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ABSTRACT

Cardiovascular disease and sepsis are leading causes of mortality, morbidity and high
cost in hospitals around the world. Failure of the circulatory system during cardiogenic
shock and sepsis both can significantly impair the perfusion of oxygen through organs,

resulting in poor patient outcome if not detected and corrected early.

Another common disorder which goes hand-in-hand with cardiovascular disease is Dia-
betes Mellitus. Diabetes is a metabolic disorder resulting from the inability of the body
to regulate the level of glucose in the blood. The prevalence of diabetes worldwide is
increasing faster than society’s ability to manage cost effectively, with an estimated 9%

of the world population diagnosed with metabolic disease.

The current gold standard measurements for venous oxygen saturation, arterial pulse
wave velocity (PWV), and diabetes management through blood glucose concentration
monitoring are all invasive. Invasive measurements increase risk of infection and com-
plications, are often high cost and disposable, and have a low patient compliance to

regular measurements.

The aim of this thesis is to develop non-invasive methods of monitoring these impor-
tant dynamic physiological variables, including, venous oxygen saturation, pulse wave
velocity, and blood glucose concentration. A novel photoplethysmography-based NIR
discrete wavelength spectrometer was developed using LEDs to both emit light, and
detect the light reflected back through the tissue. Using LEDs to detect light simplifies
sensing circuit design, lowering hardware costs, allowing adaptable sensing specific to

the needs of the user.



vi ABSTRACT

A reflectance pulse oximeter was developed to measure the oxygen saturation at both
the external jugular vein, and carotid artery. Measuring the jugular venous pulse
(JVP) allows estimation of the venous oxygen saturation through either the JVP, or
through breathing induced variation of the JVP. In addition to oxygenation, the de-
vice developed is capable of adapting the sensing layout to measure the arterial pulse
waveform at multiple sites along a peripheral artery, such as the carotid or radial. The
PWYV local to the carotid artery, and radial artery can then be measured, providing
key information of cardiovascular risk. A novel algorithm for PWV measurement over
multiple pulse waveforms was also developed. Expanding the sensor to use multiple
different wavelength LEDs allow discrete spectroscopy in pulsatile blood. An absorp-
tion model of components in blood at specific wavelengths was created to isolate the

spectral fingerprint of glucose.

The sensor successfully measured the oxygen saturation at the carotid artery, and
external jugular vein across 15 subjects, giving mean oxygen saturations of 92% and
85% respectively, within the expected physiological ranges. Venous oxygen saturation
calculated using breathing induced changes to JVP was 3.3% less than when calculated
on the JVP alone, with a standard deviation of 5.3%, compared to 6.9%. Thus, future
work on the sensor will focus on extraction of the breathing induced venous pulse,

rather than measuring from the JVP itself.

The PWYV on the carotid and radial artery was successfully measured within the ex-
pected physiological ranges, with the novel phase difference algorithm proving more
robust to noise than the gold standard foot-foot method. The phase difference method
returned a mean PWYV at the radial artery of 4.7 £0.6 ms~!, and a mean CoV of 20%,
compared to 4.0 £1.4ms~!, and a moan CoV of 58% for the foot-foot method. The
proof of concept PWYV sensor gives promising results, but needs to be calibrated against

invasive gold standards, such as aorta and femoral pressure catheters.

A glucose trial involving adult and neonatal subjects provided validation of the NIR
non-invasive pulse glucometer. The sensor has an R? of 0.47, and a mean absolute

relative difference (MARD) of 19% compared to gold standard reference measurements.
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Clarke error grid analysis returns 85% of measurements in Zone A, 11% in Zone B,
and 4% in Zone C. While the sensor is not as accurate as the gold standard invasive
measurements, the ability to constantly measure without any pain or discomfort will
help increase measurement compliance, improving user quality of life, plus further

development may improve this.

Overall, this thesis provided novel contributions in non-invasive venous oxygen satu-
ration, PWV, and glucose concentration monitoring. The adaptability of the sensor
shows promise in helping reduce the pain and inconvenience of the current invasive mea-
surements, especially in diabetes management, where the sensor has the most potential

for impact.
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Chapter 1

INTRODUCTION

This chapter outlines the primary motivation, goals and novel aspects of this thesis.
Also presented here is a brief overview of the background physiology relevant to the
research in this thesis. In particular, the cardiovascular system and the transfer of

oxygen and glucose to cells in the metabolic system.

1.1 MOTIVATION

"With a new principle and a simpler and less costly instrument within reach, sphygmog-

raphy will rise into a definite and useful science." Holden and Newmark [1871].

Cardiovascular disease and sepsis are leading causes of mortality, morbidity and high
cost in hospitals worldwide [Atlas Writing Group 2021]. Failure of the circulatory
system during cardiogenic shock and sepsis can significantly impair the perfusion of
oxygen through organs, resulting in poor patient outcomes if not detected and corrected
early [Nunnally et al. 2021]. A pulse oximeter is a vital tool for measuring tissue

perfusion in a clinical setting.

Pulse oximeters estimate SpO2 and provide information on the amount of oxygen get-
ting to the tissues through the arteries. However, the blood returning to the heart in
the veins has no analogous sensor [Thiele et al. 2011]. Thus, a non-invasive method
is needed to determine both SpO2 and SpvOs. Measuring SpOs and SpvOs can indi-
cate oxygen consumption, for example, the cerebral oxygen consumption in the brain.

Low-cost assessment of tissue perfusion by calculating the difference between SpO2 and
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SpvOsy could potentially advance the diagnosis, care and management of cardiovascular
disease and sepsis. Cerebral venous oxygen saturations can be obtained using pulsatile
information from the carotid artery and external jugular vein representing a significant

advance in clinical monitoring.

In addition to oxygen saturation into and out of the brain, the pulse oximeter can
calculate arterial PWV [Colquhoun et al. 2012]. The velocity of the arterial pulse wave
is a crucial indicator of cardiovascular risk [Vlachopoulos et al. 2010], Pulse wave ve-
locity (PWYV) is used as a surrogate to indicate arterial stiffness, with risk of health
complications increasing with higher stiffness levels seen in higher PWV [Darwich et al.
2015]. However, the current gold standard technique for measuring PWYV consists of
invasive aortic and femoral catheters, putting the patient at increased risk of compli-
cations. Alternatively, a synchronised measurement of the pulse oximeter waveform at

two locations could provide a reliable, non-invasive way to measure PWV.

Another common disorder that goes hand-in-hand with cardiovascular disease and
could benefit from non-invasive sensing is Type One Diabetes Mellitus. Diabetes is
a metabolic disorder resulting from the inability of the body to regulate the level of
glucose in the blood. The worldwide prevalence of diabetes, both type one and two,
is increasing faster than society’s ability to manage cost-effectively. Management of
diabetes accounts for 1 in 4 healthcare dollars spent in the United States of America
[Riddle and Herman 2018]. An estimated 9% of the world population has a diagnosis

of metabolic syndrome [Ampofo and Boateng 2020].

People living with diabetes currently need to use invasive methods, such as finger-stick
testing, to monitor their blood glucose concentration. The discomfort and possible
complications caused by these methods lead to significantly reduced frequency of mon-
itoring by patients [Chowdhury et al. 2013]. A non-invasive glucose sensing method
would facilitate improved adherence to monitoring, thus reducing complications and

improving quality of life.

There is scope to develop non-invasive optical devices to monitor these critical com-

ponents of the cardiovascular and metabolic systems. This sensing method should be
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able to monitor the venous oxygen saturation (SvOg), the arterial pulse wave veloc-
ity (PWYV), and blood glucose concentration. Non-invasive and low-cost solutions to
the issues mentioned above have the potential to dramatically improve outcomes for

patients as well as minimise the burden on their social and economic position

1.2 OBJECTIVES

This thesis focuses on the development of LED-LED based reflectance PPG sensors for
non-invasive measurement of physiological variables important to cardiovascular and
metabolic health; specifically, SvOs, PWV, and blood glucose concentration. An initial
proof of concept sensor was developed, which used LEDs to both emit and detect light.
This sensor was then adapted to measure each of the three components focused on in

this thesis.

Design a non-invasive reflectance photoplethysmograph (PPG) sensor capable of

using multiple different wavelength LEDs, which both emit and detect light.

o Develop and validate a sensor to measure the jugular venous pulse (JVP) and
conduct a pilot trial to measure jugular venous oxygen saturation (SvOs) utilising

this pulse.

o Develop and validate a sensor to measure arterial pulse wave velocity (PWV)

local to a single artery.

e Develop and validate a sensor capable of estimating blood glucose concentration

(BGC).

1.3 NOVELTY

This thesis presents the design of a novel photoplethysmograph sensor that uses LEDs to
both emit and detect light. This sensor utilises discrete wavelength spectroscopy to non-

invasively measure jugular venous oxygen saturation, pulse wave velocity, and blood
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glucose level. A phase difference method has been developed for use on aorta-femoral
arterial pulse waveforms to calculate PWV at higher noise levels than the current gold
standard method. A model was developed to analyse the voltage decay of a reverse
biased LED, reducing the required sampling time. This method has not been repeated
in literature before. The sensors developed are low cost and open-source, enabling free
use of data to maximise patient benefit and outcomes. In addition, it enables potential

commercial opportunities in the value of data and software as a service.

1.4 CARDIOVASCULAR SYSTEM

Blood is a complex mixture of cells, proteins, lipids, and ions, which is kept in constant
motion throughout the body by the cardiovascular system. This system distributes
nutrient materials and oxygen to each cell and takes away the by-products of their
metabolism. Figure 1.1 shows the circulation of blood through the cardiovascular
system. The blood flows out the left side of the heart via the aorta, then through
the arteries, arterioles, capillaries, venules, veins, and the vena cava back to the heart.
Blood is then sent through the pulmonary artery to the lungs to retrieve oxygen, remove
carbon dioxide, and then back to the heart to be pumped out through the aorta [Fozzard
et al. 1986, Guyton and Hall 2006].

heart

pulmonary circulation systemic circulation

Figure 1.1 The 3 separate systems of the cardiovascular system: the heart, the systemic circulation
and the pulmonary circulation. Arrows indicate the direction of flow [Paeme 2013].
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The heart is the organ responsible for sustaining the other organs in the body by
pumping blood. Without a properly functioning heart, other organs will not have a
supply of the oxygen and nutrients needed for cellular life. The heart distributes blood
using a network of veins and arteries. The haemoglobin molecules in the red blood cells
are the primary transporter of oxygen through the body to individual cells. Only 2%
of the oxygen carried by the blood is dissolved in the plasma, with the remaining 98%

bound to haemoglobin molecules [Nitzan et al. 2014].

1.4.1 Arterial system

The arteries carrying the nutrients and oxygenated blood away from the heart are high-
pressure vessels, which adapt to varying flow and pressure conditions by enlarging or
contracting to meet haemodynamic demands [Ku 1997]. From the arteries, blood flows
into the arterioles. Arterioles are the blood vessels on the arterial side of the vascular
tree [Martinez-Lemus 2012]. Arterioles are essential for the role of blood pressure
regulation and tissue perfusion as they provide 80% of the resistance to blood flow
in the body [Intengan and Schiffrin 2000], and are a vital component in the ability
to stress blood volume and perfuse tissue [Desaive et al. 2019, Murphy et al. 2020a,
Pironet et al. 2015]. From the arterioles, blood flows into the capillaries. The primary
point of interaction between cells and blood is in the capillary bed which serves both

transport and exchange functions.

1.4.2 Venous system

Veins are the vessels responsible for returning blood to the heart. Venules begin with
a small diameter at the capillaries, increasing in size to form veins as they return to
the heart. Veins are characterised as low-pressure vessels containing approximately
64% of the blood in the body [Guyton and Hall 2006]. The EJV is a vein located on
both the left and right side of the neck along the border of the platysma muscle [Shah
and Rosenberg 2009]. The JVP represents pressure changes in the EJV, and consists

of three positive waves (A, C and V) and two negative troughs (X and Y), shown in
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Figure 1.2. A benefit of measuring PPG signals at the EJV is the ability to measure

respiratory pulsation and the JVP [Naveen and Nitish 2000].
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Figure 1.2 A typical JVP pressure waveform, where the A and C peaks are the result of the down-
stream action of the right heart, while the V peak is the result of the upstream flow of blood from the
left heart [Davidson 2017].

Four studies investigated the use of NIR PPG on venous waveforms for estimating
SvO2, showing that PPG could provide useful clinical information [Colquhoun et al.
2012, Khan 2016, Thiele et al. 2011, Walton et al. 2010]. However, there were no

conclusive research results in this area at the time of the publication of this thesis.

1.5 PULSE WAVE VELOCITY

One metric used as an indicator of cardiovascular health is the arterial pulse wave
velocity (PWV). Defined as the velocity of propagation for the pulse wave in the artery
[O'Rourke et al. 2002], PWV is a promising technique for continuous, non-invasive
measurements of cardiovascular health [Peter et al. 2015]. PWV measurement enables
the non-invasive estimation of blood pressure, stroke volume, arterial stiffness, and
detection of early-onset sepsis [Gurovich and Braith 2011, Jianwen Luo et al. 2012,

Kadoglou et al. 2012, Li et al. 2019, Ma et al. 2018].

The physiological range for PWYV increases with age from <6 ms~! below 30 years old

1

to 11ms™" over 70 years old [Boutouyrie and Vermeersch 2010]. A typical PWV in
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the radial artery in a healthy individual is 4.73 £1.2ms~! [Obeid et al. 2021]. Higher
PWYV with values greater than 10ms~! is associated with increased arterial stiffness
and increased risk of poor cardiovascular outcomes [Mancia et al. 2018]. Increased
arterial stiffness and high central arterial pressure can lead to higher arterial pulsatility,
leading to damage to the microcirculation of several organs, especially the kidneys and
the brain [Jani et al. 2014], as well as reduced tissue perfusion and stressed blood

volume [Desaive et al. 2019, Murphy et al. 2020a, 2019, 2020b].

During the ventricular contraction (systole), a pressure wave propagates along the
arterial tree. As it travels from large arteries to the peripheries, the speed of the wave
changes due to the increase in arterial stiffness further from the heart [Kim et al. 2007].
Figure 1.3 shows the arterial pulse wave travelling through the carotid artery. The
difference in arrival time of the pulse wave along a known distance can be used to

calculate the PWYV.

AJ[foot—foot

Figure 1.3 The arterial pulse wave travelling through the carotid artery. PWV can be calculated
using the distance between two pulses along the carotid artery (AL) and the pulse transit time (At)
between the "foot" of two pulse waveforms.

A stiffened arterial wall is linked to an increased aortic pulse pressure and left ventricu-
lar afterload. This increased afterload can restrict left ventricular filling and potentially
lead to heart failure [Auseon et al. 2007]. The majority of the reservoir capacity of the
arterial system is in the proximal part of the aorta [Westenberg et al. 2012]. Stiffness
assessment in this region provides essential information on the overall health of the

aorta and its function [Smith et al. 2020]. As the aorta changes structure with age,
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non-invasive assessment of PWV may provide insight into the underlying physiology
and progression of the heart and circulatory functions, which would be very useful in

monitoring of chronic cardiovascular disease.

1.6 DIABETES

Diabetes Mellitus is a complex and multidimensional medical condition. Fundamen-
tally, the body cannot regulate its blood glucose concentration due to either reduced
production or increased resistance to insulin. Insulin is a hormone the body uses to
enable glucose to enter cells from the blood and eventually fuel energy production for
the cell. Incorrect insulin levels in the body can lead to hyperglycemia (high blood
glucose levels) or hypoglycemia (low blood glucose levels). The bodys normal physi-
ological glucose range is 4mmoll~! to 8 mmol1~! [Vashist 2013], with glucose values

outside this range potentially leading to poor health outcomes [Lind et al. 2021].

The global economic burden is expected to increase from $1.5 billion USD in 2015, to
over $2.1 billion USD by 2030 [Bommer et al. 2018]. The social cost is shouldered by
lower-middle social demographic index [Liu et al. 2020]. Management of glucose levels
is vital to improving health outcomes, quality of life and reducing management costs
for both the patient and healthcare provider. There are three main types of Diabetes
Mellitus: type-one, type-two and gestational diabetes [McIntyre et al. 2019]. Type-one
diabetes, also known as juvenile diabetes, is often diagnosed early in life (children -
young adults) [Forlenza et al. 2016]. This form of diabetes manifests as the inability to
produce sufficient insulin. Since a person with type-one diabetes is unable to produce
endogenous insulin, they are fully reliant on exogenous insulin delivery and require
life-long insulin replacement therapy [Gingras et al. 2018]. Individuals living with type-
one diabetes must regularly measure their blood glucose and use the information to

calculate the quantity and type of insulin required [Huckvale et al. 2015].

Type-two diabetes occurs when there a resistance to the effect of insulin. Muscle, fat

cells and the liver do not adequately respond to the insulin produced by the pancreas,
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potentially leading to insulin dependency [Roden and Shulman 2019]. Individuals living
with type-two diabetes have a more varied requirement for blood glucose monitoring
than type-one [Critchley et al. 2018]. Individuals on intense insulin therapy, similar to

type-one, also require the same frequency of blood glucose measurements.

The type-two diabetics who are not at risk of hypoglycaemia are often only assessed
every few months via HbA;. testing [BPAC 2021]. HbA;, is a common metric used
to assess glycaemic control over extended periods of time [Danne et al. 2017, Sherwani
et al. 2016]. Gestational diabetes is a transient form of diabetes occurring during
pregnancy [Plows et al. 2018]. No definite cure for any of these types of diabetes is

currently available.

Inadequate control of blood glucose levels has complications including; diabetic retinopa-
thy, kidney damage, heart disease, stroke, neuropathy and birth defects [Aronson 2008].
There is strong evidence that tight glycaemic control delays and even prevents the on-
set of long-term complications in all forms of diabetes mellitus.|[Critchley et al. 2018,
(DCCT)/(EDIC) Study Research Group 2016, Hayward et al. 2015, Tottman et al.
2018].

Self-monitoring of diabetes improves glycaemic control and quality of life in both insulin
dependent and non-insulin dependent diabetics [Kato et al. 2013]. For individuals on
insulin replacement therapy, testing blood glucose concentration should be done prior
to each administration of insulin, after meals, when exercising, and before and after
sleeping. Additional measurements are also recommended if they feel any symptoms of
hyper/hypoglycaemia [King et al. 2016, Moser et al. 2019]. Thus, a thorough testing
regime of up to eight times daily would improve glycaemic control [Minder et al. 2013,
Wong et al. 2009]. However, this is invasive and challenging to adhere to for patients
so is an unrealistic goal. Often, during the early stages of type-two diabetes, minimal
blood sugar monitoring is recommended, as blood glucose levels are generally well con-
trolled. However, research has shown regular blood glucose measurements to improve
control [Polonsky et al. 2010, 2009]. Individuals with diabetes who regularly monitor

their blood glucose have improved quality of life [Jing et al. 2018].
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The current gold standard of diabetes management involves artificially recreating the
role of the pancreas, known as the "artificial pancreas" [Boughton et al. 2021]. A model-
based virtual patient control approach has become more common recently, especially
in intensive care unit blood sugar control [Chase et al. 2018, 2019, Dickson et al. 2018].
The artificial pancreas consists of a continuous glucose monitor (CGM) connected to
an insulin pump, where the CGM controls the rate of insulin delivery by the pump
[Zaharieva et al. 2019]. CGM devices with their 1-5 minute intervals have the potential
to remove the need for patient input, further increasing diabetes control [Girardin et al.

2009].

1.6.1 ICU and NICU control

Critically ill patients in the ICU often experience stress-induced hyperglycaemia [McAl-
lister et al. 2014, Umpierrez et al. 2012]. Hyperglycaemia in this setting is defined
by having multiple consecutive blood glucose measurements yielding a result of >8-
10mmol 17! or higher [Umpierrez et al. 2012]. There is evidence that hyperglycaemia
increases the risk of adverse clinical outcomes, including sepsis and septic shock [Branco

et al. 2005], infections [Bistrian 2001], and organ failure [Ellahham 2010].

Similarly to the adult ICU, the NICU also faces problems with management of glucose.
Neonatal hypoglycaemia is defined as low glucose levels in a new born baby. A infant
with a blood glucose concentration at or below 2.6 mmol1™! is defined as experiencing
hypoglycaemia [McKinlay et al. 2015]. Generally, infants born prematurely, or small
for gestational age, or having a diabetic mother, are at higher risk of developing hy-
poglycaemia [Harris et al. 2010]. Hypoglycaemia in this vulnerable demographic can
lead to seizures and permanent brain injury [Harris et al. 2016, McKinlay et al. 2015,
Signal et al. 2012b, Thomas et al. 2014]. Currently, blood must be drawn via heel-prick
testing to measure blood glucose in a neonate and repeated sampling is often required.
The repeated breaking of the skin barrier makes the infant more susceptible to infec-
tion[Lemyre et al. 2015]. In addition, the perceived pain and blood loss [Hellstrom

et al. 2020] can be upsetting for parents/caregivers and can delay timely measurement
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and identification of hypoglycaemia.

1.7 CHAPTER OVERVIEW

This thesis is presented in four parts: Part I presents a review of the current literature
in this field, Part II develops hardware and software required to validate non-invasive
venous oxygen saturation, Part III designs pulse wave velocity sensors for use on the
carotid and radial artery and Part I'V develops a NIR reflectance sensor for non-invasive

glucose monitoring.

