduced generalized stochastic

Petri nets (GSPN) that consider immediate transitions (zero

firing delay) as well as timed transitions (exponentially

distributed firing delay) extending SPN. Regarding

requirement R.5, we adapt the GSPN approach by Marsan

et al. (1984) using immediate and timed transitions to

capture the dynamic behavior (e.g., propagation of attacks

and timing failures) of information networks. Thereby, the

timing requires preselection rules for transitions that come

into conflict when multiple transitions share input places

and can fire at the same point in time competing for the

same token. The preselection of transitions can be per-

formed, beside others, deterministically with priorities or

randomly with probabilities (Balbo and Silva 1998). Nec-

essary information for the parametrization of priority val-

ues could be gathered from technical data sheets of IT

components and system specifications. To depict stochastic

events (e.g., attacks on specific components), probabilities

can be assigned to transitions fulfilling requirement R.6.

Thereby, probability values for attacks can be derived from

official statistics (e.g., from the European Union Agency

for Network and Information Security – ENISA Threat

Landscape Report). The obtained values could be adjusted
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based on expert’s expectations (e.g., regarding the devel-

opment of the number of attacks) or individual internal

measurements (e.g., the installation of a new cyber security

system). Regarding internal errors, internal incident reports

can be the basis for the estimation of appropriate proba-

bility values. Moreover, to depict timing failures between

dependent components, we adapt the idea of guard func-

tions from colored Petri nets (CPN) (Jensen 1991).

Accordingly, considering the aforementioned requirements

R.1 to R.6, we use GSPN with immediate and exponen-

tially distributed firing times and enhance the GSPN with

deterministic and stochastic preselection of transitions as

well as guard functions to fulfill the derived requirements.

This enables the consideration of specific characteristics of

smart factory information networks such as the dynamic

behavior, i.e., propagation effects and timing failures

within the information network.

3.1 Mathematical Specification

In this subsection, we briefly describe the basic functioning

of PN and specify the mathematical definition of our

modeling approach. PN are defined as bipartite graphs

consisting of places, transitions, and arcs. If places addi-

tionally carry tokens, PN are called ‘‘marked PN’’. The

current state of a PN is specified by its marking, i.e., the

number of tokens on each place. The PN changes its state

by the enabling of transitions which remove tokens from

input places and create tokens on output places. A detailed

explanation and functional description of PN can be found

by Murata (1989).

To describe the information network by means of our

modeling approach in a formalized way, there is a finite set

of places P ¼
Sm

i¼1 pif g ¼ p1; . . .; pmf g.1 Further, there is a

finite set of transitions T ¼
Sn

j¼1 tj
� �

¼ t1; . . .; tnf g, con-

sisting of immediate and timed transitions. These include

timed transitions with different timing requirements like

the special case of real-time constraints or other timing

requirements (for instance, for repair times), as well as

transitions without timing specifications defining pure

YES/NO decisions (for instance, transitions that determine

whether a component is affected by an attack or not). Arcs

are divided into two finite sets of directed arcs: the input

matrix I � ðP� TÞ defines arcs from places to transitions,

whereas the output matrix O � ðT � PÞ defines arcs from

transitions to places. The binary variables Ii;j and Oi;j equal

1 if there exists a directed arc from place pi to transition tj
or from transition tj to place pi, respectively. Otherwise, Ii;j
and Oi;j equal 0. The entries of the input and output

matrices are determined by the structure of the information

network. The resulting incidence matrix A is calculated by

equation (Eq.) 1:

A ¼ O� I ð1Þ

The marking vector Mh ¼ Mhðp1Þ; . . .;MhðpmÞ
� �

, con-

tains for each point in time h with h 2 f0; . . .;Hg the

number of tokens on each place pi, where M0 indicates the

initial marking vector. If there is more than one transition

requiring the same input token from a common input place

at h, there is a conflict. The conflict resolution type vector

CR ¼ cr1; . . .; crm½ � assigns each place pi its type of conflict

resolution determining whether a conflict is resolved by

priority ðcri ¼ 0Þ or probability ðcri ¼ 1Þ.. According to

the conflict resolution type, the conflict parameter vector

CP ¼ cp1; . . .; cpn½ � assigns each transition tj a specific

priority or probability, respectively. Further, the guard

function vector Gh ¼ ghðt1Þ; . . .; ghðtnÞ
� �

with ghðtjÞ 2
true; falsef g assigns each transition tj additional enabling

conditions. Therefore, a transition tj is enabled if (1) each

input place contains enough tokens and (2) the enabling

conditions of the assigned guard function GhðtjÞ are ful-

filled, i.e. ghðtjÞ ¼ true. Hence, the enabling vector Eh ¼
ehðt1Þ; . . .; ehðtnÞ
� �

with ehðtjÞ 2 0; 1f g determines whether

a transition tj is enabled at point in time h. The transition

type vector TT ¼ tt1; . . .; ttn½ � determines whether a tran-

sition is an immediate ðttj ¼ 0Þ or timed ðttj ¼ 1Þ transtion.

Further, the fire rate vector FR ¼ fr1; . . .; frn½ � specifies the

firing rate determining the firing delay of timed transitions.

