4 research outputs found

    A Deviation in BG dynamics during liver transplantation comparing ICU patients: a model-based approach

    Get PDF
    A proper glycemic control would beneficial affect on the outcomes of the liver-transplantation. Model based validated tight glycemic control protocol, STAR exists for ICU treatments. The validated metabolic model ICING for STAR differ in the blood glucose dynamics. By localizing the places of the extraordinary LT patients dynamics we can specify modifications on the ICU patient model. Based on the analyzes of ICING model, these dynamics mainly occurs in the 1) pre-anhepatic phase at the beginning of the surgery, 2) at the portal vein reperfusion and 3) in the post-anhepatic phase before 500 minutes from the reperfusion

    Brain mass estimation by head circumference and body mass methods in neonatal glycaemic modelling and control

    Get PDF
    Introduction: Hyperglycaemia is a common complication of stress and prematurity in extremely low-birth-weight infants. Model-based insulin therapy protocols have the ability to safely improve glycaemic control for this group. Estimating non-insulin-mediated brain glucose uptake by the central nervous system in these models is typically done using population-based body weight models, which may not be ideal. Method: A head circumference-based model that separately treats small-for-gestational-age (SGA) and appropriate-for-gestational-age (AGA) infants is compared to a body weight model in a retrospective analysis of 48 patients with a median birth weight of 750g and median gestational age of 25 weeks. Estimated brain mass, model-based insulin sensitivity (SI) profiles, and projected glycaemic control outcomes are investigated. SGA infants (5) are also analyzed as a separate cohort. Results: Across the entire cohort, estimated brain mass deviated by a median 10% between models, with a per-patient median difference in SI of 3.5%. For the SGA group, brain mass deviation was 42%, and per-patient SI deviation 13.7%. In virtual trials, 87-93% of recommended insulin rates were equal or slightly reduced (Ī“<0.16mU/h) under the head circumference method, while glycaemic control outcomes showed little change. Conclusion: The results suggest that body weight methods are not as accurate as head circumference methods. Head circumference-based estimates may offer improved modelling accuracy and a small reduction in insulin administration, particularly for SGA infants. Ā© 2014 Elsevier Ireland Ltd

    Development and optimisation of stochastic targeted (STAR) glycaemic control for pre-term infants in neonatal intensive care

    No full text
    Hyperglycaemia is a common complication of prematurity and stress in neonatal intensive care units (NICUs). It has been linked to worsened outcomes and mortality. There is currently no universally accepted best practice glycaemic control method, with many protocols lacking patient specificity or relying heavily on ad hoc clinical judgment from clinical staff who may be caring or overseeing care for several patients at once. The result is persistent hypoglycaemia and poor control. This research presents the virtual trial design and optimisation of a stochastic targeted (STAR) approach to improve performance and reduce hypoglycaemia. Clinically validated virtual trials based on NICU patient data (N = 61 patients, 7006 hours) are used to develop and optimise a STAR protocol that improves on current STAR-NICU performance and reduce hypoglycaemia. Five approaches are used to maximize the stochastic range of BG outcomes within 4.0-8.0mmol/L, and are designed based on an overall cohort risk to provide clinically specified risk (5%) of BG above or below a clinically specified level. The best protocol placed the 5th percentile BG outcome for an intervention on 4.0mmol/L band. The optimised protocol increased %BG in the 4.0-8.0mmol/L band by 3.5% and the incidence of BG<2.6mmol/L by 1 patient (50%). Significant intra- and inter- patient variability limited possible performance gains so that they are unlikely to be clinically substantial, indicating a need for a further increase patient-specific or sub-cohort specific approaches to manage variability

    Development of non-invasive, optical methods for central cardiovascular and blood chemistry monitoring.