¢ Chapter 1 introduces the motivation and goals of the thesis, as well as a descrip-

tion of the physiology related to this work.

e Chapter 2 outlines the background and literature behind current invasive mea-
surement methods and their non-invasive alternatives. In particular, jugular
venous oxygen saturation, pulse wave velocity measurement and blood glucose

estimation.

e Chapter 3 covers the background and use of LEDs as discrete wavelength light

detectors.

Part II: Estimation of Venous Blood Oxygen Saturation

e Chapter 4 presents the design of a reflectance pulse oximeter using LEDs of
different wavelengths to emit and detect light for pulse oximetry and NIR spec-
troscopy. Material in Chapter 4 has been submitted to HardwareX: J. D. Camp-
bell, L. R. Mckenzie, C. G. Pretty, P. Bones, and J. G. Chase, Digital Sensing

LED Emission and Detection Array for Pulse Oximetry HardwareX (submitted)

e Chapter 5 develops an algorithm to detect the peaks and troughs of the pho-
toplethysmograph waveform in real time for use with the sensor developed in

Chapter 4. Material in Chapter 5 has been published in:
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J. Campbell, C. Pretty, G. Chase, and P. J. Bones, A Robust Method of a
Peak Detection in Noisy PPG Signals Using a Structure of IIR Filters, in
2018 14th IEEEASME International Conference on Mechatronic and Em-
bedded Systems and Applications (MESA), Oulu, Finland, Jul. 2018, vol.
14

J. Campbell, C. Pretty, J. G. Chase, and P. J. Bones, Near-Real-Time
Detection of Pulse Ozimeter PPG Peaks Using Wavelet Decomposition, in
10th IFAC Symposium on Biological and Medical Systems, Sao Paulo, Brazil,
Sep. 2018, pp. 181186.

e Chapter 6 Validates the sensor designed in Chapter 4 to measure the jugular

venous pulse and estimate the oxygen saturation of the external jugular vein and

the carotid artery at different levels of supine.

Part III: Estimation of Arterial Pulse Wave Velocity

Chapter 7 describes the design and testing of a non-invasive pulse wave velocity
sensor using an array of LEDs to detect the arterial pulse at three different places
along the carotid artery. Material in Chapter 7 has been published in: J. D.
Campbell, L. Holder-Pearson, C. G. Pretty, P. Bones, and J. G. Chase, Pulse
Wave Velocity Measurement in the Carotid Artery Using an LED-LED Array

Pulse Oximeter, in 21st IFAC World Congress, 2020, vol. 53

Chapter 8 presents a phase difference algorithm used to calculate pulse wave ve-
locity across a collection of beats in aorta-femoral measurements. The algorithm
is tested on porcine data and is measured against the gold standard ’foot-foot’

pulse wave velocity measurement.

Chapter 9 covers the validation of a photoplethysmograph pulse wave velocity
sensor tested on the radial artery, adapted from sensor designs presented in Chap-
ters 4 and 7. Material in Chapter 9 has been submitted to: J. D. Campbell, C.
G. Pretty, R. Smith, P. Bones, and J. G. Chase Peripheral Pulse Wave Velocity
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Measurement with the Phase Difference Method, Submitted to Biomedical Signal

Processing and Control (submitted)
Part IV: Non-invasive Estimation of Blood Glucose Concentration

e Chapter 10 presents the design of a discrete spectrometric non-invasive blood
glucose sensor. Testing of the sensor is conducted on porcine blood in-vitro.
Material in Chapter 10 has been published in: J. D. Campbell, L. Holder-Pearson,
C. G. Pretty, P. Bones, and J. G. Chase, Pulse Wave Velocity Measurement in the
Carotid Artery Using an LED-LED Array Pulse Oximeter, in 21st IFAC World
Congress, 2020, vol. 53

e Chapter 11 develops a model for predicting the voltage decay of a reverse biased
LED for the use of measuring photocurrent. Material in Chapter 11 has been
published in: J. Campbell, C. G. Pretty, J. Knopp, P. Bones, and J. G. Chase,
A model for the digital method of measuring LED incident photocurrent, in ASME
2021 International Design Engineering Technical Conferences & Computers and

Information in Engineering Conference, Online, Virtual, 2021, p. 9.

e Chapter 12 describes the validation of the non-invasive glucose monitor through

trials on healthy subjects and a clinical trial on patients in the neonatal ICU.
e Chapter 13 Conclusions

e Chapter 14 Future work and directions.
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Chapter 2

BACKGROUND OF CARDIOVASCULAR AND
BLOOD GLUCOSE SENSING

This chapter builds on the physiology and thesis statement in Chapter 1, providing
background on current sensing methods measuring cardiovascular and metabolic mark-
ers, as well as their non-invasive alternatives. In particular, using NIR spectroscopy to
measure arterial pulse waveforms to extract information on oxygen level, pulse wave

velocity, and blood glucose concentration.

2.1 PULSE OXIMETERS

Pulse oximeters are medical devices used in hospitals and home life. These sensors allow
continuous, non-invasive monitoring of heart rate and arterial blood oxygen saturation
[Ortega et al. 2011]. Through ease of use, accurate results, and very low development
costs, the sensors are a standard of care for oxygen monitoring in hospital wards,

operating rooms, and intensive care units around the world.

Pulse oximeters use two LEDs and a photo-detector usually placed on either side of a
finger to produce photoplethysmograph (PPG) signals. These signals indicate changes
in blood volume as well as the oxygen saturation level in the blood. The PPG wave-
forms are generated by the pulsatile nature of blood in the arteries [Allen 2007, Daly
and Leahy 2013]. The sensor is able to determine the oxygen levels in the blood by
measuring the absorption ratio of red to infrared light absorbed by oxyhaemoglobin and

deoxyhaemoglobin. Due to HbO2 and Hb having different light absorption character-
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istics, the peripheral oxygen concentration can be calculated, where oxygen saturation

estimated by a pulse oximeter is denoted SpOs.

2.1.1 History of Pulse Oximeters

The concept behind the pulse oximeter was first investigated by J. R Squire in 1940.
Squire recognised red light and infrared light are absorbed differently by pneumatically
compressed tissue. This difference permitted Squire to compute the oxygen saturation
in the tissue. The term "oximeter" was first coined by Glen Allen Millikan during the
second world war [Millikan 1942]. He designed a light weight, optical, ear based device

to continuously monitor the blood oxygen level.

Using the work by Millikan, Earl Wood made a sensor measuring the absolute satura-
tion level using ratios of the absorbed light [Allwood and Burry 1954]. The oximeter
worked by fully occluding blood from a section of the ear; then measured the transmit-
ted light through the tissue. When the pressure was released, the light through the
tissue was measured again. The resulting difference in measurement gives the oxygen

concentration.

This sensor was the standard for years until an engineer at Nihon Kohden, Takuo
Aoyagi, introduced the idea of the ratio of ratios in 1972 [Severinghaus 2007]. Aoy-
agi was experimenting with combining conventional pulse oximeters with dyes. He
discovered when he held his breath, pulsatile waves were introduced into the signal,
showing a change in oxygen concentration [Miyasaka et al. 2021]. Reduced amounts
of oxyhaemoglobin in the blood changed the ratio of densities at the red and infrared
wavelengths. The pulsatile and non-pulsatile blood have the same information of blood

colour, which leads to these principles:

1. Using two appropriate wavelengths of light, the optical density and ratios of the
pulsating to non-pulsatile parts of blood could be found. The resulting ratio

should be the same as Wood’s ratio [Westhorpe and Ball 2008].
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2. The non-pulsatile venous blood does not affect the measurement. As only the
arterial blood is measured, the position of the sensor is no longer restricted to

the ear.

3. Using this method, the reference is set with each pulse, rather than a preset

preference.

The sensor designed by Aoyagi based on these principles was taken to market by Minolta
in 1978, remaining the standard until the early 1980s when other firms started improv-
ing their sensors. This competition in designs led to rapid development of oximeters,
which, in turn resulted in a 90% reduction in anaesthesia related deaths [Severinghaus
2007]. By the early 1990’s pulse oximetry was the standard of care for monitoring of

perfusion during anaesthesia [Allen 2007].

In the years since, studies have examined the accuracy of pulse oximetry [Abdallah
et al. 2007, Jubran 1999]. The combination of accuracy, non-invasive measurement,
and relatively low cost, led to the pulse oximeter being adopted in hospitals around the
world. Pulse oximeters have also been adopted outside of clinical settings with home

users, athletes, and veterinaries using the sensor [Tamura et al. 2014].

2.2 PRINCIPLES OF PULSE OXIMETRY

Pulse oximetry uses plethysmograph signals to record changes in blood volume due to
heartbeat [Elgendi 2012]. The term plethysmograph is of Greek origin with "plethys-
mos" meaning "to increase" and "grapho" meaning "write". The version of plethysmog-

raphy used in pulse oximetry is photoplethysmography (PPG).

The technique of photoplethysmography is used to monitor the peripheral blood volume.
Designed by Alrick Hertzman, PPG replaced previous mechanical plethysmography
methods [Hertzman 1938], and is widely used to study and monitor the cardiovascular

pulse wave produced by arteries.
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2.2.1 Photoplethysmograph Signals

The raw data measured by the pulse oximeter consists of multiple components. Pul-
sations in the data result from arterial blood flow, thermo-regulation, respiration, and
vasomotion activity [Achakri et al. 1994]. The arterial pulse needs to be extracted from
these signals. Thus, the PPG signal is broken into "AC" and "DC" components. The
AC component is only composed of frequencies greater than 0.5 Hz and is associated
with heart-rate. Importantly, this signal is usually comprises less than 1% of the total

PPG waveform.

The DC component consists of the remaining 99% of the signal and contains the low
frequency signals (< 0.5 Hz) and scattering effects of the surrounding tissue [Mendelson
1992]. This DC component also contains person-person variable absorption, due to
differing melanin concentrations. This difference must be accounted for in calibration
as darker skin has a 3x greater risk of missed diagnosis of hypoxaemia [Sjoding et al.

2020].

2.2.2 Shape of Arterial PPG Waveform

Figure 2.1 shows a typical PPG waveform. During systole and diastole in the cardiac
cycle of the heart, blood is pushed through the arterial vascular bed. During the
systolic phase, the volume of blood in the arteries increases, increasing light absorption
and therefore reducing the amount of reflected light. The blood volume then drops
through the diastolic phase, decreasing light absorption. This relationship is shown in
Figure 2.1. The baseline of the PPG signal is directly related to the volume of blood
in the tissue, with the amplitude proportional to the increase in blood volume during
the systolic phase. By measuring the time between the diastolic or systolic peaks, the

heart-rate can be found.

During the decay of the waveform after systole, a notch is usually present. This dicrotic
notch is due to an increase in blood volume created by pressure wave reflection at

bifurcations of the arterial tree [Sherebrin and Sherebrin 1990]. An aortic pressure
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Figure 2.1 Example PPG waveform recorded from the radial artery by a reflectance pulse oximeter.

waveform also displays the diastolic notch due to the closure of the heart’s aortic valve,
which causes a similar change in blood flow. The notch can be seen in Figure 2.1 in

the change from the systole phase to the diastole phase.

2.2.3 Relationship Between Haemoglobin and Light Absorption

The two wavelengths of light conventionally used for pulse oximetry are red (660 nm)
and infrared (940 nm) [Tremper and Barker 1989]. The ratio of the AC component to
the DC creates a normalised absorption ratio at each wavelength. Following this calcu-
lation, the ratio of each wavelength ratio can then be used to compare light absorption.
Aoyagi uses the term SpO- to define the ratio of ratios, with the "p" subscript denoting

measurement by a pulse oximeter. The ratio of ratios equation is given:

(ACRed/DCRed)

R—
(AC1gr/DCrR)

(2.1)

Where,

R: Ratio of ratios from each wavelength.
AC,eq: Pulsatile component of the detected signal produced by red light.

DC,ea: Non-pulsatile component of the detected signal produced by red light.
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ACqR: Pulsatile component of the detected signal produced by infrared light.

DCir: Non-pulsatile component of the detected signal produced by infrared
light.

The R value is then used to calculate SpO2 [Mendelson and Ochs 1988]:

SpOy = 110 — 25 x R (2.2)

The oxygen contained in blood is predominantly contained by the haemoglobin carrying
red blood cells, as little oxygen is freely dissolved in the blood. As the red blood cells
travel through the body, oxygen is released from the haemoglobin. Thus, SaOq, where
a denotes arterial oxygen, is deemed to be the ratio of oxygenated haemoglobin to the

total amount of haemoglobin in the blood, defined:

Oxygenated Haemoglobin  HbO,

Sa0q = =
a2 Total Haemoglobin HbO, + Hb

(2.3)

Haemoglobin can be in states other than oxygenated and deoxygenated, affecting the
accuracy of the measurement. These states include methaemoglobin and carboxy-
haemoglobin. Methaemoglobin can be formed spontaneously in the blood when the
iron in the heme group is in the ferric (Fe3*) state, rather than the normal ferrous
(Fe*t) state. Methaemoglobin is unable to carry oxygen around the body and is a
blue-brown colour. Carboxyhaemoglobin forms upon exposure to carbon monoxide
[Barker et al. 1989, Ralston et al. 1991]. Carbon monoxide (CO) has a higher affinity
to haemoglobin than oxygen, so the CO attaches to the haemoglobin and does not get
released. This binding reduces the total amount of oxygen carried in blood [Hampson

et al. 2006].

Figure 2.2 shows the extinction coefficients for the four states of haemoglobin and shows
that HbOs absorbs infrared light better than Hb. In contrast, Hb absorbs red light

better than HbO,. Using this relationship, wavelengths for the red and infrared light
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Figure 2.2 Extinction coefficients (1mmol™*cm ™) of the four haemoglobin types over a red and
infrared spectra Tremper and Barker [1989].

are chosen for the varying absorption characteristics.

The measured Hb concentration in the blood is proportional to the amount of absorbed
light from the LEDs. The higher the level of oxygenated haemoglobin, the more red
light is absorbed and the less infrared light is absorbed. The relationship between

amount of Hb and light absorption is described by "Beers Law" [Baker et al. 2014].

2.2.4 Beer-Lambert Model

The theory behind pulse oximetry can be derived through the Beer-Lambert model
for light absorption. This model describes the exponential decay in light intensity as
it passes through a non-scattering, light absorbing medium [Mannheimer 2007]. The

decay of intensity through the tissue is defined:

Tout = me—a(k)cd (24)

Where,

Iin: Incident light intensity.
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Iout: Transmitted light intensity.
e: Extinction coefficient of absorbing substance at given wavelength .
c: Constant concentration of absorbing substance.

d: Optical path length through substance.

The ratio (R) of transmitted light to incident light at the red and infrared wavelengths

is given by:

— log(IOutR/ImR)A
log(loutIR/ImIR>)‘

(2.5)

Using the R value and knowledge of extinction coeflicients for haemoglobin, SaOs can
be estimated. The relationship between the ratio of ratios and the extinction coefficients

of haemoglobin defines SaOs:

emp(M1) — Remp(2)
Rlenpo,(A2) — emp(A2)] + [emp(A1) — emp0, (A1)]

Sa0y = x 100% (2.6)

Where,

enp: Extinction coefficient of haemoglobin.

€HbO,: Extinction coefficient of oxygenated haemoglobin.

Figure 2.3 shows the decay in R with increasing SpOs. At high SpOs, the pulse wave
peak to peak amplitude is less for red light than infrared. At low SpOs values, the in-
frared waveform amplitude is smaller than red. This relationship between wavelengths
is also shown in Figure 2.2 where low SpOs indicates higher levels of deoxyhaemoglobin.
As deoxyhaemoglobin absorbs red light better than oxyhaemoglobin, there will be a
larger peak to peak amplitude of red light absorption throughout the pulse cycle. There-

fore, a lower SpO9 will have a larger red pulse waveform.
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Figure 2.3 Decay curve of red / IR modulation ratio (R) against SpO2 [Mannheimer 2007].

Unfortunately, the human body is an effective light scattering medium [Mannheimer
et al. 1997], rather than the uniform substance assumed in the Beer-Lambert model.
This issue leads to unexpected scattering of light resulting in a complicated function
of path length. Thus, development of a sensor cannot rely solely on the Beer-Lambert

model to determine SpOs.

2.2.5 Oxygen Saturation through Empirical Calibration

As the Beer-Lambert law does not fully model the scattering of light through the human
body, a calibration function is needed. The pulse oximeter is calibrated against arterial
gas oxygen levels in healthy, normothermic people, giving a baseline for expected results.
By using the arterial blood gas oxygen levels, the pulse oximeter is calibrated against the
gold standard in blood oxygen measurements [Kamat and others 2002]. The calibration
is usually conducted on subjects by inducing hypoxaemia and measuring the drop in
SaOs. This test and calibration successfully corrects the errors in the Beer-Lambert
model R curve. However, each type of pulse oximeter requires a calibration unique to

the electronics used.

Figure 2.4 compares the Beer-Lambert model and empirical calibration [Flewelling

2000]. Rather than a linear decrease in oxygen saturation, the empirical calibration
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Figure 2.4 Comparison of R curves between the Beer-Lambert model and empirical pulse oximeter
calibration [Flewelling 2000].

non-linearly decays down to 70% oxygen saturation. After an R value of 1.25, the data
has been linearly interpolated to give a linear decay. Empirical calibration ensures that
an oxygen saturation level up to 100% can be represented, whereas, the Beer-Lambert

model only shows between 95% and 30%.

The estimated R values are mapped to SaO2 using an equation from Mendelson and

Kent [1989].

ky — ko(Red/IR)
ks — ky(Red/IR)

SCLOQ = SpOQ = (2.7)

Where, ko is multiplied by the ratio of red light to infrared light deflected by the tissue.

The k values are empirically derived coefficients related to the extinction coefficients of
Hb and HbO,. These extinction coefficients do not exactly match those in Equation 2.6.
In theory, the principle relationship between R and SpOs are the same. However, there
remains a difference between theoretical modelling of the sensor and actual calibrations

shown by the differences in coefficients.

Equation 2.1 can be normalised by dividing the AC component of the red and infrared
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light by the corresponding DC component [Goldman et al. 2000]. Normalisation also re-
moves the dependence on path length through the tissue. This normalisation simplifies

into:

SpOs = k1 + koR (2.8)

The constants k; and ko are derived from the calibration curve shown in Figure 2.4,

with typical values being k1 = 110 and ko = —25, where R is defined by Equation 2.1

2.2.5.1 Using RMS to estimate R values

The RMS value of the AC signal combined with the mean DC signal can also be used

to calculated the R value for pulse oximetry [Oak and Aroul 2015], as given:

(ACRMS/DC)red

Sp02 = (ACrMms/DC)jr

(2.9)

To calculate the AC component, the signal is filtered using a bandpass filter with a
pass-band from 0.67Hz to 10Hz. A rolling RMS of the signal is then calculated to
form an array of RMS similar to beat-to-beat peak and trough detection. The benefit
of this method is the removal of the need to find the peaks and troughs in a noisy signal.
However, as the peaks and troughs are not used, there is a risk that a signal may have

no pulsatility, but the filter will continue to return an AC component.

2.2.6 Transmission and Reflectance PPG Method Comparison

There are two common methods for measuring the PPG signals, transmission and
reflectance. These methods are defined by the relative position of the LEDs and pho-
todetector on the body. Figure 2.5 shows the different positions of the sensor on the
finger. Transmission pulse oximetry places the emitting LEDs and photodetector either

side of an arterial bed [Mendelson 1992]. As the transmittance sensor must be placed
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Figure 2.5 Comparison between transmission and reflectance sensor types

either side of tissue, the location of the sensor is generally restricted to relatively thin

areas of the body, such as the finger or ear.

Reflectance sensors have the LEDs and photodetector placed next to each other. The
photodetector receives the light scattered from the LED source at a distance of about
12mm [Reuss 2005]. Reflectance pulse oximeters are able to be placed on parts of the
body the transmission sensor cannot, most commonly on the arm, chest, or forehead. As
a small fraction of scattered light reaches the emitter, the reflectance method produces
a lower SNR and pulse amplitude than the transmission method. Another application
of the reflectance sensor is to provide reliable intrapartum fetal monitoring [Dassel
et al. 1997]. Traditionally, transmission sensors are used as larger AC signals can be

measured.

2.3 CALCULATING VENOUS OXYGEN SATURATION FROM
VENOUS PULSE WAVEFORMS

2.3.1 Forced Venous Pulsation

The AC signals of the PPG signal are conventionally used to calculate SpOs. The

frequencies of the arterial pulse are due to the heart rate (~1Hz). For venous oxygen
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saturation to be measured, there needs to be a pulse in the veins. Studies have investi-
gated the periodic oscillations in the thoracic cavity induced by normal or mechanical
ventilation to generate pulses in the veins [Phillips et al. 2012, Shafqat et al. 2015,
Walton et al. 2010]. These invasive or forced respiratory ventilation methods were able
to estimate SvOs in the central regions. As the sensors are central, peripheral SvOs is

unable to be measured.

2.3.2 External Venous Pulsation

By compressing veins and arteries, artificial pulses can be generated. [Schoevers et al.
2009] investigated a system that occluded blood flow on the finger. The apparatus
consisted of three pressure cuffs. Each cuff would be periodically inflated to occlude
the blood flow creating the artificial pulse. Using the arterial to venous compliance
ratio developed in [Alian and Shelley 2014], SaOy and SvOgy could be estimated. A
subsequent study [Cloete et al. 2013] determined that Schoevers et al’s results were

neither comprehensive nor conclusive.

Figure 2.6 shows the experimental setup for the pressure cuff occlusion. The pressure
cuffs were operating at very high pressures of 660 mmHg. As normal systolic pressure
is less then 120 mmHg, the cuffs interrupted both venous and arterial flow through the
finger. It was concluded fully occluding blood flow in both the arteries and veins would
not give accurate results. The extended use of induced venous pulsations also carried
risks, including: venous stasis; venous thrombosis; and interference, with intravenous

access [Shafqat et al. 2015].