Whenever a timed transition is enabled, a random firing

delay is assigned to it. With every time step, the firing

delay decreases. Once the firing delay equals zero the

transition fires. Therefore, the firing vector Fh ¼
f hðt1Þ; . . .; f hðtnÞ
� �

with f hðtjÞ 2 0; 1f g determines whether

a transition tj fires at h. Thereby, the marking of the next

point in time hþ 1 is calculated by Eq. 2:

Mhþ1 ¼ Mh þ A � Fh ð2Þ

As the information network is composed of several

components, we define a set of components

C ¼
So

k¼1 ckf g ¼ c1; . . .; cof g. For example, and in refer-

ence to Fig. 2, a set of components can include, but is not

limited to, servers, cloud-based or on-premise hosted IT

services, data storage, external interfaces, and sensors,

actuators, and embedded systems of smart production

machines. Each component ck is described by a subset of

places Pc � P and a subset of transitions Tc � T (Vladimir

2011). To depict timing failures and, hence, informational

dependencies between components, the unavailability of a

component ck at a certain point in time h and the maximum

acceptable interruption time between two components ck
and ck̂ are required. For this, the unavailability of a

1 Table A.1 in the online appendix provides an overview of the

nomenclature of our PN specification (available online via http://

springerlink.com).
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component, that represents the duration of a component’s

unavailability, is depicted by matrix Uh ¼
uhðc1Þ; . . .; uhðcoÞ
� �

with uhðc1Þ 2 N0 and the maximum

acceptable interruption time is depicted by matrix L with

Lk;k̂ 2 N.

4 Modeling Procedure

In this section, we illustrate our modeling procedure for

answering our research question. Following Simon (1996),

we conducted several generate-and-test cycles during the

design process to derive an appropriate approach fulfilling

the derived design objectives and requirements. To depict

components and their interdependencies, we develop a

modeling module representing one essential artifact of our

research. Thereby, each component ck is illustrated by a

modeling module, framed by a rounded rectangle as shown

in Fig. 5.

A modeling module consists of six places (p1 to p6) and

seven transitions (t1 to t7). The state places p1 to p4 (white

circles) represent the current state s 2 OP;OH;FA;FEf g
of a component. The operational state, for instance, is

represented by one token on place p1, summarized by the

marking vector of the state places Mh ¼ 1; 0; 0; 0; 0; 0½ �.
Figure 6 shows all states a component can exhibit and their

depiction by our modeling module. The on hold state is

defined by a token on the places p1 and p2. Further, the

failed after error and the failed after attack states are

depicted by a token on place p3 or place p4, respectively.

The structure of complex information networks can be

built up by means of the modeling modules. Therefore, the

modeling modules can interact with each other via inter-

face places (striped circles) that are positioned on the

borderlines of the module, as well as via guard functions

that are assigned to transitions. The input interface place

(IIP) p5 and the output interface place (OIP) p6 facilitate

the depiction of attacks and attack propagation within the

information network by connecting components according

to information flows between them. The guard functions

depict if required information is available within a given

time. As seen in Fig. 5, four immediate transitions (black

rectangles) depict whether there is a timing failure or not

(t1 and t2), or whether an attack harms a component or not

(t5 and t6). Moreover, three timed transitions (white rect-

angles) depict the time to error (t3) as well as the time to

recover after an error or attack (t4 and t7). Thereby, the

time to error represents the assumed time span between

errors, i.e., the time between the occurrences of two errors.

The time to error can be assessed based on historical data

regarding the number of errors in a certain interval. The

time to recovery includes both the predicted times for

detection and repair of a failure after an error or attack.

Taking the operational state as a starting point, we describe

in the following how (1) timing failures, (2) errors, and (3)

attacks as well as their propagation within the information

network are depicted in our modeling approach.

The timing failure model is depicted by means of the

state places p1 (for status OP) and p2 (for status OH), the

transitions t1 and t2, and the assigned guard functions

Ghðt1Þ and Ghðt2Þ. Thereby, the guard functions monitor

whether the unavailability UhðckÞ of other components

exceeds the maximum acceptable interruption time Lk;k̂ (cf.

Fig. 7).

To demonstrate the timing failure mechanism, we con-

sider an example consisting of two components c1 and c2.

Component c2 (e.g., a sensor) supports component c1 (e.g.,

an embedded system) with necessary information. Hence,

the operational capability of component c1 depends on the

information transmitted by component c2 in real-time.

Figure 6 shows the subsequent states of component c1. The

guard function Ghðt1Þ is true if the unavailability of com-

ponent c2 exceeds the maximum acceptable interruption

time (e.g., due to a technical defect) enabling transition t1
of component c1 (step 1/ h = 1). Subsequently, transition t1
fires and an additional token is created on place p2

changing the state of component c1 from operational to on

hold (step 2/ h = 27). As there is both an arc from p1 to t1
and from t1 to p1, the marking of place p1 after firing is the

same. Once component c2 is recovered and its unavail-

ability is less than the maximum acceptable interruption

time, guard function Ghðt2Þ of component c1 is true,

enabling transition t2. The firing of transition t2 only con-

sumes the token on place p2 as transition t2 is a sink

transition without outgoing arcs (step 3/ h = 43). There-

fore, the state of component c1 changes from on hold back

to operational.

