61 research outputs found

    Centralized random backoff for collision free wireless local area networks

    Get PDF
    Over the past few decades, wireless local area networks (WLANs) have been widely deployed for data communication in indoor environments such as offices, houses, and airports. In order to fairly and efficiently use the unlicensed frequency band that Wi-Fi devices share, the devices follow a set of channel access rules, which is called a wireless medium access control (MAC) protocol. It is known that wireless devices following the 802.11 standard MAC protocol, i.e. the distributed coordination function (DCF), suffer from packet collisions when multiple nodes simultaneously transmit. This significantly degrades the throughput performance. Recently, several studies have reported access techniques to reduce the number of packet collisions and to achieve a collision free WLAN. Although these studies have shown that the number of collisions can be reduced to zero in a simple way, there have been a couple of remaining issues to solve, such as dynamic parameter adjustment and fairness to legacy DCF nodes in terms of channel access opportunity. Recently, In-Band Full Duplex (IBFD) communication has received much attention, because it has significant potential to improve the communication capacity of a radio band. IBFD means that a node can simultaneously transmit one signal and receive another signal in the same band at the same time. In order to maximize the performance of IBFD communication capability and to fairly share access to the wireless medium among distributed devices in WLANs, a number of IBFD MAC protocols have been proposed. However, little attention has been paid to fairness issues between half duplex nodes (i.e. nodes that can either transmit or receive but not both simultaneously in one time-frequency resource block) and IBFD capable nodes in the presence of the hidden node problem

    Novel Medium Access Control (MAC) Protocols for Wireless Sensor and Ad Hoc Networks (WSANs) and Vehicular Ad Hoc Networks (VANETs)

    Get PDF
    Efficient medium access control (MAC) is a key part of any wireless network communication architecture. MAC protocols are needed for nodes to access the shared wireless medium efficiently. Providing high throughput is one of the primary goals of the MAC protocols designed for wireless networks. MAC protocols for Wireless Sensor and Ad hoc networks (WSANs) must also conserve energy as sensor nodes have limited battery power. On the other hand, MAC protocols for Vehicular Ad hoc networks (VANETs) must also adapt to the highly dynamic nature of the network. As communication link failure is very common in VANETs because of the fast movement of vehicles so quick reservation of packet transmission slots by vehicles is important. In this thesis we propose two new distributed MAC algorithms. One is for WSANs and the other one is for VANETs. We demonstrate using simulations that our algorithms outperform the state-of-the-art algorithms

    On the Design of MAC Protocols for Multi-Packet Communication in IEEE 802.11 Heterogeneous Networks Using Adaptive Antenna Arrays

    Get PDF
    This paper discusses the design requirements for enabling multiple simultaneous peer-to-peer communications in IEEE 802.11 asynchronous networks in the presence of adaptive antenna arrays, and proposes two novel access schemes to realize multipacket communication (MPC). Both presented solutions, which rely on the information acquired by each node during the monitoring of the network activity, are suitable for distributed and heterogeneous scenarios, where nodes equipped with different antenna systems can coexist. The first designed scheme, called threshold access MPC (TAMPC), is based on a threshold on the load sustainable by the single-node, while the second protocol, called signal-to-interference ratio (SIR) access MPC (SAMPC), is based on an accurate estimation of the SIR and on the adoption of low density parity check codes. Both protocols, which are designed to be backward compatible with the 802.11 standard, are numerically tested in realistic scenarios. Furthermore, the performance of the two schemes is compared to the theoretical one and to that of the 802.11n extension in a mobile environment

    An analytical model of IEEE 80211 DCF for multi-hop wireless networks and its application to goodput and energy analysis

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2010.Thesis (Ph. D.) -- Bilkent University, 2010.Includes bibliographical references leaves 168-181.In this thesis, we present an analytical model for the IEEE 802.11 DCF in multihop networks that considers hidden terminals and works for a large range of traffic loads. A goodput model which considers rate reduction due to collisions, retransmissions and hidden terminals, and an energy model, which considers energy consumption due to collisions, retransmissions, exponential backoff and freezing mechanisms, and overhearing of nodes, are proposed and used to analyze the goodput and energy performance of various routing strategies in IEEE 802.11 DCF based multi-hop wireless networks. Moreover, an adaptive routing algorithm which determines the optimum routing strategy adaptively according to the network and traffic conditions is suggested. Viewed from goodput aspect the results are as follows: Under light traf- fic, arrival rate of packets is dominant, making any routing strategy equivalently optimum. Under moderate traffic, concurrent transmissions dominate and multihop transmissions become more advantageous. At heavy traffic, multi-hoppingbecomes unstable due to increased packet collisions and excessive traffic congestion, and direct transmission increases goodput. From a throughput aspect, it is shown that throughput is topology dependent rather than traffic load dependent, and multi-hopping is optimum for large networks whereas direct transmissions may increase the throughput for small networks. Viewed from energy aspect similar results are obtained: Under light traf- fic, energy spent during idle mode dominates in the energy model, making any routing strategy nearly optimum. Under moderate traffic, energy spent during idle and receive modes dominates and multi-hop transmissions become more advantageous as the optimum hop number varies with processing power consumed at intermediate nodes. At the very heavy traffic conditions, multi-hopping becomes unstable due to increased collisions and direct transmission becomes more energy-efficient.The choice of hop-count in routing strategy is observed to affect energyefficiency and goodput more for large and homogeneous networks where it is possible to use shorter hops each covering similar distances. The results indicate that a cross-layer routing approach, which takes energy expenditure due to MAC contentions into account and dynamically changes the routing strategy according to the network traffic load, can increase goodput by at least 18% and save energy by at least 21% in a realistic wireless network where the network traffic load changes in time. The goodput gain increases up to 222% and energy saving up to 68% for denser networks where multi-hopping with much shorter hops becomes possible.Aydoğdu, CananPh.D

