30 research outputs found

    Underwater dual manipulators-Part I: Hydrodynamics analysis and computation

    Get PDF
    1098-1103This paper introduces two 4-DOF underwater manipulators mounted on autonomous underwater vehicle (AUV) with grasping claws, such that the AUV can accomplish the underwater task by using dual manipulators. Mechanical design of the manipulator is briefly presented and the feature of the simple structure of dual manipulators is simulated by using Solid Works. In addition, the hydrodynamics of the manipulator is analyzed, considering drag force, added mass and buoyancy. Then, hydrodynamic simulations of the manipulator are conducted by using 3-D model with Adams software, from which the torque of each joint is calculated. This paper presents an integrated result of computed torques by combining the theoretical calculation and simulation results, which is instrumental in determining the driving torque of the manipulators

    3D locomotion biomimetic robot fish with haptic feedback

    Full text link
    This thesis developed a biomimetic robot fish and built a novel haptic robot fish system based on the kinematic modelling and three-dimentional computational fluid dynamic (CFD) hydrodynamic analysis. The most important contribution is the successful CFD simulation of the robot fish, supporting users in understanding the hydrodynamic properties around it

    RBF-based supervisor path following control for ASV with time-varying ocean disturbance

    Get PDF
    1028-1036A robust model-free path following controller is developed for autonomous surface vehicle (ASV) with time-varying ocean disturbance. First, the geometrical relationship between ASV and virtual tracking point on the reference path is investigated. The differentiations of tracking errors are described with the relative motion method, which greatly simplified the direct differential of tracking errors. Furthermore, the control law for the desired angular velocity of the vehicle and virtual tracking point are built based on the Lyapunov theory. Second, the traditional proportional-integral-derivative (PID) controller is developed based on the desired velocities and state feedback. The radial basic function (RBF) neural network taking as inputs the desired surge velocity and yaw angular velocity is developed as the supervisor to PID controller. Besides, RBF controller tunes weights according to the output errors between the PID controller and supervisor controller, based on the gradient descent method. Hence, PID controller and RBF supervisor controller act as feedback and feed forward control of the system, respectively. Finally, comparative path following simulation for straight path and sine path illustrate the performance of the proposed supervisor control system. The PID controller term reports loss of control even in the unknown disturbance

    Underwater dual manipulators-Part II: Kinematics analysis and numerical simulation

    Get PDF
    1104-1112This paper introduces dual-arm underwater manipulators mounted on an autonomous underwater vehicle (AUV), which can accomplish the underwater handling task. Firstly, the mechanical structure of the dual-arm system is briefly introduced, wherein each 4-DOF manipulator has an additional grasping function. In addition, the kinematics model of the manipulator is derived by using the improved D-H method. Secondly, the working space of the underwater dual-arm system is analyzed, which is obtained by using Monte Carlo method. The cubic polynomial interpolation and the five polynomial interpolation trajectory planning methods are compared in the joint space. Finally, with the help of the Robotics Toolbox software, the numerical test is conducted to verify the functions of the underwater dual-arm manipulator system

    Intersection between natural and artificial swimmers: a scaling approach to underwater vehicle design.