Moreover, the error model enables the consideration of

randomly occurring errors such as technical defects or

erroneous entry of data by operators and their effects on the

operational capability of the smart factory. For this, the

error model comprises a sequence of the three states

1

Immediate Transition

Timed Transition

State Place

Interface Place

Fig. 5 Modeling of an information network component
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operational, failed after error, and on hold as shown in

Fig. 8.

The exponentially distributed firing delays of the error

sequence are described by the error rate kE and the error

recovery rate kER. These fire rates define the stochastic time

to error (e.g., TTE = 25) and time to recovery (e.g.,

TTR = 10) that are associated to the timed transitions t3
and t4. The information about their parametrization is

available through sources such as maintenance information

of manufacturers, and hence, can be assessed and applied

as exogenous input parameters to our model. After the

assigned time to error elapsed, transition t3 fires, repre-

senting the occurrence of an error of the component (step 1/

h = 1). Therefore, transition t3 consumes the token on

place p1 and creates a token on place p3 changing the state

of the component from operational to failed after error

(step 2/ h = 26). Subsequently, transition t4 is enabled and

the random firing delay time to recovery is assigned to it.

Once the time to recovery is elapsed and the component is

recovered, transition 4 fires and the component exhibits the

on hold state (step 3/ h = 36). In this state, the component

monitors whether all necessary information from support-

ing components is accessible. Once all necessary infor-

mation is accessible, the component’s state switches back

to operational (step 4/ h = 37), otherwise the component

stays on hold (see timing failure model described above).

Finally, the attack model includes the three states op-

erational, failed after attack, and on hold as well as the IIP

p5 and OIP p6 as shown in Fig. 9.

The occurrence of an attack is represented by the pres-

ence of a token on the IIP p5 enabling both transitions t5
and t6 (step 1=h = 1). Whether an attack is successful (t5
fires) or not successful (t6 fires) is determined randomly

according to the assigned probabilities 1 � a and a,

respectively. Hence, the parameter a can be interpreted as a

measure for the security level of components. If an attack is

not successful, transition t6 consumes the token on IIP p5

and the component remains in the operational state (step

2a/ h = 2). In contrast, if the attack is successful, transition

t5 consumes the tokens on the state places p1 and IIP p5 and

creates a token on the state place p4 and OIP p6 (step 2b/

h = 2). The token on the state place p4 initiates the

recovery of the component and the token on OIP p6 depicts

the attack propagation to other, connected components.

Subsequently, transition t7 is enabled and the attack

recovery rate kAR defines the stochastic time to recovery

(e.g., TTR = 10) assigned to transition t7. Once the time to

recovery is elapsed and the component is recovered, the

component switches to the on hold state (step 3/ h = 12)

and monitors whether all necessary information from

supporting components are accessible (see the timing fail-

ure model described above). Finally, the component is in

the operational state again/step 4/ h = 13).

As shown in Fig. 10, the attack propagation is depicted

by the OIP and IIP on the borderlines of the modeling

modules. We apply the idea of fusion of places as descri-

bed by Murata (1989), where the OIP of component c1 and

the corresponding IIP oFf component c2 are represented by

the same place pi. Hence, if an attack is successful and a

token is created on the OIP of component c1 there is also a

token on the corresponding IIP of component c2 enabling

the above-described attack model. Moreover, if a compo-

nent is connected to more than one other component, the

number of OIPs within a modeling module can be expan-

ded to an arbitrary number as indicated in component c2

(cf. Fig. 10).

Further, to represent the stochastic occurrence of attacks

and to simulate the expected number of attacks in a certain

time interval, we adopt a shock module as introduced by

Fridgen et al. (2014). The shock module shown in Fig. 11

comprises one transition t1 and one or multiple OIPs.

Transition t1 is a source transition (i.e., without input pla-

ces) and, thus, is always enabled. The attack rate kA defines

the random firing delay time to attack that is associated

with transition t1. After the firing delay elapsed, transition

t1 fires and creates a token on the OIP representing the

occurrence of an attack. Thereby, one OIP of the shock

module is connected to one IIP of a modeling module. To

On Hold (OH)Operational (OP) Failed after Error (FE) Failed after Attack (FA)

Fig. 6 Component states depicted in the model

123

334 D. Miehle et al.: Modeling IT Availability Risks in Smart Factories, Bus Inf Syst Eng 62(4):323–345 (2020)



depict simultaneous attacks (Amin et al. 2013) the number

of OIPs within the shock module can be expanded analo-

gously to the modeling module (cf. Fig. 11).

5 Evaluation

Following Sonnenberg and vom Brocke (2012), within this

section, we demonstrate and evaluate the feasibility and

applicability of our modeling approach. For this purpose,

they propose a combination of ex-ante and ex-post evalu-

ation activities (Eval1 to Eval4) in artificial and naturalistic

environments. Thereby, Eval1 requires the presentation of

the research topic as a meaningful DSR problem and the

formulation of design objectives. Eval2 validates the

design specification against the postulated design objec-

tives. Eval3 aims to validate the feasibility of a prototype in

an artificial setting. Finally, Eval4 serves the purpose of

validating the applicability of the developed artifact from a

naturalistic perspective.