An alternative method of external venous pulsation was investigated in [Chan 2002].
Rather than fully occlude both the veins and arteries, a lower pressure was used so that
only the veins were occluded. Arteries are thick walled to withstand the pressure of
the blood flow. In contrast, veins are larger and thin walled and require less pressure
to occlude. Using a pressure of 40 mmHg, below diastolic pressure, blood flow in the
veins are interrupted while the arteries remain unaffected [Chan 2002]. Chan et al filed

a patent for this concept, calling it the Venox concept [Chan et al. 2007]. The pressure
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Figure 2.6 Artificial pulse generation using a finger cuff [Cloete et al. 2013].

cuffs operated at a frequency of 7.5Hz, much higher than the natural heart rate, and
the resulting PP G signal could then be decomposed to extract the cardiac and artificial

frequencies.

The Venox concept was investigated by Echiadis et al. [2007]. Patients undergoing heart
bypass surgery had the SpO2 and SvOy monitored with the Venox method. Thiele et al.
[2011] did another study on this method and concluded the previous research did not
provide suitable data for clinical use. The SvOy detected at the finger was compared
to the central SvOs recorded during the heart bypass surgery by a cardiopulmonary
bypass machine (CPB). Echiadis et al. [2007] was comparing the central to peripheral
Sv09 with is not applicable as discussed above. Further research is needed on healthy

people rather than solely patients undergoing surgery.

Another method of external venous pulsations was investigated by Khan [Khan et al.
2015b, 2017] in the MOOSE study. Khan proposed the artificial pulsations should
be at a frequency below the heart rate rather than higher, as investigated by Chan
et al. [2007] because of the relaxation dynamics of veins. Using a pressure cuff inflation
frequency of 0.2 Hz at a pressure between 40 and 50 mmHg, an R? value of 0.95 was
generated between measured SvOsy and venous blood samples. The study concluded
that the proposed SpvOs estimation model could be used as an indicator for low Oy FE,
oxygen consumption and tissue hypoxaemia. SvOs measurement can be done in real

time, giving live readings of peripheral oxygen levels. Khan also showed the importance
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of temperature monitoring to the PPG signal quality [Khan et al. 2016]. Future work on

the venous Oy sensor was recommended to improve the accuracy of SvOs measurement.

2.3.3 Natural Venous Pulsation

The jugular vein feeds blood from the head directly to the right atrium. Due to the
vein being close to the core of the body, there is a small respiration induced venous
pulse. This pulse is present in the superficial internal and external jugular veins. The
frequency of respiration is approximately 0.1 Hz, compared to the heart rate of 1 Hz
so the frequency components from SaOs and SvOy can be extracted with a Fourier
transform. Watson et al [Walton et al. 2010] generated an algorithm to estimate SvOq

from the PPG signal.

A thesis by Aniagyei-Mensah showed measurement of the venous pulse wave with a
pulse oximeter is possible [Aniagyei-Mensah 2014]. A laser diode was introduced to
increase the light intensity reaching the photodiodes. The sensor was held against the

neck with a rubber band to minimise the pressure on the skin.

Coloquhoun et al investigated the use of NIRS over the internal jugular vein to estimate
cerebral venous oxygen saturation [Colquhoun et al. 2012]. The paper recommends a
method to align the sensor with the jugular vein and additional sensors to remove
interference from intervening tissue. The additional sensors would also allow the user
to target specific depths of tissue as well as removing the influence of tissue beds. The
final conclusion by Coloquhoun on the use of NIRS was placement of an oximeter
directly over the internal jugular vein would be most likely to estimate change in the
cerebral oxygen supply. Thiele et al recommends a change in LED wavelength to

optimise oxygen saturation sensitivity to the 60% to 85% range [Thiele et al. 2011].

2.3.4 Venous Oxygen Saturation Summary

This section discussed the principles behind pulse oximetry and their limitations. One

limitation is the inability to monitor the oxygen saturation of venous blood due to the
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need for a pulsatile signal. Various methods of non-invasively monitoring venous oxygen
saturation have been explored using external pulsations, or the natural pulsation in the
EJV, but none have reached clinical use. Chapters 4-6 in this thesis focus on developing

a novel pulse oximeter capable of monitoring venous oxygen saturation in the EJV.

2.4 PULSE WAVE VELOCITY MEASUREMENT

Invasive dual lumen catheters can be commonly used to measure the pulse transit
time (PTT) of the arterial pulse wave used to calculate the PWV, but are not likely
to be inserted to solely measure PTT, so a measurement of PTT is usually only a
secondary outcome [Kamoi et al. 2017]. Moderately invasive measurements methods
have been investigated with reduced reliability during haemodynamic instability, so
have not become standard [Bein et al. 2007]. Measuring PTT gives an indicator of
cardiovascular health. These PTT values can be used to calculate PWV, giving insight
into arterial elastance, blood pressure, and early onset sepsis [Li et al. 2019, Ma et al.

2018)].

2.4.1 Regional vs Local pulse wave velocity

PWYV measured across different vessels, such as aorta-femoral and aorta-radial, are con-
sidered regional measurements, where the calculated PWYV is the average over different
arteries with varying compliance [Boutouyrie et al. 2009]. Consequently, regional PWV
may mask changes in compliance in small segments [Pannier et al. 2002]. The regional
PWYV is defined by the distance between measurement points and the pulse transit

time (PTT) delay between the two points [Pereira et al. 2015].

While PWYV measurement is usually performed regionally, measurement local to an
individual artery has also been investigated [Darwich et al. 2015]. Figure 2.7 shows
the use of the foot-foot method at using the PTT measured on the carotid artery to
calculate PWV. A major advantage of this approach to measuring PWYV is the distance

between measurement sites can be accurately known. Local PWV measurement in-vitro
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Figure 2.7 The local foot-foot PWV method calculated using the distance between two pulses along
the carotid artery (AL) and the pulse transit time (At) between the "foot" of two pulse waveforms.

has shown good results, but in-vivo errors up to 30% have been recorded [Hermeling

2009, Pereira et al. 2011, Xu 2002].

The main difficulty in PTT calculation, especially local PTT, is the high velocity of the
pulse wave (Ims~! to 10ms~!). This high pulse velocity means there is only a very
short time (1 ms to 20 ms) between pulse arrival times at both locations, meaning a high
sampling rate is necessary. For example, a pulse wave travelling at 5ms~! takes 10 ms
to travel 50mm. A sample rate of 1kHz gives a PWV resolution of £0.5ms~! at this
50 mm spacing [Sorensen et al. 2008]. To mitigate the requirements of fast sampling,
the time difference between pulses can be calculated at longer distances along the
artery, such as the regional method of aorta-femoral waveforms. However, unless the
distance is accurately measured, or a dual lumen catheter with known length is used,

the estimated distance can be inaccurate [Laurent et al. 2006].

2.4.2 Non-invasive measurement of PWV

To facilitate primary measurement of PTT in a clinical setting, non-invasive devices
must be developed to measure PTT without the need for insertion of catheters. The
main non-invasive methods used include: magnetic resonance imaging (MRI) [Wentland

et al. 2014], ultrasound [Calabia et al. 2011, Sorensen et al. 2008, Williams et al.
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2007], tonometry [Butlin and Qasem 2016, Lowenthal et al. 2014, ORourke 2015] and
photoplethysmography [Campbell et al. 2020, Kazune et al. 2014, Yung-Kang Chen
et al. 2004].

The commercial PulsePen (DiaTechne, Milan, Italy) and SphygmoCorVx (CardieX,
Sydney, Australia) non-invasive PTT sensors use arterial tonometry combined with
the ECG R-wave to calculate PTT [Meigas et al. 2001, Salvi et al. 2008, Yung-Kang
Chen et al. 2004]. High fidelity tonometers are placed on the carotid and femoral
arteries, measuring the carotid-femoral propagation time using the intersecting tangent

algorithm to identify the foot of the waveform.

The Complior (Complior) system uses two mechanotransducers to obtain carotid and
femoral waveforms, comparing the point of maximum upstroke in each signal to get
PTT [Butlin and Qasem 2016]. These three commercial devices use the common foot-
foot method to calculate PTT, making assumptions at the distance the pulse wave

travelled.

Hsu et al developed a local PWYV sensor capable of being placed on either the ra-
dial or the carotid artery [Hsu and Young 2014]. Their approach used two packaged
silicone-coated microelectromechanical sensors (MEMS) pressure sensors. Results from

1 on the neck, inline with the expected

this sensor gave an average PWYV of 5.1ms™
carotid PWV in healthy patients [Jani et al. 2014]. Another study by [Fabian et al.
2019] compared the brachial occlusion-cuff technique to a SphygmoCorVX, obtaining

a correlation of r = 0.88 (p < 0.001).

Previous attempts at removing the need for one of the two catheters replaced the
pressure wave signal with the start of the Q wave of the ECG signals to indicate the start
of the pulse wave at the carotid artery. Work by Kamoi and Balmer investigated the
measurement of the arterial pulse wave velocity (PWV) with only one required catheter
[Kamoi et al. 2017]. While this method was not fully non-invasive, the work determined
the ECG does not provide reliable timing values for the start of the pulse because
the start of the R wave occurs before blood is ejected, causing varying timing delays

within and between subjects [Balmer et al. 2017, 2018b]. Thus, it was recommended
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to investigate PPG signals.

2.4.3 Pulse Wave Velocity Summary

The sensing methods, and their non-invasive alternatives for SpvOs and PWV moni-
toring have been presented in this cardiovascular section. This thesis will develop a
reflectance pulse oximeter capable of non-invasively measuring SpvOs, placed on the
external jugular vein (Chapters 4-6). A specially designed PPG sensor placed on the
carotid or radial artery also has the potential to non-invasively measure the PWV that
would otherwise be measured by a pressure catheter. The sensor concept is developed

in Chapter 7, with design refinement and validation in Chapter 9.

2.5 GLUCOSE MEASUREMENT

After oxygen, glucose is the primary source of energy in the body, and correct manage-
ment of its levels is crucial to living a healthy, long life. Normally the body regulates the
concentration of glucose using insulin. However, metabolic disease impacts the ability
to manage BGC. Thus, a means to monitor the BGC is critical to health management.
Current glucose sensors either invasively measure venous or arterial blood using finger
stick measurements, or the ISF in continuous glucose monitors (CGMs). This section
introduces the current methods of blood glucose concentration monitoring as well as

the use of NIR spectroscopy for non-invasive glucose measurement.

2.5.1 Glucose Sensor Evaluation

Various metrics have been introduced to evaluate the effectiveness of glucose sensors.
A common method of assessing results is the CEG. The CEG was first introduced
in the 1970s to compare the accuracy of personal glucose sensors in a clinical decision
making context compared to a reference value [Clarke 2005], with an updated error grid
presented in 2000 [Parkes et al. 2000]. The grid is separated into five risk levels: A,

B, C, D and E, shown in Figure 2.8. Each risk level indicates the effect of the sensors
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reading on the ability of the clinician to take clinical action. Values in zone A are
classed as having zero effect on clinical action, zone B has little to no effect on clinical
action, zone C alters clinical action likely effecting outcomes, zone D alters clinical
action with significant clinical risk and zone E measurements could have dangerous
consequences. Readings falling in zones C, D or E are defined as over reactions, such as
misidentifying hypoglycemia as hyperglycemia and giving insulin as treatment. Figure
2.8 shows the testing results of two glucose monitors, the Libre Freestyle Libre against

an earlier version of the Dexcom G4 [Boscari et al. 2018].
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Figure 2.8 Clarke Error Grid of the Freestyle Libre and Dexcom G4 during 14 days of measurement,
adapted from [Boscari et al. 2018].

An additional metric for assessing the performance of a glucose sensor is the MARD.
The MARD is calculated using matched glucose readings between a reference glucome-
ter, such as a blood gas analyser, and the sensor being tested [Heinemann et al. 2020].
Reported as a percentage difference between the two glucose measurements, the lower

the MARD value, the better the agreement between sensors.
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2.5.2 Finger stick glucometer

The ability to self monitor glucose levels using a finger stick glucometer has been one
of the most important advancements in management of diabetes [Kato et al. 2013,
Kaufman et al. 2001, Olansky and Kennedy 2010]. The finger stick glucometer uses a
lancet to prick the skin, drawing a drop of blood to the surface. A test strip is placed
on the drop of blood, drawing the blood up the strip using capillary action. The test
strips contain an enzyme, glucose oxidase, which reacts with the glucose present in the
drop of blood. This reaction generates a very small electrical current at the sensor

electrode proportional to the blood glucose concentration [Mamkin et al. 2008].

There are several downsides to this method of blood glucose measurement. The need
to draw blood causes apprehension for the pain of the lancet, inconvenient disruptions
to daily life, and unwanted attention from measuring in public, all of which reduce the
adherence to proper diabetes care [Diabetes Control and Complications Trial Research
Group 1994]. Thus, the average individual living with diabetes measures their blood
glucose levels less than twice daily, compared to the recommended seven times [He and

Zhu 2010].

2.6 CONTINUOUS GLUCOSE MONITORS

The next step in personal glucose monitoring was the introduction of continuous glucose
monitors (CGMs). CGMs were first introduced by DexCom and Medtronic in 2006
[Mamkin et al. 2008]. Real-time CGMs uses electrodes at the end of small filaments
(<13mm in length) placed in the subcutaneous layer of the skin, usually the upper
arm or stomach. The sensor’s electrode measures the glucose present in the interstitial
fluid through a glucose oxidase reaction, similar to a finger-stick measurement. These
sensors stay attached to the body between 3-10 days, and produce readings at about 5

minute intervals.

By continuously taking measurements, these sensors give much greater information

than finger stick measurements. Trends in glucose direction can be estimated, reducing
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the risk of hyper- and hypo-glycaemia. An additional benefit is the ability to monitor
while sleeping, detecting the onset of nocturnal hypoglycemia. Over 65% of children
living with diabetes experience asymptomatic hypoglycemia, regardless of the form of
insulin therapy, be it multiple daily injections (MDI), or insulin pump therapy [Boland
et al. 2001].

Modern CGMs have improved measurement errors over previous generations, and their
use in hospital ICUs has become more prevalent [Klonoff et al. 2017, McKinlay et al.

2017b, Nguyen et al. 2020, Umpierrez and Klonoff 2018].

Figure 2.9 shows two of the commonly used CGMs in New Zealand. These sensors have
a lifespan of almost 2 weeks, providing glucose readings without the need for calibration

finger stick testing, but suffering some significant drift [Zhou et al. 2018].

pexcomGé 4

(a) Dexcom G6 CGM [NZMS Diabetes 2021] (b) Abbott Freestyle Libre CGM [Mediray 2021]

Figure 2.9 The Dexcom G6 and Freestyle Libre. Two CGMs available for use in New Zealand.

2.6.1 Abbot Freestyle Libre

The Freestyle Libre, produced by Abbott is a CGM with features different to currently
available CGMs. The sensor is factory calibrated and claims to not need finger stick
calibration during the 14 days of wear. The sensor does not continuously talk to a
device. such as a smartphone. Instead, it provides glucose information with a scan.
This scan gives information on the previous 8 hours of glucose values, as well as the
current glucose trend. The Freestyle Libre shows 85.5% of readings falling in section
A of the Clarke error grid when placed on the arm. This value drops to 68% when the

sensor is placed on the stomach [Fokkert et al. 2017].
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Owing to its two week life-span, costs can be lowered compared to conventional 3-7 day
sensors. However, early sensor loss is common with %18 of sensors being lost before
the 14 day life-span expectation, resulting in a lower reduction of the high cost of CGM

systems [Marsters 2020].

The New Zealand government does not subsidise the Freestyle Libre sensor, so providers
are required to import from other countries. In New Zealand, the cost of a Freestyle
Libre reader is NZ $85 + GST and a single sensor also costs NZ $98 [Mediray 2021].
The reader has an indefinite life-span, so after initial setup cost, the Freestyle Libre

costs NZ $196 per month.

2.6.2 Dexcom

The Dexcom G6 is another CGM available in New Zealand that claims to not need
finger stick calibration and has an expected life-span of 10 days [Vettoretti et al. 2019].
The G6 takes a reading every 5 minutes, sending the result directly to your smartphone.
Features such as "Urgent low soon" and customisable alerts gives users the ability for
greater glucose control with improved long term outcomes compared to finger stick

glucose management [Roze et al. 2021].

The Dexcom G6 costs NZ $532 + GST per month for 3 sensors and one transmitter
[NZMS Diabetes 2021]. The transmitter has a three month lifespan, which was factored
into the costs. Both the Freestyle Libre and Dexcom G6 costs assume no early loss of
a sensor. If a sensor is lost early, for any reason or fault, a replacement must be used.
Thus, if a sensor is lost early in it’s life span, another NZ $126 Dexcom or NZ $98
Freestyle Libre sensor is required. With 1 in 5 sensors not lasting their full life-span,
the actual cost of CGM use in New Zealand is much higher than advertised [Marsters

2020].
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2.6.3 Limitations of CGMs

CGMs detect the glucose present in the interstitial fluid (IF') as opposed to capillary
blood glucose. Early CGMs had a lag time of 20 minutes between changes in blood
glucose and IF irrespective of rising or falling levels[Tamada et al. 1999]. This log is
the subject of debate and can var with activity, calibration, and other factors [Beck
et al. 2020, Heinemann 2018, Signal et al. 2012b, Thomas et al. 2016, Zaharieva et al.
2019]. Sensors have also required calibration using a finger stick glucometer to ensure

correct readings, although that is starting to change with the newer models of CGMs.

As the sensors are attached to the body using glue, adverse reactions have been reported
(11% of patients experienced discomfort [Chico et al. 2003]). The longer the sensor is
attached to the skin, the greater the discomfort and risk of skin irritation/pruritis.
Technologies for CGMs provide gains in diabetes management, but require patient
education for proper use and correct interpretation of the data to guide care and realise

benefit.

2.6.4 Non-invasive Glucose Measurements

Continuous non-invasive glucose sensing has been a topic of research for over 20 years
[Liu et al. 2005], but as of the beginning of 2021, there have been no commercialised
products providing a solution with glucose prediction errors between 1.5mmoll~! to
2mmol1~! [Lindner et al. 2021, Tang et al. 2020]. Products using NIR measurements
have reported good correlation with blood glucose, but too many of the estimations
were not clinically acceptable [Nybacka 2016, Smith 2017]. Figure 2.10 shows the

commonly investigated non-invasive glucose measuring techniques:

There have been many attempts at creating and commercialising a non-invasive glucose
sensor. Listed below are previous attempts at commercial products [Lin 2017, N. A. B.

Abd Salam et al. 2016, Slade et al. 2016, Vashist 2013].

Orsense: The OrSense NBN-200G device used an optical platform, combined
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Non-invasive techniques ‘

Transdermal

Reverse Ionophoresis ‘

Bio-Impedance ‘

—‘ Optical

— Near Infrared (NIR) Spectroscopy

— Mid Infrared (MIR) Spectroscopy

—{ Thermal Emission Spectroscopy ‘

—{ Photoacoustic Spectroscopy ‘

—{ Raman Spectroscopy ‘

Polarimetry

Figure 2.10 Non-invasive glucose measuring techniques

with a finger attached ring-shaped probe containing red and infrared emitters
and detectors. A pneumatic cuff occluded blood flow, generating a change in the
optical signal for glucose monitoring. A trial of 23 patients was conducted with
CEG A and B zones containing 95% of the readings and a MARD of 17.2% [Amir
et al. 2007]. However, even with CE-approval, no commercial device has been

released.

GlucoTrack This sensor combines ultrasonic, electromagnetic and thermal meth-
ods to determine glucose levels. Placed on the earlobe, the sensor measures glu-
cose related shifts in ion concentration. A clinical trial on 17 patients returned
98% of readings in CEG zones A and B, with 54% in zone A and a MARD of
22.8% [Horman et al. 2016]. The device is CE mark approved and has been

released in several countries.

GlucoWatch This device was the first commercial device to be registered (CE
approved in 1999) as a non-invasive glucose monitor and is the only 'non-invasive’
device to be approved by the FDA (2001). However, the device was based on
extraction of interstitial fluid through the skin, which was considered minimally

invasive [Tierney et al. 2000]. However, the device was withdrawn from the
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market due to skin irritation and poor accuracy during exercise, sweating or

rapid temperature changes.

Gluco Wise The Gluco Wise sensor extracts glucose levels using low-power radio
waves. A section of the body such as the area between the thumb and index finger
or the earlobe is used. Pre-orders were expected in late 2018, but no commercial

device has been released to date, 3 years later.

2.6.5 NIR Spectroscopy

Conventional NIR spectroscopy for identification of glucose has generally consisted of
two wavelength regions in the range 500 nm to 2000 nm. These regions are 1400 nm to
2000 nm (first overtone) and 750 nm to 1400 nm (second overtone) [Yadav et al. 2015].
A major difficulty with in-vivo blood glucose measurement is the small concentration of
glucose compared to water, haemoglobin, proteins and lipids [Tang et al. 2016]. Glucose

accounts for less than 0.1% of absorption in the NIR spectrum [Jeon et al. 2006]

Optical path-length through tissue also reduces with increasing wavelength, reducing
to under 1mm at wavelengths >1000nm, so a small emitter to detector distance is
required [Yamakoshi et al. 2017]. At this small path-length, the light predominantly
travels through the epidermis, dermis and subcutaneous tissue. The epidermis and
subcutaneous tissue contain little blood flow, so the dermis is the source of the pho-
toplethysmograph (PPG) signal. Light with a wavelength of 1600 nm only penetrates
0.54 mm into the skin and has a path-length of 1.5mm [Maruo et al. 2003]. Dermis
thickness in the finger ranges from 2.5 mm in men and 2.1 mm in females [Oltulu et al.
2018]. The thickness of the tissue must be correct for a quality signal. In particular,
the tissue must be thick enough to contain sufficient concentrations of analyte within
the optical path, while not being too thick so too much light is scattered and the signal
is lost [Chowdhury et al. 2013].