    Get PDF
    Approximately 72% of the Earth’s surface is covered by water, yet only 20% has been mapped [1]. Autonomous Underwater Vehicles (AUVs) are one of the main tools for ocean exploration. The demand for AUVs is expected to increase rapidly in the coming years [2], so there is a need for faster and more energy efficient AUVs. A drawback to using this type of vehicle is the finite amount of energy that is stored onboard in the form of batteries. Science and roboticists have been studying nature for ways to move more efficiently. Phillips et al. [3] presents data that contradicts the idea that fish are better swimmers than conventional AUVs when comparing the energetic cost of swimming in the form of the Cost of Transport (COT). The data presented by Phillips et al. only applies to AUVs at higher length and naval displacement (mass) scales, so the question arises of whether an AUV built at different displacements and length scales is more efficient than biological animals and if current bio-inspired platforms are better than conventional AUVs. Besides power requirements, it is also useful to compare the kinematic parameters of natural and artificial swimmers. In this case, kinematic parameters indicate how fast the swimmer travels through the water. Also, they describe how fast the propulsion mechanism must act to reach a certain swimming speed. This research adopts the approach of Gazzola et al. [4] where the Reynolds number is associated with a dimensionless number, Swim number (Sw) in this case, that has all the kinematic information. A newly developed number that extends the swim number to conventional AUVs is the Propulsion number (Jw), which demonstrates excellent agreement with the kinematics of conventional AUVs. Despite being functionally similar, Sw and Jw do not have a one-to-one relationship. Sw, Jw, COT represent key performance metrics for an AUV, herein called performance criteria, which can be used to compare existing platforms with each other and estimate the performance of non-existent designs. The scaling laws are derived by evaluating the performance of 229 biological animals, 163 bioinspire platforms, and 109 conventional AUVs. AUVs and bio-inspired platforms have scarce data compared with biological swimmers. Only 5% of conventional and 38% of bio-inspired AUVs have kinematic data while 30% of conventional and 18% of bio-inspired AUVs have energetic data. The low amount of performance criteria data is due to the nature of most conventional AUVs as commercial products. Only recently has the COT metric been included in the performance criteria for bio-inspired AUVs. For this reason, the research here formulates everything in terms of allometric scaling laws. This type of formulation is used extensively when referring to biological systems and is defined by an exponential relationship f (x) = axb, where x is a physical parameter of the fish or vehicle, like length or displacement. Scaling laws have the added benefit of allowing comparisons with limited data, as is the case for AUVs. The length and displacement scale (physical scale) must be established before estimating the performance criteria. Scale is primarily determined by the payload needed for a particular application. For instance, surveying the water column in deep water will require different scientific tools than taking images of an oyster bed in an estuary. There is no way to identify the size of an AUV until it is designed for that application, since these scientific instruments each have their own volume, length, and weight. A methodology for estimating physical parameters using computer vision is presented to help determine the scale for the vehicle. It allows accurate scaling of physical parameters of biological and bio-inspired swimmers with only a side and top view of the platform. A physical scale can also be determined based on the vehicle’s overall volume, which is useful when determining how much payload is needed for a particular application. Further, this can be used in conjunction with 3D modeling software to scale nonexistent platforms. Following the establishment of a physical scale, which locomotion mode would be most appropriate? Unlike conventional AUVs that use propeller or glider locomotion, bio-inspired platforms use a variety of modes. Kinematics and energy expenditures are different for each of these modes. For bio-inspired vehicles, the focus will be on the body-caudal fin (BCF) locomotion, of which four types exist: anguilliform, carangiform, thunniform, and ostraciiform. There is ample research on anguilliform and carangiform locomotion modes, but little research on thunniform and ostraciiform modes. In order to determine which locomotion mode scales best for a bio-inspired AUV, this research examines the power output and kinematic parameters for all four BCF modes. In order to achieve this, computational fluid dynamics simulations are performed on a 2D swimmer for all four modes. Overset meshes are used in lieu of body-fitted meshes to increase stability and decrease computational time. These simulations were used to scale output power over several decades of Reynolds numbers for each locomotion mode. Carangiform locomotion was found to be the most energy efficient, followed by anguilliform, thunniform, and ostraciiform. In order to utilize the above scaling laws in designing a novel platform, or comparing an existing one, there must be a unifying framework. The framework for choosing a suitable platform is presented with a case study of two bio-inspired vehicles and a conventional one. The framework begins by determining how the platform can be physically scaled depending on the payload. Based on the physical scale and derived scaling laws, it then determines performance criteria. It also describes a method for relative cost scaling for each vehicle, which is not covered in the literature. The cost scaling is based on the assumption that all payloads and materials are the same. The case study shows that a conventional AUV performs better on all performance criteria and would cost less to build

    AN EXPERIMENTAL STUDY TOWARDS UNDERWATER PROPULSION SYSTEM USING STRUCTURE BORNE TRAVELING WAVES

    Get PDF
    The method of generating steady-state structure-borne traveling waves underwater in an infinite media creates abundant opportunities in the field of propulsive applications, and they are gaining attention from several researchers. This experimental study provides a framework for harnessing traveling waves in a 1D beam immersed under quiescent water using two force input methods and providing a motion to an object floating on the surface of the water. In this study, underwater traveling waves are tailored using structural vibrations at five different frequencies in the range of 10Hz to 300Hz. The resulting fluid motion provides a propulsive thrust that moves a 3D-printed bob floating on the surface of the water. The undulatory motion of the floating bob is determined using an image processing approach. In this approach, videos are recorded for image processing to determine the effects of each traveling wave frequency on the object’s motion. Through image processing, observations are drawn regarding the velocity and the distance traveled by the bob for each SBTW frequency. As this is developing research, there is a limited understanding to the relationship between the amplitude of force input, the traveling wave frequency, and the velocity attained by the object. So, with the help of image processing, a general observation about the effects of varied force input on the motion of the object at each frequency is drawn