We already conducted Eval1 activity in Sects. 1 and 2

by identifying the need for a formalized approach for the

modeling of information networks in smart factories.

Sections 3 and 4 described the logical reasoning of our

artifact, the modeling approach.

In Sect. 5.1, we validate the design specification against

the possessed design objectives and requirements from the

literature by means of a feature comparison. Further, in

Guard Function of Component :
If then

Guard Function of Component :
If then

Exemplary Guard Functions:

: Operational : Operational

: Operational (OP)

: On Hold

: On Hold: Failed After Error

TTR=40

Step 1 Step 2 Step 3

TTR: time to recovery

Fig. 7 Timing failure sequence

Step 1: Operational Step 2: Failed after Error Step 3: On Hold Step 4: Operational

TTE = 25 TTR = 10 TTR: time to recovery
TTE: time to error

Fig. 8 Error sequence
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Sect. 5.2, we simulate an exemplary information network

based on a real-world setting in an artificial setting (Eval3)

to demonstrate the feasibility of our modeling approach

and to show that our artifact behaves as intended for single

test cases (Sonnenberg and Vom Brocke 2012). In

Sect. 5.3, we apply key figures that are based on the data

generated by our modeling approach to demonstrate its

usefulness for the analysis of an information network, its

interdependencies, and the propagation behavior of failures

over time. Finally, to validate the modeling approach from

a naturalistic perspective (Eval4), we interview experts

from two leading global companies in the automation and

flexible packaging sector and an academic PN expert (cf.

Sect. 5.4).

5.1 Feature Comparison

In Sect. 2, we derived design objectives for the develop-

ment of our modeling approach. We compare these design

objectives with the design specifications of our developed

modeling approach to validate whether our developed

artifact fulfills these design objectives (Venable et al.

2012).

TTR=10

Step 1: Operational

Step 2b: Failed after Attack Step 3: On Hold Step 4: Operational

Step 2a: Operational

attack not
successful
( fires)

attack
successful
( fires)

TTR: time to recovery

Fig. 9 Attack sequence
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Place of ( )=

OIP 1

OIP 2
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: Operational : Operational : Failed after Attack : Operational

Step 2

Place

Marking 0 0 0 1 0 1 1 0 0 0 0

Component /

Fig. 10 Attack propagation sequence
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DO:1 Graphical and formal representation: Our mod-

eling approach is based on PN providing both a

graphical representation of modeling modules and

a formal representation of information networks.

Owing to the exact mathematical definition of PN,

it is possible to convert information networks into

mathematical equations enabling computer-based

simulations of complex real-world settings.

DO:2 Scalability: Our modeling approach depicts the

information network as a multitude of single

modeling modules and dependencies between

them. This modularization enables the modeling

of information networks of different sizes and

compositions.

DO:3 Threats: Our modeling approach provides the

possibility to model and simulate different threats

(intentional attacks via virus attacks and technical

errors) as well as associated propagation effects

(attack and timing failure propagation) (cf.

sect. 4).

Based on this design objective comparison, we can state

that our developed modeling approach fulfills all design

objectives derived in Sect. 2.

5.2 Simulation Based Analysis of an Exemplary

Information Network

To demonstrate the feasibility of our modeling approach,

we simulate an exemplary information network that is

based on a real-world setting oriented on a matrix pro-

duction principle of a leading robotics manufacturer (cf.

Fig. 12) and that is affected by different threats. For this,

we model the information network of a production envi-

ronment consisting of five robotic cells that are a section of

a larger smart factory.

The information network consists of 211 components

(modeling modules) containing servers, IT services, data

storage, external interfaces, embedded systems, sensors,

and actuators. The exemplary setting is based on a real-

world setting of one of the leading robotic manufacturers

with its matrix organized production concept for customers

for the production of industrial goods and, thus, is geared

toward a close-to-reality production infrastructure. There

are five robotic cells equipped with four industrial robots

on the shop floor of the smart factory. Each industrial robot

embraces one embedded system, three sensors (e.g., tem-

perature or ultrasonic sensor), and six actuators (six axis

robots) to flexibly perform production tasks. The embedded

systems, sensors, and actuators are modeled as components

of the information network. Embedded systems control

sensors and actuators as well as exchange production and

machine data between industrial robots, IT services, and

data storage. According to real-time requirements and data

volumes, IT services and data storage can be hosted either

on on-premise servers (e.g., MES, ERP) or via external

interfaces in the cloud (e.g., big data analytics). Thereby,

the MES and ERP applications perform traditional pro-

duction tasks (e.g., production planning and control),

whereas big data applications analyze production and

machine data to predict, for instance, productivity, quality,

and maintenance jobs. Based on these analyses, big data

applications give MES and ERP applications feedback to

optimize production processes. Further, we assume that a

failure of the on-premise server (hosting MES and ERP

OIP 2

OIP 1

Fig. 11 Structure of a shock

module
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applications) can lead to a standstill of the entire smart

factory due to missing necessary information of the MES

and ERP. In contrast, a failure of the cloud server (hosting

big data applications) affects only the ability of the smart

factory to optimize production flows, but the operational

capability of production remains unaffected.