    Cross-layer optimizations in multi-hop ad hoc networks

    Get PDF
    Unlike traditional wireless networks, characterized by the presence of last-mile, static and reliable infrastructures, Mobile ad Hoc Networks (MANETs) are dynamically formed by collections of mobile and static terminals that exchange data by enabling each other's communication. Supporting multi-hop communication in a MANET is a challenging research area because it requires cooperation between different protocol layers (MAC, routing, transport). In particular, MAC and routing protocols could be considered mutually cooperative protocol layers. When a route is established, the exposed and hidden terminal problems at MAC layer may decrease the end-to-end performance proportionally with the length of each route. Conversely, the contention at MAC layer may cause a routing protocol to respond by initiating new routes queries and routing table updates. Multi-hop communication may also benefit the presence of pseudo-centralized virtual infrastructures obtained by grouping nodes into clusters. Clustering structures may facilitate the spatial reuse of resources by increasing the system capacity: at the same time, the clustering hierarchy may be used to coordinate transmissions events inside the network and to support intra-cluster routing schemes. Again, MAC and clustering protocols could be considered mutually cooperative protocol layers: the clustering scheme could support MAC layer coordination among nodes, by shifting the distributed MAC paradigm towards a pseudo-centralized MAC paradigm. On the other hand, the system benefits of the clustering scheme could be emphasized by the pseudo-centralized MAC layer with the support for differentiated access priorities and controlled contention. In this thesis, we propose cross-layer solutions involving joint design of MAC, clustering and routing protocols in MANETs. As main contribution, we study and analyze the integration of MAC and clustering schemes to support multi-hop communication in large-scale ad hoc networks. A novel clustering protocol, named Availability Clustering (AC), is defined under general nodes' heterogeneity assumptions in terms of connectivity, available energy and relative mobility. On this basis, we design and analyze a distributed and adaptive MAC protocol, named Differentiated Distributed Coordination Function (DDCF), whose focus is to implement adaptive access differentiation based on the node roles, which have been assigned by the upper-layer's clustering scheme. We extensively simulate the proposed clustering scheme by showing its effectiveness in dominating the network dynamics, under some stressing mobility models and different mobility rates. Based on these results, we propose a possible application of the cross-layer MAC+Clustering scheme to support the fast propagation of alert messages in a vehicular environment. At the same time, we investigate the integration of MAC and routing protocols in large scale multi-hop ad-hoc networks. A novel multipath routing scheme is proposed, by extending the AOMDV protocol with a novel load-balancing approach to concurrently distribute the traffic among the multiple paths. We also study the composition effect of a IEEE 802.11-based enhanced MAC forwarding mechanism called Fast Forward (FF), used to reduce the effects of self-contention among frames at the MAC layer. The protocol framework is modelled and extensively simulated for a large set of metrics and scenarios. For both the schemes, the simulation results reveal the benefits of the cross-layer MAC+routing and MAC+clustering approaches over single-layer solutions

    Power saving and energy optimization techniques for Wireless Sensor Networks

    Full text link
    Wireless sensor networks have become increasingly popular due to their wide range of applications. Energy consumption is one of the biggest constraints of the wireless sensor node and this limitation combined with a typical deployment of large number of nodes have added many challenges to the design and management of wireless sensor networks. They are typically used for remote environment monitoring in areas where providing electrical power is difficult. Therefore, the devices need to be powered by batteries and alternative energy sources. Because battery energy is limited, the use of different techniques for energy saving is one of the hottest topics in WSNs. In this work, we present a survey of power saving and energy optimization techniques for wireless sensor networks, which enhances the ones in existence and introduces the reader to the most well known available methods that can be used to save energy. They are analyzed from several points of view: Device hardware, transmission, MAC and routing protocols.Sendra Compte, S.; Lloret, J.; GarcĂ­a Pineda, M.; Toledo AlarcĂłn, JF. (2011). Power saving and energy optimization techniques for Wireless Sensor Networks. Journal of Communications. 6(6):439-459. doi:10.4304/jcm.6.6.439-459S4394596

    The improvements in ad hoc routing and network performance with directional antennas

    Get PDF
    The ad hoc network has typically been applied in military and emergency environments. In the past decade, a tremendous amount of MAC protocols and routing protocols have been developed, but most of these protocols are designed for networks where devices equipped with omni-directional antennas. With fast development of the antenna technology, directional antennas have been proposed to improve routing and network performance in ad hoc networks. However, several challenges and design issues (like new hidden terminal problem, deafness problem, neighbor discovery problem and routing overhead problem) arise when applying directional antennas to ad hoc networks, consequently a great number of directional MAC and routing protocols have been proposed. In this thesis the implementation of directional antennas in ad hoc networks is studied from technical point of view. This thesis discusses the problems of utilizing directional antenna in ad hoc networks and reviews several recent proposed MAC algorithms and routing algorithms. The improvement of ad hoc routing and network performance with directional antennas compared with omni-directional antennas are evaluated based on simulations which are done with the QualNet simulator. The main finding of this study is that directional antennas always outperform omni-directional antennas in both static and mobility scenarios, and the advantage of directional antennas is more obvious when channel condition becomes worse or mobility level is larger. This thesis provides a survey of directional MAC and routing protocols in ad hoc networks. The result and principles obtained in this thesis are quite valuable for researchers working in this field. They can use it as reference for further researches. The theory parts of smart antenna technology and IEEE 802.11 MAC protocol can be considered as a technical introduction for beginners
    • …
    corecore