Transmission mode sensing works well for wavelengths below 1000 nm, but the optical

path is too long for higher NIR wavelengths [Yamakoshi et al. 2017]. Jeon et al in-
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vestigated the results from transmission and reflectance sensing, concluding that trans-
mission gives a higher signal [Jeon et al. 2006]. However, their transmission samples
were recommended to be smaller than 2 mm, which is not feasible to recreate in-vivo.
Thus, the sensor developed is used in reflectance mode to account for the reduced path

lengths at higher wavelengths (>1000nm).

2.6.5.1 Wavelength choice

Many sensors have been developed to use a variety of sensing wavelengths, providing
a near continuous spectrographic absorption spectra of glucose. Yamakoshi et al de-
veloped a sensor ranging from 900 nm to 1700 nm in increments of 100 nm [Yamakoshi
and Yamakoshi 2006]. However, due to the bulk required to generate a wide range of
wavelengths, specific wavelengths have been chosen to generate discrete spectrometry
[Kasahara et al. 2018]. Figure 2.11 shows the absorption spectrum of glucose compared
to other components in blood that have similar absorption spectra (water, haemoglobin,
protein, lipids). The chosen wavelengths must be producible by a 1206 footprint, or

smaller, LED to ensure small sensing distance.
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Figure 2.11 Absorption spectrum of the major light absorbers in blood in the NIR range. Adapted
from [Amerov et al. 2004, Yadav et al. 2014].
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In the first overtone (1400-2000 nm) glucose has the strongest light absorption. How-
ever, in this band, water is the dominant absorber due to the O-H bonds. At 1450 nm,
water is the most dominant absorber [Abd Rahim et al. 2016, Guo et al. 2015]. At
1550 nm and 1650 nm, absorption rises with glucose due to the C-H stretch vibrations
[Gayathri et al. 2017, Kohl et al. 1995, Uwadaira et al. 2016, Yoon et al. 1998]. Using a
sensing wavelength at 1450 nm provides a reference measurement to water. Comparing
the reading at 1450 nm to readings at 1550 nm and 1650 nm demonstrates a change in

glucose absorption proportional to the water level, enabling discrimination.

While the absorption spectrum for glucose in the second overtone is much smaller, the
absorption of water is not present [Kraitl et al. 2005]. In this region haemoglobin is
the dominant absorber, so changes in blood oxygen will skew the results [Bashkatov
et al. 2005]. Glucose has an absorption peak at 950 nm, which is a common wavelength
used in pulse oximetry [Haxha and Jhoja 2016]. To measure oxygen saturation, a
wavelength LED of 660 nm is also used. The isosbestic point of haemoglobin and de-
oxyhaemoglobin is at 808 nm [Kraitl et al. 2005]. Using an LED of 850 nm provides a
reference for the haemoglobin measurement with regards to the glucose absorption peak
at 940 nm [Guo et al. 2015]. Devices using the second overtone have been investigated,

but none have yielded conclusive results at this time [Uwadaira et al. 2010].

2.6.6 Comparison of NIR glucose sensors in literature

There have been many attempts at using NIR spectroscopy to non-invasively detect
glucose in the blood. One of those studies by Yamakoshi and Yamakoshi introduced
the term "pulse glucometry" [Yamakoshi and Yamakoshi 2006]. This term means the
pulsatile nature of arterial blood waveforms are analysed for blood glucose. Similar to
pulse oximetry, pulse glucometry works to isolate the pulsatile nature of blood from
absorption of surrounding tissue [Yamakoshi et al. 2009]. Partial least squares (PLS)
is then used to calibrate a model of glucose absorption. The most recent work in this
field introduced side-scattered finger photoplethysmography to ensure measurement of

a pulse in the 1160 nm to 1750 nm wavelength region [Yamakoshi et al. 2017].
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Artificial neural networks (ANN) have also been used to estimate non-invasive blood
glucose [Guo et al. 2015, Han et al. 2021]. Ramasahayam et al also developed a PPG
blood glucose sensor using an ANN to analyse adaptively filtered PPG combined with
ECG [Ramasahayam et al. 2017]. The ANN was trained on 100 subjects with 95% of
results in region A of the Clarke error grid. Marou et al developed a method of glucose
prediction without requiring multivariate analysis using an imaginary spectra to adjust
for scattering changes in the skin [Maruo and Yamada 2015]. This study found that
the main difficulty in predicting blood glucose concentration is the change in baseline

absorption parameters of skin tissue.

2.7 GLUCOSE SUMMARY

The current methods used to monitor BGC are all invasive. Invasive measurement
increases pain, risk of infection, and reduces compliance to making measurements. As
a result, there has been much research into using NIR spectroscopy to detect glucose
concentrations in the blood. However, as of 2021, none are widely available commer-
cially. Non-invasive glucose sensors have shown promise in-vitro. However, few have

been able to transition to in-vivo.

This thesis will further investigate using NIR spectroscopy using LEDs rather than
photodiodes to detect light, acting as discrete wavelength spectrometers. The sensor
will first be validated in-vitro in porcine blood in Chapter 10, then in adult and neonatal

trials in Chapter 12.

2.8 SUMMARY

This chapter covered the background and theory of pulse oximetry, venous oxygen sat-
uration, pulse wave velocity, and blood glucose monitoring, as well as the limitations of
each. Methods of measuring venous oxygen saturation was discussed. Gaps in research
were identified, with the ability to non-invasively measure venous oxygen saturation

not yet viable. Various pulse wave velocity sensors have been developed, but none
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measure locally to a single artery. Non-invasive NIR glucose sensors have been a field
of research for over 20 years, but none have been accurate, or reliable enough to replace

the invasive devices.

This thesis will further investigate SjvOo measurement through recording natural pulsa-
tions in the external jugular vein on the neck. Pulse wave velocity will be investigated,
measuring local to the carotid and radial artery. Finally, a non-invasive NIR glucose

spectrometer will be developed using pulse oximetry principles.

Overall, each example represents a significant change in the state of the art for light-

based biomedical sensing, and each has potential significant associated clinical impact.



Chapter 3

USING WAVELENGTH-SPECIFIC LEDS AS LIGHT
DETECTORS

3.1 INTRODUCTION

Conventional pulse oximeters consist of an LED emitting light through the skin and a
photodiode to detect the resulting photoplethysmograph (PPG) waveform. The PPG
waveforms are generated by the pulsatile nature of blood in the arteries and capillaries
[Allen 2007, Daly and Leahy 2013]. When a pulse of blood moves past the sensor, the
additional volume of blood absorbs more light. This variation in the light absorbed
allows the estimation of the blood oxygen saturation. The absorption ratio of red to

infrared light absorbed by oxyhaemoglobin and deoxyhaemoglobin.

Photodiodes are designed to be sensitive to varying light intensities, producing a pho-
tocurrent proportional to the incident light intensity [De Santis et al. 2006]. These
photodiodes are typically PIN type [Rhee et al. 2001]. In addition to the photodi-
ode, operational amplifiers and mid to high resolution analogue to digital converters
(ADCs) are required. The requirement for additional components not only increases
circuit complexity, but also power consumption, both important factors in creating
miniature, battery powered sensors [Stojanovic and Karadaglic 2007a]. Photodiodes
are also not ideal for specific wavelength sensing for applications such as pulse oximetry,

due to their wide spectrum detection range in the ultraviolet to near infrared (NIR).

While LEDs are generally used to emit light, they can also be used to detect light

[Miyazaki et al. 1998]. Photodiodes are much more sensitive than LEDs to varying
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light intensities when measuring the generated photocurrent. However, despite this
relatively low sensitivity of LEDs to incident light, this phenomenon can be exploited
to produce similar results to photodiodes using the decay waveform of a reverse biased

LED [Mims 1992).

An additional benefit of using LEDs to detect light is their narrow spectral absorption
band [Kowalczyk and Siuzdak 2017]. This narrow band operates as a wavelength
specific bandpass filter. The voltage decay, V' (t), of the reverse biased LED is a function

of time (t)), diode junction capacitance, and the shunt resistance:

V(t) = Voe 7FC — 1,(¢) (3.1)

Where,

Vo: Reverse bias voltage at t =0

t: time

R: Shunt resistance of the LED

C: Junction capacitance of the LED

I,,(¢): Photocurrent as a function of incident light (¢)

Figure 3.1 shows the equivalent circuit for an LED reverse biased by a microcontroller
pin to V... The cathode of the LED is connected to the microcontroller pin and the
anode is typically connected to ground. The photocurrent, I,,, typically in the region
of 0.5nA, flows to ground [Miyazaki et al. 1998].

Figure 3.2 shows the emission and corresponding absorption spectrum from an example
660 nm LED [De Santis et al. 2006]. The peak absorption spectrum is shifted to a lower
wavelength than the emission spectrum. If another LED of the same wavelength is used

as an emitter, the detecting LED would detect light only in the spectrum overlap.
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Figure 3.1 Equivalent circuit for a reverse biased LED. Typically a microcontroller pin drives the
cathode to V.., and the anode is connected to GND.
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Figure 3.2 Emission spectrum and absorption spectrum of a reverse biased 660 nm LED [De Santis
et al. 2006]

The use of an LED to detect light for various applications has been investigated, in-
cluding: colour based pH measurements, monitoring UV emissions from the sun, liquid
chromatography, half-duplex bidirectional communications and photoplethysmography.
[Otoole et al. 2005, OToole and Diamond 2008, Schmid et al. 2013, Shin and Eom
2013, Shin et al. 2016, Stojanovic and Karadaglic 2007b]. Further development by
Stojanovic and Karadaglic developed a digital pulse oximeter removing the need for a
photodiode, operational amplifiers and ADCs [Stojanovic and Karadaglic 2007a]. This
sensor used LEDs to produce and detect the wavelengths of light required for pulse
oximetry. Rather than measure the current produced by the LED, a clock timer is
used to time the drop in voltage across a reverse biased LED transitioning between

logic high and low.
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Timing the voltage decay across the LED integrates the current produced by the LED
over the time of the decay [Lau et al. 2006], removing the need for accurate current
amplifiers. The detecting LED has the anode connected to ground and the cathode
connected to a tristate buffered I/O pin on a microcontroller. Using a tristate buffered
I/0 pin allows the pin to change state from driving the cathode high to detecting the

voltage across it in the high impedance state.

These described applications use dedicated LEDs for emitting, and additional LEDs for
detection. While it is possible to connect both the anode and cathode of the LED to pins
of the microcontroller to enable both emitting and sensing from the same LED, variable
current driven LEDs are only possible with a dedicated LED driver. Figure 3.3 shows
the voltage decay waveforms of a 660 nm LED from 3.3V through logic low (dashed
line at 1.6 V). Under zero incident light, the decay waveform is solely represented by
the RC time constant of the diode junction. When the radiant intensity of the emitting

LED increases, the sensing LED photocurrent reduces the final resting voltage.
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Figure 3.3 Discharge curve for a 660nm LED decaying from 3.3V under the influence of another
660 nm LED emitting at varying radiant light intensities.

This thesis presents work on using LEDs as non-invasive light emitters and detectors

with the purpose of making an array of detectors to provide improved cardiovascular
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and glucose sensing, compared to conventional, often invasive, sensing methods. Using
multiple specific wavelengths of light allows the sensor to extract more information
out of the PPG signal, such as the other states of haemoglobin (carboxyhaemoglobin,

methaemoglobin), or other analytes in blood, including glucose.

3.2 LED SENSING METHODS

There are two methods of capturing the voltage decay of the reverse biased LED wave-
form. The simplest method involves using a microcontroller to time the voltage decay
between digital logic HIGH and LOW. The second method involves measuring the volt-

age decay waveform with an ADC, and using a model to calculate the photocurrent.

3.2.1 Digital Timing Method

The timing method is a purely digital method of measurement, based on timing the
decay of a reverse-biased LED. This method is digital as no analogue front end is used,
only a microcontroller GPIO pin and and an LED are required to detect light. The
time taken for the LED voltage to transition from digital logic HIGH to logic LOW
is linearly proportional to the incident light intensity and can be measured with the

microcontroller’s inbuilt clock timer.

The digital sensing method involves multiple steps to complete. Rather than taking an
individual analogue voltage reading at the sample frequency like traditional photodi-
odes, measuring the light intensity with the LED-LED sensor requires monitoring the
input state of a microcontroller’s GPIO pin. The steps required with an LED set up

as shown in Figure 3.1 are:

1. Reverse bias the LED to V¢ (3.3V or 5V depending on microcontroller architec-

ture) by driving the GPIO pin of a microcontroller to output HIGH.

2. Wait 50-100 ps for the voltage across the LED to reach V..
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3. Switch the GPIO pin state from output HIGH to high impedance INPUT and

start a microcontroller clock timer.

4. Stop timer when the voltage decay across the GPIO pin crosses the threshold for
logic LOW (usually 1.6 V).

5. Repeat measurement by setting GPIO pin back to output HIGH.

Accurate timing of the voltage decay allows the relative light intensity to be found.
The more accurate the timer, the higher the resolution of measurement. The micro-
processor used by Stojanovic and Karadaglic ran at clock frequencies of 8 MHz and
16 MHz, giving time resolutions of 0.125 ps and 0.0625 ps respectively [Stojanovic and
Karadaglic 2007b]. A further paper by Stojanovic and Karadaglic used an FPGA rather
than a micro-processor in order to run each LED in parallel with a clock rate of 48 MHz
[Stojanovic and Karadaglic 2013]. The microcontroller clock rates used in this thesis

range from 8 MHz to 600 MHz.

A downside of this sensing method is the need to wait for the LED voltage to decay
past the threshold for logic low. This means that to detect low light levels, the mi-
crocontroller must wait in the range of milliseconds for the decay. Thus, maintaining
a constant sample rate means the microcontroller must always wait that long during
each sample, even if the voltage had already decayed past logic LOW. This problem is
further compounded when sensing with multiple LEDs sequentially, as the next sensing

LED must first wait for the other to finish before starting the sensing cycle.

3.2.2 ADC method

The alternative method of light detection presented in this thesis is the use of an ADC
to measure the voltage decay waveform directly. By measuring the LED voltage decay
with the ADC at multiple points in time, the microcontroller can then predict the
incident light intensity. The model developed in Chapter 11 presents the ADC method

as a way to measure the LED decay voltage over a short time, such as 500 s, and
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predict the remaining decay waveform. By measuring the voltage for a short time,
then projecting the remaining decay, the sensor can increase the sample rate of the

sensor, compared to the timing method.

The in-built microcontroller ADC of the Teensy 4.0 used in Chapter 10, has a 12-bit
resolution. An external ADC may also be used to track the microcontroller pin voltage,

allowing the use of higher resolutions, such as the 24-bit ADC used in Chapter 12.

A downside of this method is the increased complexity in circuitry. While the inbuilt
Teensy 4.0 ADC can work for high light levels, an external ADC with higher resolution

is required for low light detection.

3.2.3 Sequential LED sampling algorithm

To improve the sample rate and accuracy of the digital sensing method, an algorithm
has been developed to adapt the LED sensing order. The sensors developed in this
thesis use different wavelength LEDs, each needing to be sampled sequentially to avoid
the sensing LED detecting light at the wrong wavelength. Every wavelength of LED
has a unique voltage decay waveform, taking from 100 ps to 10 ms to decay, meaning
that a one size fits all approach to voltage decay timing does not work. For example,
to sample six LEDs sequentially at 200 Hz, the sum of the LED discharge times must
be <5ms, which could be done by allocating the 833 jis equally to each sensing LED.
However, as some LEDs take <500 s to decay, the remaining 300 ps allocated to each

would be wasted.

Thus, an adaptive sensing order has been created to minimise wasted sensing time. At
the start of a sensing cycle, each LED is given an initial reading timeout of 833 s,
with the assumption that all LEDs require the same amount of time to decay. The
order that each wavelength LED is sensed is set by the previous decay times, where the
LED voltage decay times are ranked from fastest to slowest, setting the new read order.
After the first LED decay is has finished reading (crossing 1.6 V, or timeout reached),

the decay time is subtracted from the total sensing time of 5ms. This remaining time
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is then divided by the number of LEDs left to read, and is evenly allocated to each.

While the emitting LEDs could be driven at maximum brightness to ensure the fastest
possible LED voltage decay time, the ADC sample time is limited. For example the
external ADC used in Chapter 12 has a sample rate of 33kHz, meaning that the
algorithm must compromise between sampling speed and the required number of ADC
measurements to reliably fit the decay model. Having a goal LED decay time of 400 ps
provides a compromise between sampling speed and sufficient samples (13 samples). A
PI controller was created to adjust the output LED light intensity, keeping the sensing
LED discharge time at 400 us. LEDs often don’t reach this goal discharge time when
next to tissue, as a result, the controller sets these emitting LEDs to the maximum

light intensity possible.

By reading the fastest LEDs first, the remaining time can be reallocated to the slower
LEDs. For example, if the first three of the six LEDs take a combined 1.2ms (400 ps
each), the remaining three LEDs that have longer inherent decay times are each allo-
cated 1.26 ms timeouts. Should any of these LEDs take less time than 1.26 ms to decay,
the timeout value for the remaining LEDs is adjusted accordingly. Using an adaptive
LED sensing order, and a goal LED discharge time of 400 ns, all six wavelength LEDs
are able to be sequentially read within the allowed 5 ms window, while giving the LEDs

the longest time that they require to capture the LED voltage decay.

3.3 LED EMISSION INTENSITY AND SAFETY

The LEDs used in this thesis range in emission wavelength from 660 nm to 1650 nm,
spanning the visible (red) to near infrared spectrum (NIR). Potential causes of injury
from the LEDs include emitted light and heat. As the human eye does not see infrared
light, precautions must be taken to avoid eye damage from the LEDs [ICNIRP 2013].
However, NIR light is non-ionising, unlike UV light, so the exposure risk is reduced

[Ham et al. 1976].

Lau et al investigated the safety of high-intensity LEDs in biomedical applications, such
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as pulse oximetry [Lau 2013]. Their research showed that although LEDs are currently
classed as safe [ICNIRP 2020], advances in LED optical power and brightness makes
this assumption invalid, as LEDs are now sold exceeding the power levels to qualify
for exemption from IEC 62471 rating. The standard TEC 62471 gives guidance for
evaluating the photobiological safety of lamps and lamp systems at a standardised
distance of 200 mm between emitter and observer. Lau et al noted that this distance
is not valid for use in pulse oximeters, as the LEDs are placed in contact with the
skin. They instead applied the IEC 60285-1, the standard for safety of laser products
as it addresses close in irradiation [Schulmeister 2013]. The IEC 62471 hazard limit for

irradiance is 100 W m~—2.

The brightest LED used in this thesis is the 660 nm LED with a radiant flux of 8.3 mW,

corresponding to an irradiance of 0.2 W m™2.

This brightness reaches the eye hazard
threshold at a distance of 10mm. The IEC 80825-1 safe skin contact is 6 kW m™2.
Using the lens diameter of 1.6 mm for the XZM2MRTNI55W-8 LED [SunLED 2017],
the maximum contact irradiance is 3.2kW m™2, sitting within the safe limits. Thus,

the LEDs used in this thesis are safe for skin contact, but should not be viewed at a

distance closer than 10 mm.

3.3.1 Skin detection

To further reduce the risk of eye injury, every sensor designed in this thesis for clinical
trial use used a skin detection feature. An infrared LED pulses 10 times per second
with low intensity light, searching for skin contact. Once contact is sensed, the sensor

would begin sensing with all LEDs.

The infrared LED, typically 940 nm, or 1450 nm, measures at two different light inten-
sities, ambient, and with the emitter running at 50% light intensity. To further reduce
the amount of light emitted, the sensor checks for skin contact 10 times a second,

emitting for 10 ms each time, resulting in the LED emitting at a duty cycle of 10%.

Under ambient light conditions, a decrease in LED voltage decay time indicates the
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room is either dark, or the sensor is covered. Using the emitting LED clarifies whether
the sensor is covered, as the LED voltage decay under emitted light increases when
the ambient decay time decreases, the sensor knows that it is covered. Whereas, if the
decay time with the emitting LED on does not change, then the sensor knows it is just
a change in ambient lighting. Thus, the difference between the ambient voltage decay

time and the decay time with the emitter on indicates sensor coverage.

Further use of skin absorption characteristics are utilised. When covered by an object
such as cloth, or metal, the LED voltage decay time decreases linearly with distance,
reaching the fastest decay time when in contact with the LED. However, due to the
absorption of light by tissue, when the LED is in contact with tissue, the LED voltage
decay time increases. By tracking the voltage decay time, the sensor is able to discern

tissue contact from other objects.

The skin detection feature also proves useful when recording data. The sensor does not
start recording until it detects skin, so the recording may be started with the sensor
away from the measurement site, and moved to the site to begin recording. Recording

may also be paused by lifting the sensor off the tissue.