Taken this initial setting, we consider two scenarios (i.e.,

Scenario 1 – Attack and Scenario 2 – Error) to demonstrate

and analyze the impact of different threats on the opera-

tional capability of the information network by using the

unavailability rate as a measure for the impact of failures.

The simulations are based on the following specifications

(see Table 2).

We developed an application using MATLAB, which

allows us to design, simulate, and analyze generalized

stochastic nets. Our application considers immediate and

timed transitions. Timed transitions can be deterministic or

stochastic. Furthermore, priorities or probabilities can be

assigned to conflicting transitions. We use this application

to simulate and analyze the information network modeled

by means of our PN approach.

We conduct 1000 simulation runs for each scenario. In

each simulation run, we observe a time frame of 100 points

in time and the states of 211 components of the smart

factory information network (see Fig. 12) resulting in

21,100 states. For all simulation runs we define that the

start marking was the same (i.e., all of the 211 components

are in the state ‘‘operational’’). However, the stochastic

effects of the threat events (e.g., probability of a successful

attack or the exponentially distributed time to error) lead to

different results in each simulation run. Thereby, the error

failure rate as well as the error and attack recovery rates of

all components are set to kE ¼ 0:0001 and

kER ¼ kAR ¼ 0:01, meaning that errors occur in one out of

10,000 points in time and that recovery after errors and

attacks takes about 100 points in time. Both information

are based on technical specifications of IT components and

can be gathered from technical data sheets. The maximum

acceptable interruption time Lk;k̂ between components

within a robotic cl is set to one (real-time requirement),

between robotic cells to 20 points in time, and between IT

services and embedded systems to 60 points in time. Fur-

ther, the Lk;k̂. between servers and IT services is also set to

one depicting functional dependencies.

In Scenario 1 – Attack, we assume an adversary that

performs a coordinated cyber-attack on all embedded sys-

tems of robotic cell 1 via the internet (e.g., via a remote

maintenance channel). Thereby, a successful attack can

compromise other, directly connected components (e.g.,

sensors, IT services) according to their security level. First,

we assume that the embedded systems run an out-of-date

firmware and hence, offer a security level of only 90%.

After installing a security update, the security level

increases to 99%. Comparing the two security levels, the

unavailability rate decreases from 30 to 1% (see Fig. 13).

The results indicate that an increased security level dra-

matically reduces the unavailability rate and, therefore, the

impact of an adversary on the operational capability of the

information network.

In Scenario 2 – Error, we consider a technical defect of

the on-premise server leading to failures of the MES and

ERP applications. To demonstrate how timing failures

affect the operational capability of the smart factory, we

analyze different recovery rates of the on-premise server.

Table 2 Scenario

specifications
Scenario 1 – attack Scenario 2 – error

Case 1A Case 1B Case 2A Case 2B

Number of simulation runs 1000

Number of points in time 100

Number of components 211

Error rate (kE) 0.0001 0.0001 0.0001 0.0001

Error recovery rate (kER) 0.01 0.01 0.01 0.1

Security level a 0.90 0.99 0.90 0.90

30% 

1% 

27% 

13% 

0%

10%

20%

30%

40%

Case 1A Case 1B Case 2A Case 2B

Unavailability Rate Fig. 13 Simulation results:

Unavailability rates for scenario

1 – attack and scenario 2 – error
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First, we assume a recovery time defined by the recovery

rate kER ¼ 0:01. After improving the recovery process and

fault diagnosis (e.g., by the use of augmented reality) the

recovery time decreases (kER ¼ 0:1). Thereby, the

unavailability rate decreases from 27 to 13% (see Fig. 13).

The results indicate that an improved recovery rate reduces

the unavailability rate and, hence, the impact of an error of

the on-premise server on the information network.

In summary, the results of the scenario simulation

indicate the applicability of the modeling approach to a

production environment that is close to real world. In

addition, the simulation results demonstrate the application

possibilities of our approach for deriving suitable security

and prevention measures. Of course, the size of the mod-

eled information network is limited and information net-

works of smart factories in practice are far more complex

because they consist of considerably more components.

Nevertheless, the application of our modeling approach to a

close-to-real-world scenario within the simulation and its

results demonstrate that our approach is principally suit-

able for more complex scenarios due to the modular

structure of our modeling approach. Further, the applica-

tion demonstrates that there is a need for an adequate

modeling approach that enables detailed analysis of IT

availability risks (cf. sect. 5.3).

5.3 Application of Key Figures

Besides the simulation results described in Sect. 5.2, the

data regarding the components’ states and their operational

capability (ref. Table 1) generated by the simulation can be

used to analyze the information network, its interdepen-

dencies, and the propagation behavior of failures over time

in more detail. The development of corresponding key

figures that are calculated on the basis of the generated data

seems promising to support the identification of critical

components. Although the elaborated development of such

key figures is subject to further research (source left blind

due to double-blind review), we briefly describe two

potential key figures that can be derived from our

approach.