    Improving Swimming Performance and Flow Sensing by Incorporating Passive Mechanisms

    Get PDF
    As water makes up approximately 70% of the Earth\u27s surface, humans have expanded operations into aquatic environments out of both necessity and a desire to gain potential innate benefits. This expansion into aquatic environments has consequently developed a need for cost-effective and safe underwater monitoring, surveillance, and inspection, which are missions that autonomous underwater vehicles are particularly well suited for. Current autonomous underwater vehicles vastly underperform when compared to biological swimmers, which has prompted researchers to develop robots inspired by natural swimmers. One such robot is designed, built, tested, and numerically simulated in this thesis to gain insight into the benefits of passive mechanisms and the development of reduced-order models. Using a bio-inspired robot with multiple passive tails I demonstrate herein the relationship between maneuverability and passive appendages. I found that the allowable rotation angle, relative to the main body, of the passive tails corresponds to an increase in maneuverability. Using panel method simulations I determined that the increase in maneuverability was directly related to the change in hydrodynamic moment caused by modulating the circulation sign and location of the shed vortex wake. The identification of this hydrodynamic benefit generalizes the results and applies to a wide range of robots that utilize vortex shedding through tail flapping or body undulations to produce locomotion. Passive appendages are a form of embodied control, which manipulates the fluid-robot interaction and analogously such interaction can be sensed from the dynamics of the body. Body manipulation is a direct result of pressure fluctuations inherent in the surrounding fluid flow. These pressure fluctuations are unique to specific flow conditions, which may produce distinguishable time series kinematics of the appendage. Using a bio-inspired foil tethered in a water tunnel I classified different vortex wakes with the foil\u27s kinematic data. This form of embodied feedback could be used for the development of control algorithms dedicated to obstacle avoidance, tracking, and station holding. Mathematical models of autonomous vehicles are necessary to implement advanced control algorithms such as path planning. Models that accurately and efficiently simulate the coupled fluid-body interaction in freely swimming aquatic robots are difficult to determine due, in part, to the complex nature of fluids. My colleagues and I approach this problem by relating the swimming robot to a terrestrial vehicle known as the Chaplygin sleigh. Using our novel technique we determined an analogous Chaplygin sleigh model that accurately represents the steady-state dynamics of our swimming robot. We additionally used the subsequent model for heading and velocity control in panel method simulations. This work was inspired by the similarities in constraints and velocity space limit cycles of the swimmer and the Chaplygin sleigh, which makes this technique universal enough to be extended to other bio-inspired robots

    A Hyperelastic Porous Media Framework for Ionic Polymer-Metal Composites and Characterization of Transduction Phenomena via Dimensional Analysis and Nonlinear Regression

    Full text link
    Ionic polymer-metal composites (IPMC) are smart materials that exhibit large deformation in response to small applied voltages, and conversely generate detectable electrical signals in response to mechanical deformations. The study of IPMC materials is a rich field of research, and an interesting intersection of material science, electrochemistry, continuum mechanics, and thermodynamics. Due to their electromechanical and mechanoelectrical transduction capabilities, IPMCs find many applications in robotics, soft robotics, artificial muscles, and biomimetics. This study aims to investigate the dominating physical phenomena that underly the actuation and sensing behavior of IPMC materials. This analysis is made possible by developing a new, hyperelastic porous media modeling framework for IPMCs. Using the principles of continuum thermodynamics and multiphasic materials, a finite-strain porous media formulation of IPMC materials is developed. The intricate polymer-electrode interface coupling is extended to such a finite-strain model by accounting for charge conservation at deforming material interfaces. Using this new modeling framework, the effects of kinematic nonlinearity are explored, and a partially linearized kinematic model is proposed for capturing rotational deformation in an otherwise linear model. The most comprehensive dimensional analysis of IPMC transduction phenomena is presented, characterizing the IPMC actuator, short-circuit current, and open-circuit voltage response under static and dynamic loading. The information obtained in this analysis is used to construct nonlinear regression models for the transduction response as univariant and multivariant functions. Automatic differentiation techniques are leveraged to linearize the nonlinear regression models in the vicinity of a representative IPMC description and derive the sensitivity of the transduction response with respect to the driving independent variables. Further, the multiphysics model is validated using experimental data collected for the dynamic IPMC actuator and voltage sensor. With data collected from physical samples of IPMC materials in-lab, the regression models developed under the new computational framework are verified. Using these regression models to interpret the experimental data allowed for further material property characterization to occur, demonstrating the capability of using hybrid computational / experimental regression models to extract information regarding material properties that would otherwise be unknown within the data collected. Key values for the mobile concentration and electric potential fields are approximated using order-of-magnitude arguments and the sharpness of the gradients that occur at the polymer-electrode interfaces of IPMC materials. These values allow for approximate reconstruction of the fields themselves, which in turn are leveraged to formulate the internal bending moments and steady-state curvature of the IPMC. Using both an Euler-Bernoulli beam and a constant curvature arc model for the IPMC, the deformation and rotation of the of the order of magnitude model demonstrated impressive performance for being based on rough approximations. The curled shape of IPMCs under large applied potentials with nonlinear deformation are recovered using this simplified model, and the ability to extend the model for dynamic actuation is outlined