3.3.2 Temperature effect on LED emissions

LED temperature can affect the emitted light intensity [Baumgartner et al. 2018]. A
rise in temperature linearly increases the emitted light intensity [Reynolds et al. 1991].
While this rise would be a problem with a traditional LED-photodiode sensor, an LED-
LED sensor is minimally affected. Stojanovic et el found an increase of only 0.4% per
°C with LED-LED sensors [Stojanovic and Karadaglic 2007a]. As the sensor increases
in temperature, the LED emits at a higher light intensity. However, the increase in
temperature also decreases the light absorption from the detecting LED. The increased
intensity, but decreased absorption counteract each other resulting in minimal change

due to temperature.

In addition to emitted light, heat is also a potential source of safety concern. Bozurt
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et al investigated the safety of common LEDs used in pulse oximetry, finding that
the approximate (10 °C) temperature increase at the contact point with human skin is
due to the semiconductor junction of the LED (9°C), rather than the radiated heat
from the LED (1°C) [Bozkurt and Onaral 2004]. The temperature threshold for pulse

oximeter burn injury at 8 hours of use is 43 °C [Greenhalgh et al. 2004].

3.4 SENSORS DESCRIBED IN THIS THESIS

This section describes the different versions and applications of the LED sensing array,
developed in this thesis. The sensors were designed to be modular and have the capa-
bility to measure different parameters as seen in the SpjvOg sensor (Figure 3.4). While
using LEDs to detect light is consistent between sensors, the choice of wavelengths
and arrangement of emitting and detecting LEDs vary between applications. Further
details of the hardware for each application are contained in the Hardware chapters

(Chapter 4 for SpjvOs, Chapter 7 for PWV and Chapter 10 for the glucose sensor).

Initial testing of algorithms for pulse oximetry in this thesis used a traditional pulse
oximeter probe containing a photodiode. The data generated from the photodiode
sensor is analysed in Chapters 5. All other chapters use the digital sensing method for

generating PPG waveforms.

3.4.1 Jugular venous oxygen sensor

The measurement of SpjvOs requires two different wavelength LEDs (660 nm and
940nm). These two wavelengths are commonly used in pulse oximeters to calculate
SpOs. Placement along the EJV requires a reflectance pulse oximeter that can be held
with light pressure against the skin to not occlude the EJV. Figure 3.4 shows the sensor

used to measure SpjvOs.

While the sensor contains multiple different wavelength LEDs, only the 660 nm and
940 nm LEDs are used to estimate SpjvOs, streaming at 200 Hz. The remaining LEDs

on the board allow additional use for analysing blood glucose concentrations. The
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1450nm

Figure 3.4 Sensor used to estimate SjvOs in the external jugular vein. A 660 nm and 940 nm LED
are used for calculating oxygen saturation. The remaining LEDs on the board allow additional use for
analysing blood glucose. The central row of LEDs are used to detect the light emitted by the two outer
rows of LEDs.

hardware description for this board is further developed in Chapter 4 and validation

of the sensor is described in Chapter 6.

3.4.2 Pulse Wave Velocity sensors

The initial design of the PWYV sensor included a matrix of LEDs to ensure measurement
of the carotid arterial pulse in the neck. Figure 3.5 shows the layout of the PWV
sensor. There are three rows spread apart to measure the carotid pulse at three different
positions along the artery. Each row included 20 LEDs of two wavelengths (10 at 660 nm
and 10 at 940 nm) capable of both emitting and detecting light. To save footprint space,
a single LED package contained both wavelengths for sensing. Each LED package
along the array was separated by 5mm. This spacing ensured that the arterial pulse

was contained within the total area of 45 mm by 50 mm.

While measuring both wavelengths provides the ability to measure oxygen saturation,
only the 660 nm wavelength LED was used to measure the pulse wave velocity, sampling
at 570 Hz. This sample rate was the fastest possible while sequentially sampling each
LED. The use of this sensor is described in Chapter 7. By using an array of LED

sensors, the sensor can be placed approximately in the correct place along the neck and
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20 mm

Figure 3.5 Sensor used to measure pulse wave velocity in the carotid artery. The sensor consists of
three lateral rows of 10 660 nm and 940 nm LEDs to ensure that the carotid pulse is located within the
sensor area (45x50mm). Two emitting LEDs in each row are illuminated.

the best signals from each array are used for further analysis.

A subsequent PWV was developed to address the issues identified in the matrix PWV
sensor. The new sensor is an adaption of the hardware in the SpjvOs sensor, with
three sets of emitting and detecting LEDs spaced by 20mm, as shown in Figure 3.6.
As PWV only requires a single wavelength to measure the pulse, the 660 nm wavelength
LED was used. The sample rate of the sensor was 3 kHz. Validation of this sensor for

measuring PWYV is described in Chapter 9.

20 mm

20 mm

Emitter Detector

Figure 3.6 Sensor used to measure pulse wave velocity in the carotid artery and radial artery. Emit-
ting and detecting pairs of 660 nm and 940 nm LEDs are spaced by 5mm, with 20 mm between each
sensing LEDs.
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3.4.3 Glucose sensors

The first glucose sensor developed is described in Chapter 10. This sensor contains
6 different wavelength LEDs (660 nm, 850 nm, 940 nm, 1450 nm,1550 nm, 1650 nm) to
identify the spectral fingerprint of glucose in blood. The board contains an emitting and
detecting LED for each wavelength arranged in a circle with 10 mm spacing. Figure
3.7 shows the layout of the glucose sensor. This sensor was developed to measure

non-pulsatile blood glucose in-vitro using the LED decay digital timing method.

10 mm spacing

850 nm detector

1650 nm emitter
1550 nm emitter
1450 nm emitter

850 nm emitter
1650 nm detector gg0 940 nm emitters

Figure 3.7 Sensor used to track changes in blood glucose concentration in-vitro in porcine blood.
Emitting and detecting pairs are separated by 10 mm in a rosette shape, with the emitting and detecting
LEDs located across from each other. The corresponding detecting LEDs for 850 nm and 1650 nm is
shown.

In-vivo testing of blood glucose on adults and neonates required a different arrangement
of the 6 wavelength LEDs, as well as a new sensing method using an external ADC to
monitor the voltage across the sensing LEDs. The emitting and detecting LEDs are
arranged in a matrix described in Figure 3.8. One requirement of the sensor was to
be used on neonates in the neonatal intensive care unit (NICU), so the sensing end of
the LEDs had additional design requirements, as described in Chapter 12. This sensor

uses the ADC voltage decay method of measuring light intensity.

3.5 SUMMARY

This chapter outlined the digital sensing method using LEDs to detect light. Under

reverse bias conditions, LEDs can have greater sensitivity than photodiodes, while
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Emitters
Detectors

Emitters

Figure 3.8 Sensor designed for use in the neonatal ICU. Each of the 6 wavelength LEDs are separated
by 2.5 mm, with 4 mm between emitting and detecting rows. The LED wavelength order from left to
right is 660 nm, 850 nm,940 nm, 1450 nm,1550 nm, 1650 nm.

also providing the benefit of not requiring additional analogue circuitry to detect light.
Only an LED and a microcontroller GPIO pin is required to detect the arterial pulsatile
waveform for pulse oximetery. This simplicity in circuit design allows greater design
flexibility from using an array of LEDs of the same wavelength to determine pulse
wave velocity, to using multiple different wavelength LEDs for NIR spectroscopy of
components in blood, such as glucose. A brief outline of each sensor developed in this

thesis was also presented to provide a reference for further reading of the thesis.
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Chapter 4

REFLECTANCE PULSE OXIMETER HARDWARE
DESIGN

Measuring the venous pulse in the external jugular vein requires a custom reflectance
pulse oximeter. This chapter details the design of a reflectance pulse oximeter using
LED-LED light detection. The sensor is also designed to use other wavelength LEDs
in addition to the conventional 660 nm and 940 nm used in pulse oximeters. A right
leg driver circuit is also implemented to reduce the effect of mains power noise on the

signal.

4.1 INTRODUCTION

Most commercial pulse oximeters are not open source hardware and can be costly
to purchase. Further, many manufacturers do not divulge their sensing method and
signal processing, so clinicians must trust the results they are given. This lack of access
means a person cannot record their own raw data from these sensors to process it
independently. The key to unlocking the potential of the pulse oximeter is unrestricted

access to the raw signal, as well as standardised methods [Shelley 2007].

This chapter presents the development of a sensor using discrete wavelength LEDs as
light emitters and detectors in a multi-wavelength array to provide greater information
than a conventional pulse oximeter. A right leg driver circuit is included to reduce the
effect of capacitively coupled mains noise on the signal. Using multiple wavelengths of

light allows the sensor to extract more information from the PPG signal, such as the
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other states of haemoglobin (carboxyhaemoglobin, methaemoglobin), or other analytes

in blood.

While traditional, analogue pulse oximeters require analogue circuits to amplify pho-
todiode signals, the digital pulse oximeter only requires a microcontroller and LEDs.
This change reduces the overall complexity and cost of the sensor in both money and
power consumption. Almost any microcontroller can be used for this project. However

a microcontroller with a higher clock rate will give more accurate readings.

Typically, a pulse oximeter is placed on the peripheral tissue, commonly a finger or ear,
using transmission mode where the emitter and detector are either side of the tissue.
Reflectance mode sensing has the emitter and detector adjacent to each other on the
same side of the tissue, allowing measurement on additional sites to transmission mode
sensing. The sensor developed in this work is a reflectance pulse oximeter designed to
measure the pulse on the finger, neck, radial artery, or other peripheral surface with
pulsatile blood flow. Measuring the pulse at central places on the body such as the
neck also helps reduce the main detrimental effects on pulse signal such as low external
temperature [Khan et al. 2015a, Reynolds et al. 1991] and motion artefacts [Ralston
et al. 1991].

The goal of this chapter is to develop a simple, low cost pulse oximeter, which can change
detection wavelengths by changing LEDs. Hospital grade pulse oximeters cost upwards
of USD $500-$1000, and while low cost pulse oximeters are more readily becoming
available, their accuracy, filtering, and reliability are not up to research standards
[Lipnick et al. 2016]. None of these options provide easy, inter-operable access to the
raw data. These issues are important for COVID-19 home monitoring, where incorrect

oxygen saturations have negative health outcomes [Greenhalgh et al. 2021].

4.2 METHODS

The design presented allows full access to raw PPG data, is low cost with a BOM

<$250, and open source. Depending on the required level of accuracy, the cost can
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be <$50 to build. The faster the clock on a microcontroller, the more accurate the
sensor, but also the more expensive. Using an Arduino Pro Micro running at 16 MHz
is recommended for low cost design, and a Teensy 4.0 at 600 MHz is recommended for
$20 USD if higher accuracy is preferred. For LEDs, the desired wavelength is the main
driver in cost. Visible light and low NIR LEDs used for pule oximetry cost <$1 USD,

increasing to $20 USD for the LEDs >1000nm used for spectroscopy.

The total cost of the system is less than $218 USD for components, 3D printing and
boards from PCBWay (China). If the end user uses different LEDs, the cost for the

whole system can be reduced to below $37 USD.

4.2.1 RLD driver design

As the LED’s are placed against the skin, common mode noise is capacitively coupled
to the subject from mains power supply can be coupled to the sensor. While digital
filters can remove this 50-60 Hz noise at high sample rates, this sensor may be required
to measure at 50 Hz or near mains frequency. This lower sample rate removes the

ability to digitally filter this noise.

Conventionally, a right leg driver (RLD) is used in ECG and EMG systems to reduce
noise generated by common-mode interference [Fortune et al. 2017]. To the best of the

author’s knowledge, there are no pulse oximeters incorporating a RLD in their sensor.

This noise is predominantly 50-60 Hz noise coupled from electrical mains. The RLD
reduces this noise by measuring the common mode voltage [Winter and Webster 1983],
then driving the inverted signal back into the body. As this pA current is 180° out of

phase to the original noise signal, the waves destructively interfere.

Electrodes used in a RLD circuit are typically single-use, adhesive silver-silver chloride
electrodes. However, as the adhesive surface requires a large area with a minimum
spacing of 20 mm, it is not feasible to use these electrodes on this sensor as the total
area of the LED matrix is 20x20mm. To solve both the size and re-usability issues,

1mm diameter 99.99% pure silver wire is used as the electrodes. Three electrodes are



68 CHAPTER 4 REFLECTANCE PULSE OXIMETER HARDWARE DESIGN

threaded through the sensor housing to ensure skin contact. Two electrodes, E1 and
E2, are used to measure the common mode noise, and the third electrode as the RLD.

The electrodes are 20 mm in length with a spacing of 5 mm.

This board uses a wide range of LED wavelengths to act as a discrete spectrometer.
Shin et al showed this sensing method is best used at wavelengths greater than 440 nm
[Shin and Eom 2013]. Depending on the analyte to be detected, LEDs with different
specific wavelengths can be chosen. For example, 660 nm and 940 nm are commonly

used in pulse oximetry.

4.3 HARDWARE

The hardware consists of two boards: 1) the LED driver board; and 2) the LED sensor
board. The LED driver board houses the Teensy 4.0, RLD and LED driver. A 24 pin
FPC cable is used to connect between boards. The LED sensor board contains only
the LEDs and the temperature sensor. This separation allows full customisation of the

sensing board.

While six sensing LEDs are used on this board, the driver board is capable of running
up to 9 sensing LEDs and the emitting LEDs of the same wavelength. The assembled

boards are shown in Figure 4.1.

660

(a) LED driver board populated with the Teensy 4.0 (b) Both sides of the LED sense board with
socket shown. The electrode headers are at E1 and E2, each LED wavelength and the emitting (E)
and the RLD is given. and detecting (D) rows shown .

Figure 4.1 Assemblies of both the LED drive and sense boards.
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4.3.1 LEDs

Two wavelengths of light are predominantly used to estimate blood oxygen saturation,
red (centred around 660nm) and infrared (centred around 940nm). While any LEDs
in these ranges can be chosen, it is advisable to use LEDs advertised for use in pulse
oximeters. The LEDs used in this chapter for pulse oximetry are from the SunLED
(USA) pulse oximeter series (XZM2MRTNI55W-8). The red and infrared LEDs are
contained in a single package to reduce the footprint size and provide the same emission
and detection points. The LED emission spectrum also influences the amount of light
detected as the narrow spatial emission produced by the chosen LEDs increases the

distance the light travels into the skin before it returns to the detecting LED.

The maximum recommended driving current of the 660 nm and 940 nm LEDs is 20 mA.
However, the LED driver chosen is capable of driving the LEDs at 57 mA. The 57 mA
range is equivalent to 0-3880 mcd light intensity for the 660 nm LED. This maximum
drive current can be used when the reflected signal is otherwise too small, but is not
recommended for normal use as the lifetime of the LED is reduced [SunLED 2017].
However, for applications requiring fast sampling using the LED-LED digital sensing

method, the two LEDs are capable of emitting at maximum brightness.

In the NIR infrared range above 1000nm (1450nm, 1550 nm, 1650 nm (Marktech,
USA)), the recommended drive current is 50 mA [Marktech 2017a]. To maximise sig-
nal intensity, these LEDs can be safely driven at the full 57mA. The design layout
for the LEDs is shown in Figure 4.1b with the LEDs in ascending wavelength order
(from 660 nm to 1650 nm). While the optimum distance between emitter and detector
is 4mm [Chung and Sun 2016], the 1206 surface mount footprint of the LEDs mandated
a distance of 5mm. In this orientation it is possible to rotate the sensing and emit-
ting LEDs to reduce the emitter-detector spacing, but the difference wavelength LEDs
would have different emitter-detector separations. This increase in distance reduces the

amount of light returning through the skin as the optical path-length is longer.
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4.3.2 Microcontroller choice

The Teensy 4.0 was chosen as the microcontroller as the CPU (Cortex M7 processor)
runs at a clock speed of 600 MHz, giving an LED-LED decay timing resolution of
1.6 ns. With 25 GPIO pins available, there is space for many sensing LEDs, although
this space is reduced as SPI communications to the LED driver requires the MOSI,
MISO, CS, CLK, and two debug pins. Programming the Teensy 4.0 is straightforward
via USB using the Teensyduino package for Arduino (available on the PJRC website
[Stroffregen 2021]. While this sensor only uses 6 distinct sensing LEDs, the FPC cable
and microcontroller combination enables up to 9 sensing LEDs and the corresponding

emitting LEDs of the same wavelength.

4.3.3 Right Leg Driver

The right leg driver (RLD) employed is adapted from [Fortune et al. 2019]. The RLD
creates a feedback loop between the sensor and subject, reducing the interference of
EMI. By driving the inverted common-mode voltage into the subject, the EMI is at-

tenuated [Winter and Webster 1983]. The minor adaptations made here include:

e« The REG710NA was used to regulate the 5V from USB to 2.5V.
e The LTC1550LCMSS8 was used to regulate the 5V from USB to -2.5V.

e The quad opamp TLC2274 was used to measure the common mode voltage using
two electrodes (E1, E2), then generate an inverse signal to drive back into the

body using the RLD header.

e The RLD driver voltage and current is limited to £2.5V and 25 pnA respectively.

4.3.4 LED driver

The PCA9745BTWJ LED driver was chosen to drive the emitting LEDs [NXP Semi-

conductors 2020b]. This 16 channel constant current LED driver is capable of driving
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at 57mA with both PWM (31.25kHz) and an 8-bit DAC capable of driving between
225 1A and 57mA. However, as the sensing LED decay is proportional to light, hav-
ing a PWM controlled signal introduces steps into the decay, changing the continuous
exponential decay waveform to a staircase. Thus, the 8-bit DAC is used at 100% duty
cycle PWM to provide constant light emission and a continuous sensing LED decay

waveform. The LED driver connects to the Teensy 4.0 via SPI as a slave.

The LED driver pulls the 3.3V to GND through the series connected emitting LEDs
as shown in Figure 4.2. Each wavelength of LEDs are on individual channels. As the
forward voltage drop of all LEDs except for the 660nm LED is <1.6V, two emitting
LEDs can be connected in series. The 660 nm LED has a forward voltage drop of 2.1V,

so only one LED can be driven from 3.3 V.

3.3V
LED4
2 % % .
& : :
(]
-
= LED,
GND 2 Y

Figure 4.2 Schematic for the operation method of the PCA9745BTWJ LED driver board.

4.3.5 Temperature Sensor

The TMP20AIDRL low power, analog temperature sensor is used to monitor the tem-
perature at the LEDs. With a +2.5°C error running on the 3.3V supply, the tempera-
ture sensor ensures that the LED sensing board is monitored for abnormal temperatures.
If the temperature sensor detects temperatures above 40 °C, the LED driver is turned

off and the user is notified over serial to the PC.
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4.4 DESIGN FILES

Although commercial software was used in the development of this pulse oximeter
(MATLAB 2020), all files required to manufacture and understand the operation of the
sensor are provided in an open access format (KiCad, Arduino). Figure 4.3 shows an
image of the sensor with the array for the LEDs and the spacing for the electrodes
showing. The sensing area at the end of the sensor is 20x20 mm in area, with a row
of sensing LEDs and two rows of emitting LEDs at 5 mm spacing. Each wavelength
detected has one detecting and two emitting LEDs. The circuit schematics can be
found in Appendix A.1. The schematics and design files can also be found online at

https://doi.org/10.17605/0SF.10/VA3JW.

1450nm

Emitting LEDs

5mm
Detecting LEDs

5mm

2.5mm

Figure 4.3 Image of the reflectance pulse oximeter sensor used to measure SpjvOsz. The array of
sensing LEDs is separated by two emitting LEDs of the same wavelength at 5 mm spacing.

4.4.1 Bill of materials

A complete bill of materials (BOM) is included in Appendix A.1, containing both the
LED driver board and the LED sensor board components. The total cost of components

is $240 USD with the NIR LEDs and $65 USD if other LEDs are used.
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4.5 VALIDATION AND CHARACTERISATION

The sensor is designed to be used as a reflectance pulse oximeter. For a pulse oximeter
to calculate the oxygen saturation, pulsatile data at different wavelengths must be
measured. The amplitudes of each wavelength LED’s pulse is then used to calculate
arterial oxygen saturation (SpOg). Thus, the sensor must accurately measure the

pulsatile data at each wavelength.

Each pulse waveform is measured using the LED-LED digital light sensing method,
where the discharge time of the reverse biased LED is proportional to the incident
light intensity. The time taken to decay is in the region of 100-600 ps, depending on
parameters such as, ambient light conditions, skin temperature, and sensor application

pressure.

4.5.1 RLD noise removal

Figure 4.4 demonstrates the effect of mains noise on the signal. Sampling at 1kHz
shows the 50 Hz mains noise in the plot without the RLD present. Adding the RLD
to the circuit greatly reduces the effect of common mode noise from the signal. The
plotted PSD spectrum shows the 50 Hz noise (and 100 Hz harmonic) obvious in the

signal without the RLD.

4.5.2 Pulsatile Data

Placing the sensor onto a fingertip provides pulsatile data. This data is representative
of the blood flow through the capillaries in the finger and can be used to determine
peripheral blood oxygen saturations. Figure 4.5 shows raw pulsatile data at the finger
tip from two different microcontrollers. Other than the microcontroller, the setup

between the two sensors remains the same.

In Figure 4.5a the Arduino Pro Micro clock timer runs at 16 MHz, giving a discharge

time resolution of 62.5ns. This resolution limit is evident in the 660 nm pulsatile data
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Figure 4.4 Arterial pulse data without the RLD (left) and with the RLD (right) and the resulting
and Power Spectral Density (PSD).

of the Arduino Pro Micro. Using a faster microcontroller clock such as the 600 MHz
clock on the Teensy 4.0 provides a resolution of 1.6ns. This increased resolution is

present in the raw pulsatile data for the 660 nm LED in Figure 4.5b.