    Get PDF
    Cardiovascular disease and sepsis are leading causes of mortality, morbidity and high cost in hospitals around the world. Failure of the circulatory system during cardiogenic shock and sepsis both can signiļ¬cantly impair the perfusion of oxygen through organs, resulting in poor patient outcome if not detected and corrected early. Another common disorder which goes hand-in-hand with cardiovascular disease is Diabetes Mellitus. Diabetes is a metabolic disorder resulting from the inability of the body to regulate the level of glucose in the blood. The prevalence of diabetes worldwide is increasing faster than societyā€™s ability to manage cost eļ¬€ectively, with an estimated 9% of the world population diagnosed with metabolic disease. The current gold standard measurements for venous oxygen saturation, arterial pulse wave velocity (PWV), and diabetes management through blood glucose concentration monitoring are all invasive. Invasive measurements increase risk of infection and com- plications, are often high cost and disposable, and have a low patient compliance to regular measurements. The aim of this thesis is to develop non-invasive methods of monitoring these important dynamic physiological variables, including, venous oxygen saturation, pulse wave velocity, and blood glucose concentration. A novel photoplethysmography-based NIR discrete wavelength spectrometer was developed using LEDs to both emit light, and detect the light reļ¬‚ected back through the tissue. Using LEDs to detect light simpliļ¬es sensing circuit design, lowering hardware costs, allowing adaptable sensing speciļ¬c to the needs of the user. A reļ¬‚ectance pulse oximeter was developed to measure the oxygen saturation at both the external jugular vein, and carotid artery. Measuring the jugular venous pulse (JVP) allows estimation of the venous oxygen saturation through either the JVP, or through breathing induced variation of the JVP. In addition to oxygenation, the de- vice developed is capable of adapting the sensing layout to measure the arterial pulse waveform at multiple sites along a peripheral artery, such as the carotid or radial. The PWV local to the carotid artery, and radial artery can then be measured, providing key information of cardiovascular risk. A novel algorithm for PWV measurement over multiple pulse waveforms was also developed. Expanding the sensor to use multiple diļ¬€erent wavelength LEDs allow discrete spectroscopy in pulsatile blood. An absorption model of components in blood at speciļ¬c wavelengths was created to isolate the spectral ļ¬ngerprint of glucose. The sensor successfully measured the oxygen saturation at the carotid artery, and external jugular vein across 15 subjects, giving mean oxygen saturations of 92% and 85% respectively, within the expected physiological ranges. Venous oxygen saturation calculated using breathing induced changes to JVP was 3.3% less than when calculated on the JVP alone, with a standard deviation of 5.3%, compared to 6.9%. Thus, future work on the sensor will focus on extraction of the breathing induced venous pulse, rather than measuring from the JVP itself. The PWV on the carotid and radial artery was successfully measured within the ex- pected physiological ranges, with the novel phase diļ¬€erence algorithm proving more robust to noise than the gold standard foot-foot method. The phase diļ¬€erence method returned a mean PWV at the radial artery of 4.7 Ā±0.6 m sāˆ’1, and a mean CoV of 20%, compared to 4.0 Ā±1.4 m sāˆ’1, and a moan CoV of 58% for the foot-foot method. The proof of concept PWV sensor gives promising results, but needs to be calibrated against invasive gold standards, such as aorta and femoral pressure catheters. A glucose trial involving adult and neonatal subjects provided validation of the NIR non-invasive pulse glucometer. The sensor has an R2 of 0.47, and a mean absolute relative diļ¬€erence (MARD) of 19% compared to gold standard reference measurements. Clarke error grid analysis returns 85% of measurements in Zone A, 11% in Zone B, and 4% in Zone C. While the sensor is not as accurate as the gold standard invasive measurements, the ability to constantly measure without any pain or discomfort will help increase measurement compliance, improving user quality of life, plus further development may improve this. Overall, this thesis provided novel contributions in non-invasive venous oxygen saturation, PWV, and glucose concentration monitoring. The adaptability of the sensor shows promise in helping reduce the pain and inconvenience of the current invasive measurements, especially in diabetes management, where the sensor has the most potential for impact
    corecore