14,838 research outputs found

    A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives

    Get PDF
    Precision machines are essential elements in fabricating high quality micro products or micro features and directly affect the machining accuracy, repeatability and efficiency. There are a number of literatures on the design of industrial machine elements and a couple of precision machines commercially available. However, few researchers have systematically addressed the design of precision machines from the dynamics point of view. In this paper, the design issues of precision machines are presented with particular emphasis on the dynamics aspects as the major factors affecting the performance of the precision machines and machining processes. This paper begins with a brief review of the design principles of precision machines with emphasis on machining dynamics. Then design processes of precision machines are discussed, and followed by a practical modelling and simulation approaches. Two case studies are provided including the design and analysis of a fast tool servo system and a 5-axis bench-top micro-milling machine respectively. The design and analysis used in the two case studies are formulated based on the design methodology and guidelines

    Long-Stroke Nanopositioning Stage Driven by Piezoelectric Motor

    Get PDF

    From Parallel Sequence Representations to Calligraphic Control: A Conspiracy of Neural Circuits

    Full text link
    Calligraphic writing presents a rich set of challenges to the human movement control system. These challenges include: initial learning, and recall from memory, of prescribed stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letter-form invariance under voluntary size scaling, which entails fine control of stroke direction and amplitude during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have made rapid progress toward explaining the learning, planning and contTOl exercised in tasks that share features with calligraphic writing and drawing. This article summarizes computational neuroscience models and related neurobiological data that reveal critical operations spanning from parallel sequence representations to fine force control. Part one addresses stroke sequencing. It treats competitive queuing (CQ) models of sequence representation, performance, learning, and recall. Part two addresses letter size scaling and motor equivalence. It treats cursive handwriting models together with models in which sensory-motor tmnsformations are performed by circuits that learn inverse differential kinematic mappings. Part three addresses fine-grained control of timing and transient forces, by treating circuit models that learn to solve inverse dynamics problems.National Institutes of Health (R01 DC02852

    Vacuum mechatronics

    Get PDF
    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed

    Design and Implementation of Position Estimator Algorithm on Voice Coil Motor

    Get PDF
    Voice Coil Motors (VCMs) have been an inevitable element in the mechanisms that have been used for precise positioning in the applications like 3D printing., micro-stereolithography., etc. These voice coil motors translate in a linear direction and require a high accuracy position sensor that amounts for a major part in the budget. In this research work., an effort has been made to design and implement an algorithm that would predict the displacement of VCM and eliminate the need of high cost sensors. VCM was integrated with dSPACE DS1104 R&D controller via linear current amplifier (LCAM) which acts as a driver circuit for VCM. Sine input was given to VCM with various amplitude and frequency and the corresponding displacement is measured by using linear variable differential transformer (LVDT). The position estimator algorithm is also implemented at the same time on VCM and its output is compared with that of LVDT. It is observed that there is 97.8 % accuracy in between algorithm output and LVDT output. Further., PID controller is used in integration with the novel algorithm to minimize the error. The estimator algorithm is tested for various amplitudes and frequencies and it is found that it has a very good agreement of 99.2% with the actual displacement measured with the help of LVDT

    Design, Development and Implementation of the Position Estimator Algorithm for Harmonic Motion on the XY Flexural Mechanism for High Precision Positioning

    Get PDF
    This article presents a novel concept of the position estimator algorithm for voice coil actuators used in precision scanning applications. Here, a voice coil motor was used as an actuator and a sensor using the position estimator algorithm, which was derived from an electro-mechanical model of a voice coil motor. According to the proposed algorithm, the position of coil relative to the fixed magnet position depends on the current drawn, voltage across coil and motor constant of the voice coil motor. This eliminates the use of a sensor that is an integral part of all feedback control systems. Proposed position estimator was experimentally validated for the voice coil actuator in integration with electro-mechanical modeling of the flexural mechanism. The experimental setup consisted of the flexural mechanism, voice coil actuator, current and voltage monitoring circuitry and its interfacing with PC via a dSPACE DS1104 R&D microcontroller board. Theoretical and experimental results revealed successful implementation of the proposed novel algorithm in the feedback control system with positioning resolution of less than ±5 microns at the scanning speed of more than 5 mm/s. Further, proportional-integral-derivative (PID) control strategy was implemented along with developed algorithm to minimize the error. The position determined by the position estimator algorithm has an accuracy of 99.4% for single direction motion with the experimentally observed position at those instantaneous states