To avoid the emitted light from one wavelength LED interfering with the sensing of
another, each wavelength LED must be sampled sequentially. The effect of sequential
LED sampling on the sample rate is shown in Figure 4.5b. The combined discharge
time is 13 ms, resulting in a sampling frequency of 75 Hz, across the 6 LEDs. Without
the RLD, it would be impossible to remove mains noise (50 Hz) from the signal with this
sampling frequency. The difference in pulse amplitude (discharge time) for each test is
due to the environmental conditions the test is under, such as the applied pressure of

the sensor, the temperature of the finger, or the ambient light levels.

The pulsatile data is clearly visible in the both the 16 MHz and 600 MHz clock timer
rates, with the 600 MHz signal having a greater pulse amplitude resolution as seen in

the 660 nm and 850 nm plots. The pulsatile frequency of interest is centred around the
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(b) Pulsatile data of the Teensy 4.0 timer running at 600 MHz.

Figure 4.5 Comparison between two different clock rates (16 MHz on Arduino Pro Micro and
600 MHz on Teensy 4.0) as well as the range in discharge time of each wavelength LED.

heart rate of 1Hz (60 bpm). Thus, the operation of the sensor is validated.

4.6 LIMITATIONS

While the introduction of the right leg driver circuit to the board greatly reduced the
effect of 50 Hz power lines noise, the limiting factor of the slow sampling time remains.
If multiple LEDs are to be sampled sequentially, then a different method than the
timing method must be used to ensure the typical sample rate of a pulse oximeter

(200 Hz).



76 CHAPTER 4 REFLECTANCE PULSE OXIMETER HARDWARE DESIGN

As the board is powered by the USB (5 V), the rails of the RLD are limited to + 2.5V,
These rail voltages would need to increase to further remove noise from the system.
However, increasing the rail voltage would require an external power supply to the

USB and the driver board would need to be redesigned.

The flat flexible cable (FPC) used to connect the driver board to the sense board
introduces majority of the noise to the sensor. As power and ground are required to be
routed to the sense board, ground loops are introduced into the circuit. These loops
act to increase the power line noise present in the signal. Further board design would
benefit from incorporating the drive and sense boards into one PCB, either as a solid
board, or a flexible board to retain the same form factor as the design presented in this

chapter.

The FPC connector also has a very limited life cycle. Each insertion and removal of the
cable increases the wear, requiring multiple replacement cables throughout the testing

program. This issue can be readily overcome in any redesign.

4.7 SUMMARY

The operation of the sensor was validated, showing a clear arterial pulse waveform for
six different wavelength LEDs. As this sensor is a reflectance pulse oximeter, it can
be used on any site on the body with a detectable pulse, including the carotid artery
and the external jugular vein. Analysis of the pulsatile signal will enable the oxygen

saturation of each site to be estimated.

The aim of this study was to develop a sensor to be used as both a pulse oximeter
using 660 nm and 940nm LEDs, as well as provide the potential to measure other
constituents in blood. Up to 6 different wavelength LEDs can be implemented with an
emitting LED drive current of 57mA capable of powering LEDs in the range of 660 nm
to 1650 nm. While the sensor can sample wavelength LEDs less than 1000nm at a
sufficient sample rate (<1ms), further development is needed to improve the sample

rate of LEDs with wavelengths greater than 1000 nm.
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Designs of analogue pulse oximeters are often detailed in literature, but as most pulse
oximeter hardware is proprietary, design files and details are not readily available. This
chapter detailed the design, validation and limitations of a sensor used to record re-
flectance arterial pulse waveforms. The sensor uses LED-LED sensing to reduce the
sensing circuit complexity and a right leg driver to reduce the effects of mains power
supply noise. The build process of the sensor only requires open-source software and
has a total component cost of USD $261, or a cost of USD $86 if the specialist LED

wavelengths are not used.






Chapter 5

PPG PEAK AND TROUGH DETECTION
ALGORITHM

The ability of a pulse oximeter to measure the oxygen saturation depends on accurate
detection of the pulse waveform. Any noise in the signal has the potential to cause errors
in the calculated SpOs values. Thus, a signal processing method, robust to various noise
levels, is required to ensure accurate SpOg calculations. This chapter presents an IIR
filtering approach to arterial pulse waveform peak and trough detection. The hardware
used in this chapter is an earlier version of the sensor presented in Chapter 4 and still

uses a photodiode to detect light.

5.1 INTRODUCTION

Continuous monitoring of intensive care unit patients is required to detect changes
in cardiovascular condition. One continuous real-time monitoring device is the pulse
oximeter [Abdallah and Bolz 2011]. Pulse oximeters monitor heart rate and blood
oxygen saturations SpO2 [Ortega et al. 2011]. The algorithm used to estimate SpOs
requires filtering to remove noise from the pulse oximeter signal for accurate detection
of peaks and troughs. The goal of this chapter is to accurately, and consistently track
the peaks and troughs of the PPG signal using adaptable IIR filters to maximise that

accuracy.

Unfortunately, most pulse oximeters on the market do not allow access to the raw

signal produced by the sensors, providing only scaled PPG data as the typical filtering
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Figure 5.1 Photoplethysmograph waveform measured by the SpjvO2 sensor. The orange data (raw)
is filtered with an 0.67 Hz to 4.5 Hz bandpass filter (blue).

method removes the DC component of the signal required to calculate SpOo [Li and
Warren 2012]. Thus, an in-house pulse oximeter was developed for this research to

provide access to the raw signals.

The raw waveform measured by the in-house sensor is subject to various sources of
interference, such as motion artefacts, light scattering and absorption, light shunting,
and power supply noise [Lee et al. 2011]. Filtering is necessary to obtain accurate
results, as illustrated in Figure 5.1. The pulsatile component of the PPG waveform
typically represents less than 1% of the signal [Mendelson 1992], requiring these signal

features to be extracted using digital signal processing.

Figure 5.1 shows a typical PPG waveform formed from red light absorption used to
calculate SpOs. The amplitude difference between the peak and trough of each pulse
waveform is used to calculate SpOs, and each peak and trough must be accurately

located to ensure the accuracy of the pulse oximeter.

Infinite impulse response (IIR) and FIR filters are frequently used to process PPG
waveforms. These filters are computationally simple and effectively remove power line
noise from the signal. The data in Figure 5.1 was filtered by a 10 Hz bandpass equiripple

IR filter and represents the first of three filtering methods investigated in this chapter.
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The 50 Hz noise has been removed, keeping the signal features intact.

Depending on the response of the filter, different features can be extracted from the
raw waveform. For example, a low pass filter with a cut-off frequency at the heart rate
frequency can remove the dicrotic notch from the signal, leaving just the pulse at the
heart rate frequency. This pulse represents a sine wave, with all features except the
peaks and troughs removed. The second filtering method investigated in this chapter

uses this feature removal method to isolate peaks and troughs.

The third filtering method investigates wavelet decomposition, and subsequent recon-
struction, to filter the raw data to accurately track the peaks and troughs of the PPG
signal. Joseph et al. [2014] used wavelet decomposition to de-noise synthetic PPG data
and Li et al. [2017] developed a hybrid wavelet decomposition method for PPG peak
detection. Further wavelet processing analysis gave good results [Fingar and Podraj
2018, Nguyen 2016]. Each of these papers applied the wavelets through post processing.
Kasambe et al investigated real time mains noise removal using wavelets [Kasambe and
Rathod 2015]. However, none have yet implemented DWTs in real time for peak and

trough detection, a core task in using PPG signals.

Wavelet transforms use a fixed function called a mother wavelet to represent the de-
composed signal. The choice of mother wavelet allows different features of the signal
to be extracted [Mallat 1989]. Wavelets represent the signal as a combination of scal-
ing and wavelet functions. The scaling functions provide an overview of the signal,
while the wavelets represent the finer details at various scales [Lee and Yamamoto
1994]. The combination of the coarse signal with the details provide a multi-resolution

representation of the signal.

Wavelet transforms have been successfully applied in many applications, including,
image analysis, structural health monitoring, communication systems and biomedical
signal analysis [Abdulkareem 2018, Baig et al. 2018, Rabiepour et al. 2022, Tuncer
et al. 2020, Zhou et al. 2017]. In the wavelet transform, lowpass and highpass filter
information at different signal levels can provide good levels of energy compression

[Ashraf et al. 2018]. In this chapter, the Coiflets 3, Reverse Biorthogonal 1.5, Symlets
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2, and Daubechies 3 mother wavelets are investigated for their ability to track the

features arterial pulse waveform.

A common method for peak and trough detection is to use the least squares gradient
of the signal to find the inflection points of the pulse waveform [Karlen et al. 2012].
Elgendi investigated finding the second derivative [Elgendi 2012], concluding the least
squares gradient was sufficeint to locate the peaks and troughs. Aboy implemented a
method of analysis by using multiple bandpass filters to extract the signal to then find
the turning points [Aboy et al. 2005]. The algorithm developed by Aboy was used to
classify both arterial blood pressure and SpOs. This study achieved a high specificity
of 0.99, but was tested on a low-noise signal and was also deemed too computationally

expensive to run in real-time.

5.2 METHODS

This chapter covers three different filtering methods, used to remove noise from the
raw signal for peak and trough detection. These consist of the conventional bandpass
commonly used for PPG analysis; a new method using two adaptable IIR filters; and
the DWT. A peak and trough detection algorithm then uses the outputs of each of

these three methods to detect the peaks and troughs.

5.2.1 Subjects

Ten minutes of continuous raw PPG data was recorded from the finger of a 23 year
old male sitting at rest. This same raw data was used for each of the three filtering

methods.

5.2.2 Equipment

A transmission mode finger sensor (model: 302701001, Biometric Cables, Guindy, Chen-

nai, India) was used in this chapter to obtain the PPG data. The red and infrared LEDs
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Figure 5.2 Setup used to record the photoplethysmograph waveform. A transmission mode pulse
oximeter connects to the Intel NUC for serial communications and processing.

have wavelengths of 660 nm and 940 nm respectively. The sensor is an in-house devel-
oped pulse oximeter, giving the algorithm access to the raw photodiode voltage. Serial
communication with the sensor at 50 Hz is provided by an Intel NUC running Ubuntu

16.04 LTS on an Intel Celeron processor with 4 GB of RAM. A graphical user interface
(GUI) displays the raw and filtered waveforms in real time.

Initial testing of the algorithm used a traditional photodiode method of detecting light.
This early prototype is different to the hardware described in Chapter 4 as it is a
transmission mode pulse oximeter and is shown in Figure 5.2. However, the wavelengths

used and signal recorded is equivalent to that described in Chapter 4.

5.2.3 Sensor output processing

The analysis layout of the chapter is shown in Figure 5.3. The raw data is filtered with

each of the three filtering methods. The filtered data is then analysed using the peaks
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and trough algorithm.

— Bandpass Method Peak and trough detection f—

Raw data Adaptable IIR Method Peak and trough detection SpO, Calculation

— Wavelet Method Peak and trough detection f——

Figure 5.3 Analysis method for the three filtering methods and their effect on peak and trough
detection.

5.2.3.1 Bandpass filtering method

A bandpass filter is commonly used in pulse oximetry to remove noise, such as 50 Hz
mains noise coupled into both the sensor and the subject [Fortune et al. 2021]. The
bandpass filter used in this chapter is a Chebyshev Type II, a length of four coefficients,
and a passband between 0.67 Hz to 4.5 Hz. This frequency range removes the effect of
low frequency noise such as breathing rates, as well as higher frequency noise that could
introduce additional peaks and troughs into the signal. An example of the bandpass

filtered data is shown in Figure 5.1.

5.2.3.2 Adaptable ITR method

This filtering method uses two IIR filters, and one FIR filter to locate the peaks and
troughs in the pulse waveform. One IIR filter has a cut-off frequency at the subjects
heart-rate. This filter removes all signal features, leaving only the fundamental fre-
quency of the signal. Thus, the peaks and troughs of the signal are the only turning
points in the filtered signal. However, the amplitudes of each peak and trough does
not represent the true peak and trough amplitude seen in the raw data. Thus, an
additional IIR filter with a higher cut-off frequency is used to closely track to the raw
data. This higher frequency cut-off filter (5Hz above the cut-off frequency of the first

IIR filter) retains the same pulse amplitudes as the raw data, while removing 50 Hz
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mains coupled noise. An example waveform from the GUI used to record the data is

shown in Figure 5.4.

—— Raw data
— LF cut-off IIR
Phase Delay — HF cut-off IR

_"— — Peaks and troughs
r_

Figure 5.4 Example output from the monitoring GUI plotting the multi-IIR filtering method. The
raw data (green) is filtered by two IIR filters. A low frequency cut-off IIR filter (blue) identifies the
peaks and troughs, while the higher frequency cut-off IIR filter (red) closely tracks the raw data. Each
peak and trough is identified at the black lines, and is updated at each blue peak or trough. The phase
delay between these two filters is used to locate the peaks and troughs.

This method adapts the cut-off frequency of the two IIR filters to an integer value
of the heart rate to ensure that the low frequency cut-off IIR filter only returns the
fundamental frequency. As the cut-off frequency is an integer value, the range of cut-off
frequencies available to either IIR filter is 1 Hz to 10 Hz. For example, a heart rate of 75
BPM gives cut-off frequencies of 1 Hz and 6 Hz for the low and high cut-off frequency
IR filters.

IIR filters introduce phase delay to the filtered signal, with the lower the frequency
cut-off, the greater the delay. This phase delay is shown in Figure 5.4. As the lower
cut-off frequency IIR filter is used to locate peaks and troughs, the higher frequency
cut-off IIR filter locates its own peaks and troughs a known point in time earlier than
the lower frequency cut-off filter. The maximum and minimum values of the higher
frequency cut-off IIR filter within a set period of time is taken as the peaks and troughs

respectively.

A complementary filter uses the heart rate calculated by the FIR and LF TIR filters to
simultaneously adjust which IIR filter is used, as shown in Figure 5.5. By combining

the FIR and IIR heart rate, the complementary filter prevents the IIR filter heart rate
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from self adjusting frequency and thus becoming unstable, and is given:

HR = o x [IR_HR + (1 — o) x FIR_HR (5.1)

Where,

a: The weighting coefficient of the filter
IIR__HR: Heart rate calculated using the IIR filter

FIR__HR: Heart rate calculated using the FIR filter

Sensor Reading ] L OW PASS FIR FillEr fmgs F'eageatr;tit'il'orgugh
pS A Complimentary Filter
(Heart rate)
g g
) Peak and Trough H
PPG Acquisition > L > Detection :
System :
¥ x \ / Adjust selected HF
. and LF lIR Filters E
I NN NN NN RN EE R
: Peak or
Raw Trough
Data . found )
Computer HF lIR Filter AC amplitude output

Figure 5.5 Flow chart showing the logic flow through the algorithm. LF IIR and HF IIR represent
the lower and higher frequency cut-off IIR filters.

5.2.3.3 Wavelet decomposition

This method of filtering uses the same principles as the IIR phase delay method. How-
ever, the higher frequency cut-off IIR filter used to closely track the raw waveform is

replaced with the output of discrete wavelet transform (DWT).

The DWT is used to obtain near-real-time analysis of the signal by analysing the
signal in segments [Goelz et al. 2000]. To run in near-real-time, the time series data

is segmented into sections for analysis. The length of this time series sectioning is the
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response rate of the DWT, as the data must first be collected before returning the

results.

To minimise the time delay caused by the block method of wavelet analysis, a buffer
size of 128 was used. With a sample rate of 50 Hz, the time delay is 2.56s. This time
delay was deemed sufficiently responsive in a clinical context for use in near real time as
change of patient condition is negligible over such a short time frame. Once the wavelet
has filtered the 128 samples, the buffer is passed into the peak and trough detection

algorithm for analysis.

The DWT runs through multiple levels of decomposition, at each stage the length of
the signal vector is halved, leaving the high and low frequency components of the signal.
Table 5.1 shows the decomposition levels of the wavelets used in this paper. Because
the sample rate of the system is 50 Hz, the highest possible frequency component of the
signal is 25 Hz. The second level of decomposition was chosen for signal reconstruction,

giving a compromise between removing noise, and retaining signal features.

Table 5.1 Frequency decomposition using the DWT

Level | Filter | Frequency Range(Hz) | Data Length
3 Low 0-3.125 16
High 3.125 - 6.25 16
2 Low 0-6.25 32
High 6.25 - 12.5 32
1 Low 0-12.5 64
High 12.5 - 25 64

Once each filter has decomposed the signal into the three levels, each wavelet decon-
struction is reconstructed into the time domain using the 1% and 2,4 levels. The 3.4
level of decomposition contains the high frequency noise, so is removed from the signal
when reconstructing. This reconstructed waveform has the same role as the higher
frequency cut-off IIR filter presented in the adaptable ITR method, retaining the signal

features for peak and trough detection.
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5.2.3.4 Peak and Trough Detection

The amplitude of the PPG is contained in the AC component (>0.67 Hz), while the
DC component (<0.67 Hz) is the mean of the signal. Hence, peaks and troughs must
be found to obtain the amplitude for analysis. The method used in this work finds the

turning points through the method described in Algorithm 5.1.

Algorithm 5.1 Peak and Trough Detection Algorithm

1: current_grad < 1 > Initialise to a positive gradient
2: prev_ trough <« [0, 0]

3: prev__peak < [0, 0]

4: Tamp < [0.01,1] > Initial amplitude tolerances (V)
5:1¢0

6: X < new data > New data point measured by the sensor
7. data_ buffer « [0, 0, 0, 0, 0]

8: while 1 do

9: data_buffer[i] = =
10: grad = gradient(data_ buffer) > Get the gradient
11: if grad < 0 && current_ grad > 0 then > Peak found
12: amp = x - prev__trough
13: else if grad > 0 && current_ grad < 0 then > Trough found
14: amp = prev_ peak - X

15: end if

16: if withintol(amp,Ty1) then > Acceptable amplitude
17: Tamp = [(0.95T 4mp[0] + 0.6amp) /2, (1.2Tamp[1] + 1.2amp) /2]

18: turning_ point_ found = TRUE

19: current_ grad = grad
20: else > Expand the tolerance
21: Tamp = [0.5T amp[0], 1.5Tamp[1]]
22: end if
23: i+1
24: if i > length(data_buffer) then i=0
25: end if

26: end while

To obtain the gradient of the signal, the linear least squares method is employed. Rather
than taking the derivative of the new data point and the previous value, a line fitted to
the five previous data points to estimate the gradient are incorporated. This approach
reduces the influence of outliers, as the five points must have an overall gradient direc-
tion change to indicate a turning point. However, this approach adds an additional 5

sample delay to the process.
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A sign change in least squares gradient implies a turning point has occurred within the
5 most recent samples. If a turning point is detected, but the subsequent amplitude
calculation does not fit within the tolerance for an acceptable amplitude, the turning
point is discarded as a potential peak or trough. This feature allows the algorithm to

avoid detecting the dicrotic notch as a false series of heart beat peaks and troughs.

To ensure fast conversion to accurate peak and trough detection, the tolerance expan-
sion is proportional to the difference between the tolerance and the calculated ampli-
tude. On start up, the tolerances rapidly expand to the size of the largest amplitudes
present in the signal. On every successful amplitude detection, the tolerance is reduced
and on detection of false peaks, the tolerance expanded. Tolerance factors are used to
keep an envelope between the maximum and minimum tolerances, where, on incorrect
amplitude detection the minimum tolerance value is reduced by 50% and the maximum
tolerance value is increased by 150%. Rather than having a single amplitude value as
the tolerance, a minimum and maximum value for the amplitude means the pulse wave

must be of similar DC offset to the previous pulses.

5.2.4 Analysis

The three filtering methods were analysed with beat-to-beat analysis by a trained
expert human identifying the peaks and troughs. Ten seconds of data at the start of
the recording was excluded from analysis to allow the algorithm to converge. A total

of 651 beats were identified for analysis.

The results from the experiment are shown in a confusion matrix. A true positive detec-
tion (TP) is classified as correct detection of a peak, false positive (FP) is detection of
a peak or trough when there should not be. More specifically, a peak might have been
identified, but in cases such as the dicrotic notch, the amplitude is falsely measured.
False negative (FN) classifies no detection of a peak when there is a peak. The true
negative (TN) is not possible to identify in these results, as correctly identifying no
peaks when there are none is not viable with continuous heart beats. Thus, the sensi-

tivity and 4P are analysed in a resulting confusion matrix. Equations for sensitivity
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= Bandpass method
— Peaks and troughs

Time (s)

—— Raw data

— LF cut-off IIR

— HF cut-off IIR

— Peaks and troughs

Time (s)

Figure 5.6 User interface showing the response of the bandpass filter (top) and IIR method (bottom)
to the same raw data. The output from the bandpass method lags behind the adaptable IIR method
by 0.5 seconds.

and +P are given:

Sensitivity — —L (5.2)

Eensitivul y— TP+FN .
TP

p—_ 1 .

= TP Fp (5-3)

5.3 RESULTS

Each of the three methods filtered the same 10 minutes of recorded data. An example
output from the user interface used to record bandpass and adaptable IIR method are
shown in Figure 5.6. The bandpass method accurately locates the positions of the
peaks, while falsely identifying each of the dicrotic notches as troughs. The adaptable

ITR method tracks to every peak and trough located in the window.