For this, the current state s 2 OP;OH;FA;FEf g of each

component at h is depicted by the state vector

vbck ;h ¼ ½bOPck ;h; b
OH
ck ;h

; bFAck ;h; b
FE
ck ;h

], where bsck ;h represents a bin-

ary variable that takes the value 1 if component ck is in

state s at h, else 0. By means of the state vector vbck ;h, the

state of each component is defined clearly for each point in

time h. Table 3 provides an overview over the states, their

attributes, and the associated state vector.

Based on the state vector, we develop the key fig-

ures availability and operational availability to analyze the

smart factory’s information network regarding its opera-

tional capability after an attack or error:

Dynamic key figure ‘‘Availability’’: The availability of

the information network AVhð bM ; bhÞ measures the share of
components that are able to provide their function ( s 2
OP;OHf gÞ at h considering that a subset bM of the com-

ponents initially fails2 at bh due to an attack or error (see

Eq. 3).

Dynamic key figure ‘‘Operational availability’’: The

operational availability of the information network

opAVhð bM ; bhÞ measures the share of components that are

able to provide their function and access necessary infor-

mation ( s 2 OPf gÞ at h considering that a subset bM of the

components initially fails at bh due to an attack or error

(see Eq. 4).

AVhðð bM ; bhÞ ¼
PC

c¼1 b
OP
ck ;h

þ
PC

c¼1 b
OH
ck ;h

C
ð3Þ

opAVhðð bM ; bhÞÞ ¼
PC

c¼1 b
OP
ck ;h

C
ð4Þ

To calculate the two key figures, the values of the state

vectors obtained from the marking vector resulting from

the simulation and fulfilling the respective criteria (for

Eq. 3 s 2 OP;OHf g, for Eq. 4 s 2 OPf g) are summed up.

By means of the distinction between availability and op-

erational availability, the information network and its

components can be analysed regarding their operational

capabilities as well as their informational dependencies to

identify critical components. Whereas traditional avail-

ability key figures often only cover whether a system is in a

functioning condition or not, our approach enables a

detailed depiction of four different relevant states. This

enables the determination of the extent of non-availability

of components that results solely from informational

Table 3 Component states and corresponding state vectors

States Operational (OP) On hold (OH) Failed after attack (FA) Failed after error (FE)

Function executable Yes Yes No No

Information accessible Yes No Yes or no Yes or no

State vector vbck ;h vbck ;h ¼ ½1; 0; 0; 0� vbck ;h ¼ ½0; 1; 0; 0� vbck ;h ¼ ½0; 0; 1; 0� vbck ;h ¼ ½0; 0; 0; 1�

2 bM is a subset of N ð bM � NÞ consisting of one or multiple

components (e.g., in case of common cause failures or synchronized

attacks) and representing the initial trigger of failures.
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dependencies. They can be applied to analyze an entire

information network, a subnetwork, or selected compo-

nents. Thus, the key figures support the improvement of

already existing information networks through targeted

security measures as well as the development of a sensible

design and configuration of new information networks.

To demonstrate the application of the key figures, Fig. 14

contains the exemplary course of a worst-case simulation run

of two different scenarios that resulted both in a significant

non-availability of IT components and, thus, a restriction of

the production system. For this analysis, we selected two

worst-case courses among the generated simulation runs.

The worst-case courses show different effects on the infor-

mation network: (a) a failure of the server (e.g., caused by an

incorrect software update) and (b) an attack on one embed-

ded system that can compromise other directly connected

components with a given probability.

As shown in Fig. 14a, the availability in scenario (a)

drops to 98% and remains constantly at this level after the

failure of the server at h ¼ 1. However, the operational

availability considerably decreases stepwise, as IT services

depend functionally on the server. Consequently, con-

trollers (drop 2 in Fig. 14a), embedded systems, and all

dependent sensors and actuators (drop 3 and 4 in Fig. 14a)

exhibit the OH state due to missing information, resulting

in a standstill of the entire smart factory. After the server is

repaired, all components restore their operational capabil-

ity and change their state from OH to OP as necessary

information is accessible, again. Finally, the entire smart

factory is restored and fully functional. This worst-case

scenario illustrates that a failure of central components, i.e.,

the server, leads to an inoperability of the entire smart

factory and, thus, a significant economic damage.

As shown in Fig. 14b, the attack on the embedded

system causes a rapid drop of the components’ availability

to 41%. The rapid drop can be explained by the spread to

directly connected components leading to a functional

incapacity of these components, too. Thereby, the opera-

tional availability decreases to 30% as missing information

causes further components to interrupt their function

(s 2 OHf g). As soon as components begin to restore their

operational capability, there is a gradually increase of

availability and a stepwise increase of operational avail-

ability. This stepwise increase can be explained by the fact

that all components of a production cell have to be restored

until the production cell is completely functional, again.