    Development of a micromanipulation system with force sensing

    Get PDF
    This article provides in-depth knowledge about our undergoing effort to develop an open architecture micromanipulation system with force sensing capabilities. The major requirement to perform any micromanipulation task effectively is to ensure the controlled motion of actuators within nanometer accuracy with low overshoot even under the influence of disturbances. Moreover, to achieve high dexterity in manipulation, control of the interaction forces is required. In micromanipulation, control of interaction forces necessitates force sensing in milli-Newton range with nano-Newton resolution. In this paper, we present a position controller based on a discrete time sliding mode control architecture along with a disturbance observer. Experimental verifications for this controller are demonstrated for 100, 50 and 10 nanometer step inputs applied to PZT stages. Our results indicate that position tracking accuracies up to 10 nanometers, without any overshoot and low steady state error are achievable. Furthermore, the paper includes experimental verification of force sensing within nano-Newton resolution using a piezoresistive cantilever endeffector. Experimental results are compared to the theoretical estimates of the change in attractive forces as a function of decreasing distance and of the pull off force between a silicon tip and a glass surface, respectively. Good agreement among the experimental data and the theoretical estimates has been demonstrated

    Development of a piezo-driven 3-DOF stage with T-shape flexible hinge mechanism

    Get PDF
    This paper presents a 3-DOF (Degree of freedom) stage with T-shape flexible hinge mechanism for the applications in the precision measurement equipments and micro/nano manipulation systems. The stage is driven by three piezoelectric actuators (PEAs) and guided by a flexible hinge based mechanism with three symmetric T-shape hinges. The proposed T-shape flexible hinge mechanism can provide excellent planar motion capability with high stability, and thus guarantee the outstanding dynamics characteristics. The theoretical modeling of the stage was carried out and the stiffness and the dynamic resonance frequency have been obtained. The kinematic model of the 3-DOF stage was established and the workspace has been analyzed. The characteristics of the stage were investigated using finite element analysis (FEA). Experiments were conducted to examine the performance of the stage, through this stage, X-axis translational motion stroke of 6.9 µm, Y-axis translational motion stroke of 8.5 µm and rotational motion stroke along Z-axis of 289 µrad can be achieved. A hybrid feedforward/feedback control methodology has been proposed to eliminate the nonlinear hysteresis, the trajectory tracking performances and to reduce external disturbance of the 3-DOF stage

    Spatial distribution of HD-EMG improves identification of task and force in patients with incomplete spinal cord injury

    Get PDF
    Background: Recent studies show that spatial distribution of High Density surface EMG maps (HD-EMG) improves the identification of tasks and their corresponding contraction levels. However, in patients with incomplete spinal cord injury (iSCI), some nerves that control muscles are damaged, leaving some muscle parts without an innervation. Therefore, HD-EMG maps in patients with iSCI are affected by the injury and they can be different for every patient. The objective of this study is to investigate the spatial distribution of intensity in HD-EMG recordings to distinguish co-activation patterns for different tasks and effort levels in patients with iSCI. These patterns are evaluated to be used for extraction of motion intention.; Method: HD-EMG was recorded in patients during four isometric tasks of the forearm at three different effort levels. A linear discriminant classifier based on intensity and spatial features of HD-EMG maps of five upper-limb muscles was used to identify the attempted tasks. Task and force identification were evaluated for each patient individually, and the reliability of the identification was tested with respect to muscle fatigue and time interval between training and identification. Results: Three feature sets were analyzed in the identification: 1) intensity of the HD-EMG map, 2) intensity and center of gravity of HD-EMG maps and 3) intensity of a single differential EMG channel (gold standard).; Results show that the combination of intensity and spatial features in classification identifies tasks and effort levels properly (Acc = 98.8 %; S = 92.5 %; P = 93.2 %; SP = 99.4 %) and outperforms significantly the other two feature sets (p < 0.05).; Conclusion: In spite of the limited motor functionality, a specific co-activation pattern for each patient exists for both intensity, and spatial distribution of myoelectric activity. The spatial distribution is less sensitive than intensity to myoelectric changes that occur due to fatigue, and other time-dependent influences.Peer ReviewedPostprint (published version

    Stroke-related Changes in Neuromuscular Fatigue of the Hip Flexors and Functional Implications

    Get PDF
    Objective: The aim of this study was to compare stroke-related changes in hip flexor neuromuscular fatigue of the paretic leg during a sustained isometric submaximal contraction with those of the nonparetic leg and controls and to correlate fatigue with clinical measures of function. Design: Hip torques were measured during a fatiguing hip flexion contraction at 20% of the hip flexion maximal voluntary contraction in the paretic and nonparetic legs of 13 people with chronic stroke and 10 age-matched controls. In addition, the participants with stroke performed a fatiguing contraction of the paretic leg at the absolute torque equivalent to 20% maximal voluntary contraction of the nonparetic leg and were tested for self-selected walking speed (10-m Walk Test) and balance (Berg). Results: When matching the nonparetic target torque, the paretic hip flexors had a shorter time to task failure compared with the nonparetic leg and controls (P \u3c 0.05). The time to failure of the paretic leg was inversely correlated with the reduction of hip flexion maximal voluntary contraction torque. Self-selected walking speed was correlated with declines in torque and steadiness. Berg-Balance scores were inversely correlated with the force fluctuation amplitude. Conclusions: Fatigue and precision of contraction are correlated with walking function and balance after stroke
    corecore