Each of the four mother wavelets were compared to determine their ability to filter the
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Figure 5.7 Comparison between each reconstructed signal (red) to the raw data (blue). Each mark
on the x-axis represents 0.2 seconds.

signal, acting as the high cut-off frequency IIR in the adaptable IIR method. Figure
5.7 displays the response of each wavelet to the same raw data. Each mother wavelet
was tested at the decomposition level with the fewest false peaks generated upon recon-
struction. The Reverse Biothorgonal 1.5, Coiflets 3, and Daubechies 3 mother wavelets
were reconstructed with the 2"% and 3" level, whereas Symlets 2 was reconstructed
with just the 2" level as only two levels of decomposition could be achieved at a buffer

size of 256 samples.
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5.3.1 Confusion Matrix

A confusion matrix is shown in Table 5.2, where the sensitivity and +P were calculated.
The bandpass filter performed poorly with 232 false positives, giving a +P of 0.65.
Often, the peak would be correctly detected, but the dicrotic notch would be identified
as the trough. The sensitivity is high (0.98) as the algorithm failed to detect few beats.

However, this high sensitivity is countered by the high rate of false positives.

As SpOs requires the amplitude of the AC component, any dicrotic notches identified
as troughs result in incorrect SpOs2 estimation. In comparison to the bandpass method,
the adaptable IIR filter method only falsely identified 18 pulses, giving a +P of 0.97.
Each wavelet performed similarly, with good sensitivity and positive predictive values
(+P). Coiflets 3 had the most false positives, resulting in a lower +P.

Table 5.2 Results of the confusion matrix

Method TP FP FN || Sensitivity +P
Bandpass || 429 232 11 0.98 0.65
1IR 610 18 26 0.96 0.97
Coif3 609 26 23 0.96 0.96
Db3 613 19 24 0.96 0.97
Sym?2 611 19 24 0.96 0.97
Rbiol.5 || 610 22 21 0.97 0.97

5.4 DISCUSSION

The adaptable IIR filtering method shows a clear improvement over the bandpass
filtering method at identifying the AC amplitude in noisy signals. The bandpass filter
accentuates the dicrotic notch present in the signal, falsely identifying the dicrotic
notch as a trough, as shown in Figure 5.6. The DW'T produced equivalent results
to the higher frequency IIR method when reconstructing with the higher frequency
features. However, the method is much more computationally intensive, and introduces
a measurement time delay of 2.56 seconds. Thus, the adaptable ITR method was chosen

as the filtering method for peak and trough detection to use in this thesis.

Accurate peak and trough detection is vital to the accuracy of pulse oximetry. The
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measured amplitude is used as the AC component in the pulse oximeter R value cal-
culation. Each peak and trough must be identified in the presence of noise and other
similar features, such as the dicrotic notch. Further chapters in this thesis will use the
algorithm presented in this chapter to identify peak and troughs for pulse oximetry in

both the arteries and veins.

The proposed method using IIR filters at incremental cut off frequencies allows the
baseline frequency of the pulse to be measured, while preserving the higher frequency
features. This means that only the fundamental frequency needs to be present in the
signal to identify peaks and troughs. As the higher frequency cut-off IIR filter has a
peak a known time period earlier than the lower cut-off frequency IIR, the correct peak

can be located in noisy data.

As the cut-off frequency of the IIR filters are adaptable to changing heart rate fre-
quencies, the method ensures the arterial pulse waveform resembles a sine wave. A
large increase in heart rate results in the lower frequency cut-off filter removing too
much signal, reducing the amplitude of its output to a near DC signal. Thus, the filter
with the correct cut off frequency is chosen to produce the closest representation of the
signal, while still removing the dicrotic notch. The higher frequency cut-off filters are
also incremented and decremented as a frequency of 6 Hz is the high frequency cut off
at very low heart rates, but represents the lowpass cut off for very high heart rates. A
fixed higher frequency cut-off IIR filter at 10 Hz would follow the raw signal too closely

at low heart rates, increasing the effect of noise on the signal.

Four different mother wavelets were tested for suitability of PPG signal analysis. A
low sample rate of 50 Hz and the requirement for a minimal time delay resulted in a
buffer length of 128 samples used for each wavelet decomposition and subsequent re-
construction. Such a small wavelet length reduces the levels of decomposition available.
However, it was deemed an acceptable depth as the desired signal frequencies occur

below 3.125 Hz.

If the tolerance of the peak and trough detection algorithm were to be reduced to avoid

identifying the dicrotic notch as a peak or trough, the risk of missing actual peaks and
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troughs increases. So there is a trade-off between having tight amplitude tolerances
and risk of missing the peaks and troughs. The amplitude of the bandpass PPG signal
can vary from peak to peak as shown in Figure 5.6. However, as shown by the raw data,
the amplitude is not necessarily varying in size. Having the IIR filter closely track the

raw signal ensures the PPG amplitude is closely followed.

5.5 SUMMARY

This chapter outlined the design and testing of a filtering method for use on noisy PPG
signals as well as a peak and trough detection method. Using a method which adapts
the IIR filters in use were used to isolate the baseline pulse rate, while also closely
mapping the raw signal. The current bandpass filtering method removes important
features from the signal, as well as detecting beats where there are none, resulting in
highly variable AC amplitudes. As the bandpass filter was unable to closely track the
signal amongst high noise (SNR of 13 dB), the filter misidentified turning points and

therefore inaccurate SpOas.

The adaptable TIR filtering method had a 140% increase in correctly identified pulse
amplitudes, showing a large improvement in peak detection, giving a sensitivity of 0.96
and a +P of 0.97 This good result is due to the method’s ability to track the pulse
through highly noisy signals by the use of HF and LF cutoff IIR filters. This peak
detection algorithm can be used on real-time or post processed data to calculate the

AC component of the raw pulsatile signal.

The discrete wavelet transform yields an accurate AC amplitude measurement, but
minimal improvement over the lowpass IIR method presented in Chapter 5. An increase
in sample rate is needed to take full advantage of the discrete wavelet decomposition.
This required increase in sample rate, combined with minimal improvements over the
lowpass IIR filter makes the real time wavelet filtering method not worth the extra
computation. Future work with peak detection will use the original low pass IIR filter

algorithm.



Chapter 6

VENOUS OXYGEN SATURATION SENSOR
VALIDATION

This chapter combines the sensor developed in Chapter 4, with the peak detection
algorithm presented in Chapter 5 to measure the SpjvOs, SpcOs, and the peripheral
capillary pulse waveform in the thumb (SpO2). The pulse waveform shape, and subse-

quent calculated oxygen saturation at each of these three sites are also compared.

6.1 INTRODUCTION

Oxygenation of cerebral venous blood outflow has been studied for the last 90 years
[Lennox 1935], and is used as an indirect assessment of cerebral oxygen consumption to
guide clinical decisions in treating brain injury and similar cases [Bhardwaj et al. 2015].
Currently, the only method to measure SjvOs is invasively through a jugular venous
bulb catheter [Jeon et al. 2006]. SjvOq accurately reflects the global CBF/CMRO2
ratio in a clinical setting. However, SjvOo measured through a catheter is difficult
to use, and may overlook regional changes in peripheral cerebral oxygen consumption

[Jeong et al. 2012].

Non-invasive measurement of SpjvOs has been investigated by Colquhoun et al, con-
cluding reflectance NIR devices placed directly over the jugular vein are most likely
to reflect changes in cerebral oxygen supply [Colquhoun et al. 2012], but further work
was needed to improve accuracy. They also found changes in cerebral oxygen status is

clinically more important than measurement accuracy as the normal range for SjvOq
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is between 60%-90%, so all measurements are likely to be within that range [Schneider
et al. 1995]. Additional literature repeated measurements of the jugular venous pulse
(JVP) with photoplethysmography, but did not estimate the SpjvOs [Abdallah and
Bolz 2011, Amelard et al. 2021, Aniagyei-Mensah 2014, Zhong et al. 2021], leaving a

clear gap in knowledge.

To calculate the percentage of oxygenated haemoglobin (SpO2 and SpjvO2 in this chap-
ter), two wavelengths of light (660 nm and 940 nm) are used, following the principles of
pulse oximetry. The amplitude of each wavelength pulse (AC component) is normalised
by the mean DC signal offset. The ratio between the two normalised wavelength pulses
then indicates the percentage of haemoglobin carrying oxygen [Ortega et al. 2011], as

defined:

R= DCrea (6.1)

The ratio calculated in Equation 6.1 is then used to estimate SpOy [Mendelson 1992]:

SpaOy =110 — 25 x R (6.2)

However, this equation has been shown to overestimate the actual SaO2 [Singh 2017].
Pulse oximeters also have reduced accuracy in hypoxia (< 90% oxygen saturation)
[Webb et al. 1991], with almost 25% to 66% of hypoxia cases potentially missed [Singh
2017]. Thus, for the expected range of 60-90% oxygen saturation of SvO,, this equation
is not adequate. Recent work by Khan introduced a new equation for SvOs estimation

[Khan et al. 2015b, 2017]:

SpOa = 111 —40.5 x R (6.3)

Equation 6.3 was developed using artificial pulses introduced into the venous blood in

the finger using a pneumatic finger cuff [Khan 2016], and was calibrated to blood gas
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measurements below 50% saturation. These generated pulses mimicked the expected
breathing rate of 0.2 Hz [Chan et al. 2007, Khan et al. 2015b]. Measuring the pulse at
the external jugular vein (EJV) allows pulsatile venous blood to be measured without
external pulsations. In particular, because the EJV is in close proximity to the chest,
pressure changes from breathing are present in the signal, creating the same effect as
the external pulsations used by Khan. Figure 6.1 shows an example pulse waveform

recorded at the EJV with both the JVP, and breathing induced pulse present.
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Figure 6.1 Pulse waveforms recorded at the EJV of a test subject showing the overlay of the breathing

rate on the JVP. The blue plot is the red (660 nm) LED pulse and the orange plot is the IR (940 nm)
LED pulse. Data is filtered using a 0.01 Hz to 10 Hz Chebyshev bandpass filter, length 4.

This chapter presents results from a pilot study into the viability of measuring carotid
artery and jugular vein oxygen saturation, SpcOs and SjvOq, using reflectance pulse
oximetry on the carotid artery and external jugular vein. Specifically, whether the
SpcO2 measured on the carotid artery reflects the SpOs measured on the thumb and
the EJV pulse waveform gives values for SpjvOs in the expected physiological range
of 60-90%. The SpjvOs calculated from the JVP waveform is also compared to the

SpjvOq calculated from the breathing rate at the EJV.



98 CHAPTER 6 VENOUS OXYGEN SATURATION SENSOR VALIDATION

6.2 METHODS

A trial was conducted on healthy volunteers to validate the design of the SpvOs sensor
described in Chapter 4. The trial investigates the PPG pulse waveform from 15 subjects
recorded at the thumb, carotid artery, and EJV. These pulse waveforms are then used
to calculate the respective oxygen saturation at each site. Ideally the trial would involve
invasive validation with a jugular bulb catheter. However, the methods presented here
use conventional signal processing methods for analysing arterial pulse waveforms and

will be compared to the typical 60-90% SvO; range [Schneider et al. 1995].

The trial required the subject to lie supine on a recliner as described in [Chiaco et al.
2013]. With shoulders touching the mattress, the head is turned towards the left
shoulder with the jaw slightly elevated. Ideal head elevation angle is between 30° to 60°
[Short 1957]. Features discerning the venous pulse from the arterial includes pulsations,

which:

Are soft and not palpable.

Have two crests and two troughs per cardiac cycle.

Have crests which are not simultaneous with the cardiac cycle seen in the arterial

pulse.

Have a waveform obliterated by light pressure at base of the neck.

Subjects had their carotid arterial and external jugular venous pulse measured while
supine. Once 50 seconds at each site was recorded, the subject was instructed to sit
upright. The carotid artery was then re-measured with the participant sitting with

their back at 90°. A measurement at the thumb was taken as the final measured site.

6.2.1 Subjects

This study uses data obtained from an in-house study of 15 patients, recruited from

the University of Canterbury. All subjects were healthy, with no known cardiovascular
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health problems. The patient demographics are included in Table 6.1. This study was
approved by the Human Ethics Committee, University of Canterbury (HEC2019/153)

and informed consent was obtained from each participant prior to the experiment.

Table 6.1 SjvOs trial subject demographics. Data is shown as median [IQR] where appropriate.

Subjects 15
Age (years) 25 [22-28]
Sex (M/F) 9/6
Ethnicity (Maori/ NZ European/ other) | 3/12/0

6.2.2 Equipment

Data was streamed from the SvOs sensor via USB serial to a dual core I5 2013 MacBook
Air for data collection, and recorded for 50 seconds at each site for each participant.

The sensor sampled at 200 Hz using the XZM2MRTNI55W-8 (SunLED [2017], USA)

package of 660 nm and 940 nm LEDs to estimate the oxygen saturation.

6.2.3 Sensor output processing

The pulsatile data is recorded using the digital LED-LED light detection method, where
a change in LED voltage discharge time is proportional to changes in light intensity.
Thus, all recorded waveforms in this chapter are presented as a function of LED voltage
discharge time. The ratio of the "AC" and "DC" components are taken, making the

calculation unitless.

Each data-set was analysed using the adaptable ITR peak detection algorithm presented
in Chapter 5. The peaks and troughs were then used to calculate the AC/DC ratios
required for pulse oximetry. Equation 6.2 and 6.3 were used to estimate the arterial
and venous oxygen saturations respectively. For visual analysis, a 0.67Hz to 8 Hz

Chebyshev bandpass filter is used to identify the shape of each waveform.

A lowpass filter with a cut-off frequency of 0.67 Hz was used to isolate the breathing

induced pulsatile signal in the jugular venous pulse waveform. The peaks and troughs
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of this lowpass filtered data were then used to calculate the AC/DC ratio, and subse-

quently, the EJV SpjvO..

6.2.4 Analysis

The mean and standard deviation of the SpOs, SpcO2, and SpjvO, were calculated for
their respective sites. The recorded JVP pulse waveform represents the volume change
of blood, rather than the pressure in the EJV. However, as the EJV is highly elastic,
the change in volume is expected to reflect the pressure waveform. Figure 6.2 shows
the expected volume pulse waveform in the EJV. In the venous waveform, the A wave

and X wave of the JVP are taken as the peaks and troughs for SpjvO3 calculation.
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Figure 6.2 Example waveform at the EJV representing a change in blood volume. Data is filtered
using a 0.67 Hz to 6 Hz Chebyshev bandpass filter.

Oxygen saturation estimation will be analysed using a box plot to represent the variance
in data. The narrower the variance in calculated values, the more certain the estimation.
The distribution for each subject will also be analysed, comparing the oxygen saturation

at each site. The thumb is expected to have the highest SpOs,. The carotid artery SpcOq
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measured sitting up is also compared to the supine measurement. The SpjvOs for each

subject is expected to sit below the corresponding SpcOs values.

6.3 RESULTS

Figure 6.3 plots the recorded PPG wavform from the thumb. Subjects 1 and 3 have
a poorly defined systole in either the red or IR pulse waveforms. Figures 6.4 and 6.5
plot arterial pulse waveforms recorded at the carotid artery. Subject 2 of Figure 6.5

appears to contain the V wave from the venous waveform superimposed on the arterial

pulse.
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Figure 6.3 Pulse waveforms recorded at the thumb for each test subject. The blue plot is the red
(660nm) LED pulse and the orange plot is the IR (940 nm) LED pulse. Data is filtered using a 0.67 Hz
to 8 Hz Chebyshev bandpass filter.

Figure 6.6 plots the jugular venous pulse of each subject, with Subject 3 having a
poorly defined pulse waveform. Each subject had different amplitudes for the V wave

and subjects such as Subjects 4, 13 and 14 have a higher C wave than A wave.

The results from the data recorded at each position are plotted in Figure 6.7. The box
plots show the beat to beat SpOs for each subject at each site. The calculated SpOq

in the thumb for each subject is >90%. Subjects 1 and 3, who had poorly defined
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Figure 6.4 Pulse waveforms recorded at the carotid artery for each test subject sitting upright. The
blue plot is the red (660 nm) LED pulse and the orange plot is the IR (940nm) LED pulse. Data is
filtered using a 0.67 Hz to 8 Hz Chebyshev bandpass filter.
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Figure 6.5 Pulse waveforms recorded at the carotid artery for each test subject lying supine. The
blue plot is the red (660nm) LED pulse and the orange plot is the IR (940 nm) LED pulse. Data is
filtered using a 0.67 Hz to 8 Hz Chebyshev bandpass filter.
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Figure 6.6 Pulse waveforms recorded at the external jugular vein for each test subject. The blue
plot is the red (660 nm) LED pulse and the orange plot is the IR (940 nm) LED pulse. Data is filtered
using a 0.67 Hz to 8 Hz Chebyshev bandpass filter.

pulse waveforms, have the largest variance in calculated SpOs. All subjects except
for Subjects 1 and 5 had a mean SpcOs higher in the sitting rather than the supine
position. Measurements on the EJV gave a wide range of results with mean SjvO for
each subject ranging from 76% to 96%. Figure 6.8 shows the box plots from the SjvOq

calculated using the breathing induced pulse waveform rather than the JVP.

The combined results for testing at the thumb, carotid artery, and external jugular
vein are presented in Table 6.2. The thumb had the highest mean oxygen saturation,
followed by the carotid artery in sitting and supine, with the EJV presenting the
lowest oxygen concentration. SjvOs measurements at the EJV had the largest standard
deviation (SD) of 6.9%, while measurements of the carotid sitting upright had the
lowest SD of 1.8%. The SjvOy calculated using the breathing rate at the EJV gave
lower estimates for all subjects except 6 and 11, where there was no change. As seen

in Figure 6.8, Subject 12 is the only subject with a calculated SjvOsy above 90%.
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Figure 6.7 Box plots showing the calculated oxygen saturation at each of the sites measured.



6.4 DISCUSSION 105

105 T T T T T

100 1
95+ 1

g0r
75 L5 E| T
1

65 .

HIF

1]

HE +
H
|——D|]—4

Estimated S]V02
&
H ]
0
=
L I+
'_ —
—|

60|||||||||| [
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Subject Number

Figure 6.8 Box plots showing the calculated oxygen saturation at the EJV using the breathing
induced pulse waveform.

Table 6.2 Oxygen saturation (SpO2) at each measured site.

Carotid Carotid EJV EJV

Thumb sitting  supine pulse breathing
Mean SpOs (%) 95.4 92.1 90.1 85.7 82.4
SD (%) 2.5 1.3 1.8 6.9 5.2

6.4 DISCUSSION

The sensor showed clear differences in oxygen saturation estimations between each site.
Sensor readings at each site returned oxygen saturations consistent with literature
[Bhardwaj et al. 2015, Colquhoun et al. 2012]. The mean SpjvOs calculated using
the JVP was 85.7%, and had the highest standard deviation (6.9%), while the SpjvOa2
calculated using the breathing induced pulse returned a lower mean SpjvOs (82.4%) and
had a lower standard deviation (5.2%). Thus, the estimated SpjvOs using the breathing
rate is recommended for future analysis. The thumb had the highest estimated SpOq

for each subject, followed by the carotid sitting, carotid supine, and finally the EJV.

The plots presented in Figure 6.6 follow the expected shape of the jugular venous pulse

waveform shown in Figure 6.2. The V, A and C waves are evident in the waveforms,
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which do not appear in either of the carotid artery tests. Subjects with less defined
pulse shapes, such as Subject 3 at the thumb, had a larger variance in calculated SpOo,
showing the accurate calculation of SpOs requires accurate extraction of the peaks and

troughs of the pulse waveform.

There was a greater range in EJV pulse waveform shapes compared to the arterial
waveforms measured at the thumb and carotid artery. This greater range is likely due
to user influence on the pules shape. As the JVP is very low pressure, typically <30
mmHg, any difference in pressure from the sensor on the skin can change the shape of
the pressure waveform. Compared to the venous pulse, arterial pulse waveforms are
at much higher pressure (>50 mmHg), and are thus less likely to be influenced by the

applied sensor pressure.

The mean SpjvOy was in the higher region of the expected physiological range (60-
90%), while, the calculated carotid artery saturation was lower than the expected >95%
SpcOs. These results are likely due to the influence of the carotid and venous waveforms
on each reading. The EJV is located next to the carotid artery, so the measured
JVP likely contains some influence from pulsatile arterial blood, in the reflected light,
increasing the calculated SjvOs. This influence is evident in the results from the carotid
artery while supine and sitting. A lower calculated SpcO2 while supine indicates the
JVP extended along the neck to influence the measured pulse. However, while sitting,
the JVP collapses and minimal venous pulse influence is seen on the arterial pulse
waveform. This positioning and position issue is also evident in the JVP vs breathing
SjvOa, as the arterial waveform can only affect the JVP as no breathing induced changes

in the arterial pulse waveform were recorded.

The typical range of SjvOy is 60-90% [Schneider et al. 1995]. As each of the subjects
were healthy, measured at rest, and lying supine, the oxygen extraction at the brain is
expected to be low, leading to SjvO, readings high in the expected range. Each subject
except for Subject 12 had a breathing SjvOs lower than their SpcOs, indicating that
those outside the expected 60-90% SjvOs range still had a higher SpcOs, implying

reduced oxygen uptake in these patients.
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6.4.1 Limitations

A limitation of the trial is the inability to measure the actual venous and arterial oxygen
saturations using invasive blood sampling as a reference. However, the design of the
trial was to show the influence of the carotid and venous waveforms on each other,
rather than the exact SpOs and values. The results are further confirmed by their
meeting clinical expectations, where direct validation measurement would have been
risky and invasive, although, invasively measuring SvOs would validate Equations 6.2

and 6.3.

The sensor recorded 50 s at each site for 15 subjects. Future testing would require longer
recordings of each subject, as well as more subjects, to get a better understanding of
the variance of measured SjvOs values. Different angles of supine positioning would
also show the effect of the JVP as the amplitude of the pulse extends further along the

neck.