These exemplary worst-case courses of failure propa-

gations within the information network illustrate that our

modeling approach can be used as the basis for detailed

analyses of information networks and their components

and, thus, provides value for practitioners. The analysis of

single worst-case courses is especially important as the

potentially worst-case courses of propagation effects can

cause significant damage to companies and, thus, represent

extreme risk potentials for companies like complete pro-

duction downtimes or a loss of operations that result in

significant economic damage. These worst-case courses

would not be observable if the data of simulation runs is

accumulated, for instance, to average values. Thus, our

modeling approach and the application of key figures such

as the described ones enable the profound analysis of dif-

ferent structural designs of information networks and the

targeted derivation of IT security measures to avoid or

soften worst-case courses. Accordingly, the identification

of beneficial design features such as precise and highly

effective air gaps between components of the information

network or the implementation of redundant IT compo-

nents is facilitated.

5.4 Expert Interviews

To complement the evaluation from a naturalistic per-

spective, we interviewed experts from two companies to

cover different views and an academic PN expert. Thereby,
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Fig. 14 Illustration of AV and opAV after failure (a) and attack (b) for an exemplary simulation run
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we discussed our modeling approach with the experts in-

depth and based on the exemplary application in the close-

to-reality structure from Sect. 5.2 and the application of

key figures in Sect. 5.3. The interviews with the experts

from practice, who deal with our research context on a

daily basis in detail, focused on the first two phases of the

DSR methodology (problem identification and design

objectives) and helped to validate the usability and real-

world fidelity of our modeling approach.

First, we interviewed the chief information officer of

PACKAGING, one of the world’s leading manufacturers of

flexible packaging with 10,000 employees in 23 countries

and sales of €1.9 billion in 2015. PACKAGING exten-

sively applies automation technologies in their production

facilities and, thus, provides great experience with com-

prehensive information networks and digital technologies

within production facilities. The expert confirmed the need

for a modeling approach that depicts information networks

in smart factories to analyze both attacks and errors in a

separated and integrated manner as, till date, corresponding

approaches are missing. Further, he considered our

abstraction of a smart factory network, the categorization

of threats, and the proposed design objectives and

requirements of our research as useful and sensible. For

further research, he remarked that employees might not be

familiar with the graphical representation of a modeled

information network component due to the specific nota-

tion of PN. Further, the graphical representability of the

entire modeled information network might suffer in large

information networks and become rather complex and

confusing. Both limitations could be addressed by an user-

friendly graphical user interface in combination with drill

down functions and a defined hierarchical structure that is

able to condense large information networks on cus-

tomizable granularity levels. For instance, these hierarchy

levels could be defined on a component level, production

cell level, or production area level.

The second organization ROBOTIC is a manufacturer of

industrial robots and intelligent automation solutions.

ROBOTIC has about 12,300 employees and sales of €3

billion. We interviewed the vice president of digital strat-

egy of ROBOTIC, who holds a doctorate in business &

information systems engineering and has several years of

experience in the field of automation and robotics. This

expert also confirmed the need for modeling and analyzing

IT availability risks in smart factory information networks

and the lack of corresponding approaches, till date. He

highlighted that the modularization of our PN approach is

helpful in managing the increasing size and complexity of

information networks. Further, he remarked that the

development of key performance indices is necessary to

enable employees of the IT department to analyze and

improve the security of smart factory information

networks. This important remark was integrated in our

research and led to the development of the key fig-

ures presented in Sect. 5.3. Moreover, he pointed out

that the consideration of a dynamic failure rate would be

beneficial, as failure rates of technical applications gener-

ally change during service life (cf. Weibull distribution).

Since the application of our modeling approach in the

paper at hand is steered towards an already installed smart

factory network that is in an established, running opera-

tional mode, the consideration of life cycle effects such as

set-up difficulties or wear-out of components is not nec-

essary. However, this would be possible through an

appropriate parametrization and the use of suitable distri-

butions. Further remarks from these experts were used as

orientation for the parametrization of the exemplary sim-

ulation in Sect. 5.2 (for instance, regarding the security

level of components or the error recovery rate).

Lastly, we interviewed a professor for electrical engi-

neering with a background in mechatronic and control

engineering as an expert for PN to evaluate our modeling

approach from a methodological perspective. The inter-

viewed expert focuses in his research on flexible automa-

tion and cooperative robotics in the field of Industry 4.0

and, thus, besides the methodological knowledge about PN

he possess relevant practical knowledge about smart fac-

tories and their information networks. This expert con-

firmed that our developed modeling approach addresses a

highly relevant research topic as the analysis of IT avail-

ability risks in complex smart factory information networks

requires the development of appropriate approaches. In the

opinion of the expert, our approach can serve as a basis for

the analysis of different interconnection patterns of infor-

mation networks and for failure analysis, for instance, of

common-cause failures. Further, he confirmed that our

design objectives and requirements derived from literature

are decisive and plausible. He highlighted, that our

approach by means of stochastic PN approach is highly

valuable for the structured modeling of complex informa-

tion networks and that our modeling approach is plausible

and comprehensible. Further, he emphasized that the data

necessary for the parametrization of our modeling

approach in real-world application scenarios can be gath-

ered through different sources relating to functional safety

such as technical data sheets of component manufacturers.