    A numerical study of fin and jet propulsions involving fluid-structure interactions

    Get PDF
    Fish swimming is elegant and efficient, which inspires humans to learn from them to design high-performance artificial underwater vehicles. Research on aquatic locomotion has made extensive progress towards a better understanding of how aquatic animals control their flexible body and fin for propulsion. Although the structural flexibility and deformation of the body and fin are believed to be important features to achieve optimal swimming performance, studies on high-fidelity deformable body and fin with complex material behavior, such as non-uniform stiffness distributions, are rare. In this thesis, a fully coupled three-dimensional high-fidelity fluid-structure interaction (FSI) solver is developed to investigate the flow field evolution and propulsion performance of caudal fin and jet propulsion involving body and/or fin deformation. Within this FSI solver, the fluid is resolved by solving unsteady and viscous Navier-Stokes equations based on the finite volume method with a multi-block grid system. The solid dynamics are solved by a nonlinear finite element method. The coupling between the two solvers is achieved in a partitioned approach in which convergence check and sub-iteration are implemented to ensure numerical stability and accuracy. Validations are conducted by comparing the simulation results of classical benchmarks with previous data in the literature, and good agreements between them are obtained. The developed FSI solver is then applied to study the bio-inspired fin and jet propulsion involving body deformation. Specifically, the effect of non-uniform stiffness distributions of fish body and/or fin, key features of fish swimming which have been excluded in most previous studies, on the propulsive performance is first investigated. Simulation results of a sunfish-like caudal fin model and a tuna-inspired swimmer model both show that larger thrust and propulsion efficiency can be achieved by a non-uniform stiffness distribution (e.g., increased by 11.2% and 9.9%, respectively, for the sunfish-like model) compared with a uniform stiffness profile. Despite the improved propulsive e performance, a bionic variable fish body stiffness does not yield fish-like midline kinematics observed in real fish, suggesting that fish movement involves significant active control that cannot be replicated purely by passive deformations. Subsequent studies focus on the jet propulsion inspired by squid locomotion using the developed numerical solver. Simulation results of a two-dimensional inflation-deflation jet propulsion system, whose inflation is actuated by an added external force that mimics the muscle constriction of the mantle and deflation is caused by the release of elastic energy of the structure, suggest larger mean thrust production and higher efficiency in high Reynolds number scenarios compared with the cases in laminar flow. A unique symmetry-breaking instability in turbulent flow is found to stem from irregular internal body vortices, which cause symmetry breaking in the wake. Besides, a three-dimensional squid-like jet propulsion system in the presence of background flow is studied by prescribing the body deformation and jet velocity profiles. The effect of the background flow on the leading vortex ring formation and jet propulsion is investigated, and the thrust sources of the overall pulsed jet are revealed as well. Finally, FSI analysis on motion control of a self-propelled flexible swimmer in front of a cylinder utilizing proportional-derivative (PD) control is conducted. The amplitude of the actuation force, which is applied to the swimmer to bend it to produce thrust, is dynamically tuned by a feedback PD controller to instruct the swimmer to swim the desired distance from an initial position to a target location and then hold the station there. Despite the same swimming distance, a swimmer whose departure location is closer to the cylinder requires less energy consumption to reach the target and hold the position there.Fish swimming is elegant and efficient, which inspires humans to learn from them to design high-performance artificial underwater vehicles. Research on aquatic locomotion has made extensive progress towards a better understanding of how aquatic animals control their flexible body and fin for propulsion. Although the structural flexibility and deformation of the body and fin are believed to be important features to achieve optimal swimming performance, studies on high-fidelity deformable body and fin with complex material behavior, such as non-uniform stiffness distributions, are rare. In this thesis, a fully coupled three-dimensional high-fidelity fluid-structure interaction (FSI) solver is developed to investigate the flow field evolution and propulsion performance of caudal fin and jet propulsion involving body and/or fin deformation. Within this FSI solver, the fluid is resolved by solving unsteady and viscous Navier-Stokes equations based on the finite volume method with a multi-block grid system. The solid dynamics are solved by a nonlinear finite element method. The coupling between the two solvers is achieved in a partitioned approach in which convergence check and sub-iteration are implemented to ensure numerical stability and accuracy. Validations are conducted by comparing the simulation results of classical benchmarks with previous data in the literature, and good agreements between them are obtained. The developed FSI solver is then applied to study the bio-inspired fin and jet propulsion involving body deformation. Specifically, the effect of non-uniform stiffness distributions of fish body and/or fin, key features of fish swimming which have been excluded in most previous studies, on the propulsive performance is first investigated. Simulation results of a sunfish-like caudal fin model and a tuna-inspired swimmer model both show that larger thrust and propulsion efficiency can be achieved by a non-uniform stiffness distribution (e.g., increased by 11.2% and 9.9%, respectively, for the sunfish-like model) compared with a uniform stiffness profile. Despite the improved propulsive e performance, a bionic variable fish body stiffness does not yield fish-like midline kinematics observed in real fish, suggesting that fish movement involves significant active control that cannot be replicated purely by passive deformations. Subsequent studies focus on the jet propulsion inspired by squid locomotion using the developed numerical solver. Simulation results of a two-dimensional inflation-deflation jet propulsion system, whose inflation is actuated by an added external force that mimics the muscle constriction of the mantle and deflation is caused by the release of elastic energy of the structure, suggest larger mean thrust production and higher efficiency in high Reynolds number scenarios compared with the cases in laminar flow. A unique symmetry-breaking instability in turbulent flow is found to stem from irregular internal body vortices, which cause symmetry breaking in the wake. Besides, a three-dimensional squid-like jet propulsion system in the presence of background flow is studied by prescribing the body deformation and jet velocity profiles. The effect of the background flow on the leading vortex ring formation and jet propulsion is investigated, and the thrust sources of the overall pulsed jet are revealed as well. Finally, FSI analysis on motion control of a self-propelled flexible swimmer in front of a cylinder utilizing proportional-derivative (PD) control is conducted. The amplitude of the actuation force, which is applied to the swimmer to bend it to produce thrust, is dynamically tuned by a feedback PD controller to instruct the swimmer to swim the desired distance from an initial position to a target location and then hold the station there. Despite the same swimming distance, a swimmer whose departure location is closer to the cylinder requires less energy consumption to reach the target and hold the position there

