82 research outputs found

    Extensible Component Based Architecture for FLASH, A Massively Parallel, Multiphysics Simulation Code

    Full text link
    FLASH is a publicly available high performance application code which has evolved into a modular, extensible software system from a collection of unconnected legacy codes. FLASH has been successful because its capabilities have been driven by the needs of scientific applications, without compromising maintainability, performance, and usability. In its newest incarnation, FLASH3 consists of inter-operable modules that can be combined to generate different applications. The FLASH architecture allows arbitrarily many alternative implementations of its components to co-exist and interchange with each other, resulting in greater flexibility. Further, a simple and elegant mechanism exists for customization of code functionality without the need to modify the core implementation of the source. A built-in unit test framework providing verifiability, combined with a rigorous software maintenance process, allow the code to operate simultaneously in the dual mode of production and development. In this paper we describe the FLASH3 architecture, with emphasis on solutions to the more challenging conflicts arising from solver complexity, portable performance requirements, and legacy codes. We also include results from user surveys conducted in 2005 and 2007, which highlight the success of the code.Comment: 33 pages, 7 figures; revised paper submitted to Parallel Computin

    Physical and numerical modeling of cross-flow turbines

    Get PDF
    Cross-flow (often vertical-axis) turbines (CFTs), despite being thoroughly investigated and subsequently abandoned for large scale wind energy, are seeing renewed interest for smaller scale wind turbine arrays, offshore wind, and marine hydrokinetic (MHK) energy applications. Though they are similar to the large scale Darrieus wind turbines, today\u27s CFT rotors are often designed with higher solidity, or blade chord-to-radius ratios, which makes their behavior more difficult to predict with numerical models. Furthermore, most experimental datasets used for numerical model validation were acquired with low solidity rotors. An experimental campaign was undertaken to produce high quality open datasets for the performance and near-wake flow dynamics of CFTs. An automated experimental setup was developed using the University of New Hampshire\u27s towing tank. The tank\u27s linear motion, control, and data acquisition systems were redesigned and rebuilt to facilitate automated cross-flow turbine testing at large laboratory (on the order of 1 meter) scale. Two turbines were designed and built---one high solidity (dubbed the UNH Reference Vertical-Axis Turbine or UNH-RVAT) and one medium-to-low solidity, which was a scaled model of the US Department of Energy and Sandia National Labs\u27 Reference Model 2 (RM2) cross-flow MHK turbine. A baseline performance and near-wake dataset was acquired for the UNH-RVAT, which revealed that the relatively fast wake recovery observed in vertical-axis wind turbine arrays could be attributed to the mean vertical advection of momentum and energy, caused by the unique interaction of vorticity shed from the blade tips. The Reynolds number dependence of the UNH-RVAT was investigated by varying turbine tow speeds, indicating that the baseline data had essentially achieved a Reynolds number independent state at a turbine diameter Reynolds number ReD∼106Re_D \sim 10^6 or chord based Reynolds number Rec∼105Re_c \sim 10^5. A similar study was undertaken for the RM2, with similar results. An additional dataset was acquired for the RM2 to investigate the effects of blade support strut drag on overall performance, which showed that these effects can be quite significant---on the order of percentage points of the power coefficient---especially for lower solidity rotors, which operate at higher tip speed ratio. The wake of the RM2 also showed the significance of mean vertical advection on wake recovery, though the lower solidity made these effects weaker than for the UNH-RVAT. Blade-resolved Reynolds-averaged Navier--Stokes (RANS) computational fluid dynamics (CFD) simulations were performed to assess their ability to model performance and near-wake of the UNH-RVAT baseline case at optimal tip speed ratio. In agreement with previous studies, the 2-D simulations were a poor predictor of both the performance and near-wake. 3-D simulations faired much better, but the choice of an appropriate turbulence model remains uncertain. Furthermore, 3-D blade-resolved RANS modeling is computationally expensive, requiring high performance computing (HPC), which may preclude its use for array analysis. Finally, an actuator line model (ALM) was developed to attempt to drive down the cost of 3-D CFD simulations of cross-flow turbines, since previously, the ALM had only been investigated for a very low Reynolds number 2-D CFT. Despite retaining some of the disadvantages of the lower fidelity blade element momentum and vortex methods, the ALM, when coupled with dynamic stall, flow curvature, added mass, and end effects models, was able to predict the performance of cross-flow turbines reasonably well. Near-wake predictions were able to match some of the important qualitative flow features, which warrants further validation farther downstream and with multiple turbines. Ultimately, the ALM provides an attractive alternative to blade-resolved CFD, with computational savings of two to four orders of magnitude for large eddy simulation and RANS, respectively

    Software Roadmap to Plug and Play Petaflop/s

    Full text link

    Aeronautical engineering: A continuing bibliography with indexes (supplement 270)

    Get PDF
    This bibliography lists 600 reports, articles, and other documents introduced into the NASA scientific and technical information system in September, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Controlling Hazardous Releases While Protecting Passengers in Civil Infrastructure Systems

    Full text link
    The threat of accidental or deliberate toxic chemicals released into public spaces is a significant concern to public safety, and the real-time detection and mitigation of such hazardous contaminants has the potential to minimize harm and save lives. Furthermore, the safe evacuation of occupants during such a catastrophe is of utmost importance. This research entails a comprehensive means to address such scenarios, through both the sensing and control of contaminants, and the modeling of and potential communication to occupants as they evacuate. First, a computational fluid dynamics model has been developed that is capable of detecting and mitigating the hazardous contaminant over several time horizons using model predictive control optimization. Next, an evacuation agent-based model has been designed and coupled with the flow control model to simulate agents evacuating while interacting with a dynamic, threatening environment. Finally, a physical prototype (blower wind tunnel) has been constructed with capability of detection (via Ethernet-connected camera) of and mitigation (via compressed-air operated actuators) of a `contaminant' (i.e. smoke) to test the real-time feasibility of the computational fluid dynamics flow control model.PHDEnvironmental EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/135812/1/srimer_1.pd

    Multiphysics simulations: challenges and opportunities.

    Full text link
    • …
    corecore