The expert also suggested that the consideration of func-

tional safety and its impairment by IT availability risks

would have been another interesting element. Since we

focused our research on IT availability risks and their direct

effects in the information network, this represents an

interesting opportunity for further research.
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6 Conclusion, Limitations, and Future Work

The digitalization and interconnection of production

infrastructures lead to new challenges for companies

(Amin et al. 2013). In particular, the flawless functioning

of information networks and the exchange of information

in real-time are prerequisites for the operational capability

of smart factories. Therefore, in this paper we have pre-

sented a stochastic PN approach to model and simulate

information networks of smart factories considering dif-

ferent threats. The key benefits of our modeling approach

are:

• Increased transparency and controllability of complex-

ity as the modularization of the modeling approach

enables the depiction and simulation of increasingly

complex and dynamic information network settings;

• Analysis of different threat scenarios and derivation of

valuable recommendations towards sensible design

patterns for smart factory information networks and

degree of interconnectivity;

• Identification of weak spots in the information network

and basis for the derivation of appropriate countermea-

sures against IT availability risks that is subject to

further research.

To validate the developed modeling approach, we have

simulated different threats compromising an artificial

information network setting and interviewed experts from

two global leading companies and an academic PN expert.

The results indicate that the developed approach is appro-

priate for the modeling of information networks in smart

factories and the analysis of associated IT availability risks.

Considering the examples of Stuxnet, locky, WannaCry, or

the steel mill provided in the introduction, our modeling

approach can support companies in their preventive risk

management by modeling, simulating, and analyzing the

information network and by identifying weak spots and

critical dependencies through the qualitative comparison of

different threat scenarios. For this, our modeling approach

provides the starting points for a profound comparison of

different threat scenarios by creating transparency and

providing a structured modeling approach. In addition to

quantitative key figures, a more qualitative analysis, e.g.,

on the basis of expert assessments and expert discussions

(see also our expert interviews in Sect. 5.4), should also be

conducted in any case, since pure key figure-based com-

parisons are not sufficient, e.g., due to uncertainties in

parameterization. However, these discussions are made

possible or are really effective only through the trans-

parency created by structured approaches such as our

modeling approach. Accordingly, the insights gained by

our approach can be used as a starting point to investigate

targeted IT-security measures to reduce risks associated

with IT availability. Accordingly, the insights imply that

our approach can be beneficial for practice and further

research to derive valuable recommendations towards the

design of information networks from a risk management

perspective. Hence, our approach is the basis for the (fur-

ther) development and protection of information networks

and dependent production systems.

Our developed modeling approach entails both the

challenge of gathering the necessary data by companies

and the challenge of the identification of a sensible

parametrization (e.g., security level) for accurate modeling

and simulation. In this regard, our approach can serve as a

blueprint that helps companies to identify which data they

should gather to be able to analyze availability risk of their

information network. Potential sources for these data may

include maintenance data and technical data sheets of

components, historical data, expert estimates, or reports

from IT security authorities like the German BSI. In

addition, the composition of the single modules of large,

complex smart factory information networks is time-con-

suming for the initial modeling. To support this, further

research could develop a formal definition for the model

composition that performs place superposition based on

corresponding labels and, thus, automates the composition

process.

Our approach is restricted to the analysis of information

network components. However, extensions such as mod-

ules for the depiction of information flows and threats that

can affect information flows (e.g., broken cables) can be

applied due to the modular approach. Further, currently,

our modeling approach can only model intentional attacks

caused by virus attacks and technical errors. Thus, further

research could develop modeling extensions to incorporate

other kinds of attacks like data leakage. Pointing into the

same direction, our approach is constrained by the defined

operational states and, thus, is not able to depict compo-

nents with reduced functionality. The consideration of

different threat intensities and propagation velocities of

threats representing, for instance, the skills of an adversary

are subject to further research. Besides, the insights pro-

vided by our approach regarding IT availability risks could

be used to improve existing Unified Modeling Language

(UML) models that are suitable to visualize the structure

and behavior of the smart factory. As UML (reference)

models lack the possibility to analyze dynamic effects such

as stochastic cascading failures and propagation effects,

our modeling approach can be used as a suitable extension.

Considering that the comprehensive interconnection in

smart factories provides both positive (e.g., increased

flexibility and efficiency of production) and negative

effects (e.g., increased vulnerability to IT availability

risks), companies face the challenge of deciding whether an

extensive or deliberate interconnection of the information
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network is sensible. In this regard, the identification of the

sensible degree of interconnection in smart factories rep-

resents one of the most challenging topics. Hence, the goal

of our future research is to develop approaches and meth-

ods to determine the sensible degree of interconnection

considering risk and return aspects in different production

environments. Here, the analysis of interdependencies

between information and production networks and within

the production network is especially necessary to enable

the monetary valuation of business interruptions.

To solve this research endeavor, we see four consecutive

research areas. Based on the modeling approach presented

in the paper at hand (area 1), the identification of critical

components (area 2) within information networks repre-

sents a subsequent step for deciding on appropriate coun-

termeasures, e.g., by means of key figures. To consider risk

and return aspects of interconnectivity and to assess the

sensible degree of interconnection in smart factories,

methods for the quantification of economic loss potentials

(area 3) and expected benefits (area 4) resulting from

extensive interconnectivity are necessary. These capabili-

ties should empower companies to assess the sensible

degree of interconnection in information networks and to

derive adequate IT security measures.
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