    A Novel Propeller Design for Micro-Swimming robot

    Get PDF
    The applications of a micro-swimming robot such as minimally invasive surgery, liquid pipeline robot etc. are widespread in recent years. The potential application fields are so inspiring, and it is becoming more and more achievable with the development of microbiology and Micro-Electro-Mechanical Systems (MEMS). The aim of this study is to improve the performance of micro-swimming robot through redesign the structure. To achieve the aim, this study reviewed all of the modelling methods of low Reynolds number flow including Resistive-force Theory (RFT), Slender Body Theory (SBT), and Immersed Boundary Method (IBM) etc. The swimming model with these methods has been analysed. Various aspects e.g. hydrodynamic interaction, design, development, optimisation and numerical methods from the previous researches have been studied. Based on the previous design of helix propeller for micro-swimmer, this study has proposed a novel propeller design for a micro-swimming robot which can improve the velocity with simplified propulsion structure. This design has adapted the coaxial symmetric double helix to improve the performance of propulsion and to increase stability. The central lines of two helical tails overlap completely to form a double helix structure, and its tail radial force is balanced with the same direction and can produce a stable axial motion. The verification of this design is conducted using two case studies. The first one is a pipe inspection robot which is in mm scale and swims in high viscosity flow that satisfies the low Reynolds number flow condition. Both simulation and experiment analysis are conducted for this case study. A cross-development method is adopted for the simulation analysis and prototype development. The experiment conditions are set up based on the simulation conditions. The conclusion from the analysis of simulation results gives suggestions to improve design and fabrication for the prototype. Some five revisions of simulation and four revisions of the prototype have been completed. The second case study is the human blood vessel robot. For the limitations of fabrication technology, only simulation is conducted, and the result is compared with previous researches. The results show that the proposed propeller design can improve velocity performance significantly. The main outcomes of this study are the design of a micro-swimming robot with higher velocity performance and the validation from both simulation and experiment
    corecore