6.5 SUMMARY

This chapter validated the use of an in-house developed pulse oximeter to measure the
oxygen saturation at various sites on the body. A total of 15 subjects were tested at the
thumb, carotid artery and external jugular vein. SpOs measured at the thumb gave
expected saturation values. However, carotid and venous oxygen percentages were
influenced by each other due to their close proximity, leading to slightly lower than
expected SpcOs and slightly higher than expected SjvOy. Thus, the influence of the
carotid and venous waveforms must be accounted for to calculate the actual oxygen
consumption by the brain. This issue is offset by clinical studies showing changes in

volume, versus the absolute value itself, are clinically more relevant.

Better sensor locating and improved sensing precision may also be possible, given the
proof-of-concept sensor presented here. Using the breathing induced pulse waveform
on the EJV gave more promising SjvOs results than using the JVP itself due to the

ability to isolate the venous pulse from the arterial at this frequency.
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Chapter 7

PULSE WAVE VELOCITY HARDWARE

Measurements of PWYV in a clinical setting are not commonly done as the clinical benefit
of PWYV does not warrant the required, additionally invasive measurements from using
two pressure catheters. This chapter describes the design and testing of a non-invasive
pulse wave velocity sensor to enable regular use of PWYV in clinical settings. The main
goal of this chapter is to develop hardware capable of locating a pulse waveform at
several points along the carotid artery to determine the speed of the pulse wave. The
speed of the pulse wave is calculated using two different algorithms: the gold standard

foot-foot method; and a phase difference algorithm.

7.1 INTRODUCTION

Cardiovascular disease is a leading cause of death, responsible for an estimated 30%
of deaths worldwide [Mendis 2015]. Many methods for early risk detection have been
investigated, with arterial pulse wave velocity being an indicator of changing blood
pressure, as well as early detection of the onset of sepsis [Kadoglou et al. 2012, Kazune
et al. 2014]. Pulse wave velocity (PWV) is used as a surrogate to indicate arterial
stiffness, with risk of health complications increasing with higher stiffness levels seen

in higher PWV [Darwich et al. 2015].

Traditional PWYV sensing uses invasive catheters placed at two sites along the arterial
tree, usually the aorta and femoral artery. This regional PWV provides information

across multiple vessels, each with different vascular stiffness [Jani et al. 2014]. Com-
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pared to regional PWV measured between different arteries, PWV measurement of
a single artery provides PWV estimation across the same vascular stiffness. Local
measurement of PWV at an artery has been investigated using non-invasive photo-
plethysmography using two light sensors a known distance apart to measure the pulse

transit time [Kazune et al. 2014, Peter et al. 2015].

When a wave of increased pressure and therefore volume propagates along a blood
vessel, a pulse of blood moves past the sensor, and the additional volume of blood
absorbs more of the emitted light. The recorded pulse is proportional to the pressure
waveform in the measured artery. The time this pressure pulse takes to travel between

two detectors placed along the artery is called the pulse transit time.

Peter et al developed a dual channel photoplethysmograph sensor with sensors placed
60 mm apart and a sample rate of 1kHz [Peter et al. 2015]. Sorenson et al measured
PWYV in the range of 3ms~! to 4ms~! at a measurement separation of 10 mm [Sorensen
et al. 2008], which was similar to the 4.541.2ms~"! found by Obeid et al. [2021]. These
sensors had promising results, but no local PWYV sensor has yet to be further developed

into a commercial sensor.

Shen et al developed a 4x4 array of photodiodes to generate a 2D PPG plot for pulse
oximetry [Shen et al. 2010]. However, each photodiode required an analogue bandpass
filter, an ADC, and a PPG controller. As a result, the system could no fit onto a single
board within the sensing area of the photodiodes, so additional boards were required to
keep the sensing board a usable size. Additional 2D array PPG sensors using an array
of organic LEDs and organic photodiodes (PD) have been developed [Khan et al. 2018,
Simone et al. 2020]. However, these boards require custom fabrication laboratories and

none measure PWV.

This chapter develops a new 2D PPG sensor using the LED-LED detection method to
detect light, allowing construction on a single circuit board, increasing simplicity, and
reducing cost of design, and allowing detection of the arterial pulse wave with an array

of detectors at several distances.
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7.2 METHODS

A sensor with 60 LEDs was built (30 at 660 nm and 30 at 940 nm LEDs). Three arrays
of 20 LEDs (10 at 660 nm and 10 at 940 nm) were used to measure the pulse at different
points along the carotid artery. To reduce footprint size, both the 660 nm and 940 nm
LEDs are contained in a single package. Each package of two LEDs is separated along

the array by 5mm. Figure 7.1 shows the LED layout on the board.

45mm

LED: 1 2

Lateral
Array 1

>
P>

>
>

Lateral
Array 2

Direction of blood flow
Longitudinal Direction

-
<

5mm

Lateral Direction

Figure 7.1 LED layout of the flexible PWV board. Each array is controlled by individual micro-
controllers with 10 660 nm and 940 nm LEDs in each array. To save space, both wavelengths are placed
in a single LED package. Each package is separated by 5 mm.

The sensor has been designed for the simplest placement over the carotid artery. Using
a 2D array of sensing LEDs spanning 50 mm in the longitudinal direction and 45 mm
laterally, ensures that whatever the placement on the neck, the arterial pulse falls
within the area of the sensor. To measure the pulse wave velocity, three lateral arrays

of sensing LEDs are used, spaced at different points along the carotid artery.

Within the three lateral arrays of 20 LEDs, each LED package of the two wavelengths

is separated by 5 mm, giving a total measurement range of 45 mm across the neck. The
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largest arterial pulse amplitude of the 20 measured (10 at 660 nm and 10 at 940 nm) in
each array is taken to be used in PWYV calculation. The hypotenuse between detecting

LEDs is taken as the pulse travel distance.

The carotid arterial pulse waveform is measured at three different points along the
carotid artery with a spacing between detection points of: 0 mm, 20 mm, and 50 mm.
The sensor board was setup as shown in Figure 7.2, where three arrays of emitting and

sensing LEDs span across to the carotid artery, separated by 0 mm, 20 mm, and 50 mm.

Figure 7.2 Placement of the PWYV sensor over the carotid artery. The three arrays of sensing LEDs
spaced by 0mm, 20mm and 50 mm. The timing difference between the pulse waveform recorded by
each array is used to calculate the PWV.

The 1D lateral array ensures that the sensor can capture the arterial pulse waveform
at each measuring site. Thus, the sensor does not need to be perfectly located over the
carotid artery to ensure each array is capable of capturing the arterial pulse waveform,
as the "best’ signal can be selected from the detectors across each 1D array. The time

the arterial pulse wave takes to pass each of the three measuring sites on the carotid
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artery is used to calculate PWV.

7.2.1 Subjects

Data was recorded from a healthy 24 year old male sitting at rest. The sensor was
applied to the neck with minimal pressure using Velcro straps to maintain skin contact.
Five blocks of data, each composed of 30s of sensor data were recorded over eight

hours.

7.2.2 Equipment

Data was recorded on a PC with an Intel Core 17, 32 GB RAM running Windows 10.
The sensor connected to the PC via USB, and data was recorded using a custom built
user interface. The sampling rate of the sensor was limited to a maximum of 570 Hz

by the limitations of sequential sampling using the LED sensing method.

Figure 7.3 shows the top view of the sensor with the placement of the Arduino Micro
and the ATtiny88 microcontrollers. The two switches are used for switching between
programming the board (connect to reset on ATtiny88) or SPI (slave select on attiny88).
The push button is used to reset the Arduino and the dip switches are to dynamically

adjust settings during operation.

On the edges of the board are mounting holes for straps. These straps are used to hold
the sensor against the skin with minimal pressure. The board produced uses Velcro
(attachment points on the left of Figure 7.3). However, other forms such as elastic

would work sufficiently.

As previous methods of PWV detection use between 20 mm and 60 mm reading dis-
tances [Peter et al. 2015, Sorensen et al. 2008], the sensor was constructed with reading
distances of 20 mm, 30 mm and 50 mm to cover this range from literature. These three
1D lateral array spacings are shown in Figure 7.1. At these distances, for an expected

PWYV of 5ms™, the delay times between pulse arrival times at each array are expected
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(5w

Figure 7.3 Top view of LED-LED sensor. Visible are the three ATtiny microcontrollers powering
each array of sensing LEDs (underneath the board) and the Arduino Pro micro used to connect to a
PC via USB serial.

to range from 4ms at 20mm and 10 ms at 50 mm.

The circuit layout used in the sensing array is shown in Figure 7.4. The cathode of
every LED is connected to an individual microcontroller GPIO pin, while the anode
of every alternating LED is connected to dedicated GPIO pins, with a 70} current
limiting resistor. To emit light, one anode GPIO pin (A;) drives output high. Pins Cy,
Cs, Cs, etc can then be individually pulled to logic low to turn each LED on. To detect
light, an anode GPIO pin (Ag) pulls to logic low so that pins Cq, Cy4, Cg, etc can be
driven output high to reverse bias each cathode to 5V and subsequently measure the

LED voltage decay time.

Once the sensor located the largest arterial pulse amplitudes in each array, each of the
3 1D lateral arrays switches to only reading from their two LEDs (6 total readings).
An example set up of sensing LEDs is shown in Figure 7.1, where LEDs 1 and 2, 3
and 4, and 5 and 6 return a pulsatile signal from each respective 1D lateral array.
The maximum allocated time for each LED to decay was set to 300 us to provide a

compromise between sampling rate and low light sensitivity. As each LED is sampled
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Figure 7.4 Circuit diagram for a single wavelength LED-LED detection method used in a 1D lateral
array of sensing LEDs. Each array of detecting LEDs has the anode (A1, Az) of every second LED
connected to a GPIO pin. When detecting light, one LED emits light (C1) and the adjacent LED (Csz)
detects the returning light.

sequentially, reading all six LEDs takes a combined 1.8 ms, giving an overall sample

rate of 570 Hz.

7.2.3 Sensor output processing

The voltage discharge time of the reverse biased LED is proportional to the incident
light intensity. A pulse oximeter normalises the light intensity by dividing by the
emitted light intensity, making the recording unit-less. Further, only the pulsatile
component of the signal is analysed, removing the influence of any constant conditions
affecting light absorption. Thus, the arterial pulse waveforms recorded in this chapter

are represented as «/Ip, a relative light reflection intensity of the detected light.

Two different signal processing techniques are implemented to calculate the PWV from
the PPG signals. The first method uses an expert human who manually identifies the
position of the PPG inflection point at the start of systole (foot of the waveform) of
two arterial pulse waveforms recorded a known distance apart. The pulse transit time

(PTT) between the feet recorded at each array is then used to calculate PWV, as given:

(dLEDz—LEDy) (7.1)

PWV =
PTTiEps—LEDy
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where:

d: Distance between sensing LEDs.

LEDx: Sensing LED that the pulse wave first travels through.

LEDy: Sensing LED that the pulse wave travels through second.

PTT: Pulse transit time between LEDx and LEDy.

The phase difference method analyses the two arterial pulse waveforms in the frequency
domain, analysing both the FFT magnitude and phase. The phase from LEDy is
subtracted from LEDx to get the phase difference. The phase difference is then re-
constructed into the time domain using the combined magnitude spectrum from each
signal. The reconstruction in the time domain gives the PTT as the time the peak of

the waveform occurs at. Further detail of this method will be presented in Chapter 8.

7.2.4 Analysis

Analysis of the sensor uses the data recorded from the PWYV sensor at three sites along
the carotid artery. A 30 second data-set consisting of 65 beats is used to determine
the accuracy of the PWYV sensor. Time series plots of both the 660 nm and 940 nm
wavelength LEDs shows the validity of using an array of LEDs spaced approximately
perpendicular to the carotid artery. Combining the readings at each LED into a 3D
plot would demonstrate the sensors capability to find the pulse, even with inaccurate

placement over the carotid artery.

The foot-foot method and phase difference method are used to calculate PWV from
the PPG waveforms. A trained expert was used to manually identify the location of
the foot at each waveform for analysis. The mean PWV and standard deviation will

be calculated for each method.
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Figure 7.5 Example plot from one of the three sensing arrays. The first column of arterial pulse
waveforms are the recordings of the nine 660 nm sensing LEDs. The second column is recorded wave-
forms of the 940 nm LEDs. The top (660 nm) and bottom (940nm) 3D plot shows the time series pulse
waveform across the neck.

7.3 RESULTS

The readings from each LED in a single array are shown in Figure 7.5. The first
column of arterial pulse waveforms are the recordings of the 9 660 nm sensing LEDs.
The second column is the recorded arterial pulse waveforms of the 940 nm LEDs. These
waveforms can be combined to form a time-series plot of the pulse waveform across the
neck, where the top 3D plot shows the 660 nm waveforms and the bottom 3D plot

shows the 940 nm waveforms.

During testing of the sensor was placed on the neck, as shown in Figure 7.2. The 5
and 6 LEDs in each 1D lateral array gave the strongest pulse amplitudes. These are
the LEDs labelled 1-6 in Figure 7.1. The data from these LEDs are shown in Figure

7.6. Time series data was filtered with a 15 Hz cut off low-pass Butterworth IIR filter.

Figure 7.6 shows the recorded arterial pulse waveforms at the carotid artery. A five
beat section of data recorded by LEDs 1-6 (from Figure 7.1) are plotted for analysis.
The amplitude of each LED pulse in Figure 7.6 ranges from 12 clock counts (1.5 ps,
LED 5) to 70 clock counts (8.75ps, LED 3) with a resolution of 2 clock counts (250 ns).



120 CHAPTER 7 PULSE WAVE VELOCITY HARDWARE

1100 : : : . : .
1050 —Jlfﬂ“’" \\II(( "‘J\llf\/\wlf' \/\[\/\f LED4 |
1000 | ]

\ A e LED 2
950 1 /N TN AN

900 r 1

)
wn

850 | [~ TN o T T :

800 ]
) i LED 1
750 b/ N -y N WA ]

Relative Reflection Intensity m’ID

200 . . . . . .
Time (s)

Figure 7.6 Pulse amplitudes in the carotid artery at Omm (LED 1 and 2), 20mm (LED 3 and 4)

and 50 mm (LED 5 and 6).

As the LEDs integrate the reflected light intensity, greater light absorption, i.e. less

returning light, is represented by a longer LED discharge time.

Table 7.1 compares the foot to foot and the phase difference method within the expected
range for a select few LEDs. Both the foot-foot and phase difference methods struggled
with the data from LEDs 2 and 5, providing PTT results that were unrealistic. Possibly

due to some feature of the waveform shape.

For both methods, all results from testing between LEDs 1-3, 1-4, 3-6, 4-6, 1-6 were
acceptable. This result shows that using many LED across the array provides a robust

method to identify and exclude erroneous data.

7.4 DISCUSSION

The PWYV sensor developed in this work gave results within the expected physiological
range. However, only at the maximum 50 mm sensor separation did the mean of the

foot-foot and phase difference method return similar results. The foot-foot method gave
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Table 7.1 Comparison between foot-foot PWV and the phase detection PWV method for different
LED reading distances.

Sensor Spacing LEDs Foot-Foot ms~! | Phase Difference ms™!
1-3 6.8 7.4
2-3 2.0 10.5
20 mm 1-4 4.6 4.4
2-4 1.7 -12.6
mean (£std) All LEDs 3.8 (£2.4) 2.4 (£10.3)
LEDs 1-3,1-4 | 5.5 (£1.3) 5.9(£2.1)
3-6 3.8 4.3
4-6 4.7 4.2
S0mm 3-5 4.7 1.9
4-5 6.0 1.4
mean (£std) All LEDs 4.8 (£0.9) 2.9 (£1.4)
1-6 4.6 4.5
2-6 2.8 6.3
S0 mm 1-5 5.3 2.2
2-5 3.0 2.7
mean (+std) | All LEDs 3.9 (£1.2) 3.9 (+£1.8)
LEDs 1-6,1-5 4.9(+£0.5) 3.4(£1.6)

more reliable results than the phase difference method, with a lower standard deviation
across all measurement distances, although, the position of each foot is difficult to
locate, and had to be done manually. The time resolution of each measurement is
1.75 ms, meaning the associated variation in PWV may vary by as much as 1.5ms™ 1,
a large (30%) variation when the expected range is 6ms~! to 11ms~!. Thus, a faster

sample rate is needed to improve accuracy. With a faster sample rate, the phase method

is expected to perform better than the foot-foot method.

The phase difference method has the same time resolution as the foot-foot method.
However, the phase is taken across the whole signal, essentially averaging the errors in
each foot position of each waveform. It was expected each LED plot would be the same
shape, meaning the phase difference results solely from the PWV and not other effects.
This assumption did not hold, as sensor pressure was different for each LED, giving
different pulse shapes and amplitudes. An increase in pressure reduces the volume of
blood under the sensor, reducing the pulse amplitude, and changing the local arterial

elastance and thus potentially PWV.

Signal amplitudes varied between each LED reading, with the systole of LED 5 much
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less pronounced than the others. LED 5 had a pulse amplitude of 12 clock counts,
with a resolution of 2 clock counts. These values only gave a range of 6 different values
between the peak and trough of the waveform. While filtering did smooth the signal,

the pulse amplitude is required to be larger to reliably give the waveform foot.

The benefit of the regional carotid-femoral PWV method is the large distance between
sensors. Local measurement must occur at a faster sample rate to get the same PWV
calculation reliability. At 570 Hz, the sensor was shown to estimate PWV within physi-
ological regions. However, a sample rate of at least 1 kHz would improve both methods
of detection. At 20mm, 30 mm and 50 mm, a PWV of 5ms~! would result in a PTT
of 4ms, 6 ms and 10 ms respectively. A benefit of this sensor is the ability to isolate
the largest amplitude signal across each array. The sensor can be placed on the neck,
with the carotid artery highly likely to be within the 50 mm each array spans. Thus,

signals such as LED 2 and LED 5 can be discarded for better signals.

7.4.1 Limitations

Data from only one subject was collected for analysis and no gold standard data was
available to compare the results to. A trial with more subjects would produce a greater

variety of PWV measurements.

The sensor was capable of locating the pulse at each array, but accuracy was limited
by the sensing resolution and sample rate. The microcontroller is only able to sample

at only 570 Hz, with a clock rate of 8 MHz.

7.4.2 Recommendations

The next design of the sensor should have dedicated emitting and detecting LEDs. This
choice removes the driving current restriction of 20mA and allows a constant current
LED driver to power the LEDs at higher current. A higher emitter drive current

results in more light detected by the detecting LED and thus, a faster LED voltage
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decay time. To measure this faster decay time, a microcontroller with a clock rate

greater than 16 MHz is recommended.

7.5 SUMMARY

This chapter described the design and testing of a pulse wave velocity (PWV) sensor
placed on the carotid artery. The sensor measured arterial pulse waveforms at each
1D lateral array, and calculated the pulse transit time between them. The foot-foot

method gave more reliable PWV calculations (SD <2.4ms™1).

The sample rate of 570 Hz was fast enough to give PWV values in the region of 4ms~!.
However, it is recommended to use a faster sample rate as PWV may vary by 1.5ms™*
using the foot-foot method. Further work on the sensor will increase the power of the

LEDs, have a microcontroller clock rate >16 MHz and will sample at 1kHz or faster.

The accuracy of the sensor must be improved before further testing to validate against
known PWYV values. Additional testing of the phase detection method is recommended

on regional aorta-femoral pulse wave velocity to validate the method.






Chapter 8

PULSE WAVE VELOCITY PHASE DIFFERENCE
ALGORITHM

This chapter develops a phase difference method to calculate pulse transit time. The
sensor developed in Chapter 7 did not sample at a high enough frequency to accurately
determine PTT over the short measurement distances with either the foot-foot or phase
difference method. Thus, this chapter analyses the use of these methods using aorta-

femoral arterial pressure waveforms recorded in porcine trials.

8.1 INTRODUCTION

The "foot-foot" method measured between the aorta and femoral artery is the current
gold standard for measuring PWV, where the time difference between a feature common
to the two recordings of PTT, which can be converted to PWV with known separation
in space. The foot of the waveform is the most commonly used feature, defined as the
inflection point of the pulse waveforms at the start of systole [Boutouyrie et al. 2009].
The difference in timing between the foot of each waveform gives the pulse transit time
(PTT). If the distance between two points of measurement is known (carotid-femoral

or aorta-femoral), the PTT can be used to calculate PWV.

The PTT between the aorta and femoral arteries are commonly measured using an
invasive dual lumen catheter inserted through the aorta. The distance the arterial
pulse waveform travels along the arterial tree is either calculated using the length of

the dual lumen catheter, or by estimating the distance using calipers [Jianwen Luo et al.
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2012]. Measuring between different arteries along the arterial tree is called "regional"
pulse wave velocity [Hermeling et al. 2007]. During systolic cardiac contraction, the
pressure wave propagates down the arterial tree, travelling from the large arteries to the
peripheries, with a corresponding increasing arterial stiffness, and therefore propagation

speed [Jani et al. 2014].

For regional PTT (aorta-femoral) calculation, using the phase difference method was
estimated to be negatively impacted by the wave reflectance due to the different pulse
features evident in the aortic and femoral pulse waveforms at different parts along the
artery in Figure 8.1 [Bertram et al. 1997, Segers et al. 2009]. However, the phase differ-
ence across the low frequency harmonics (1 Hz to 30 Hz) has not yet been investigated
for regional PWV. Only PWYV local to a single artery (carotid, radial or femoral) has
been investigated [Pereira et al. 2011, Xu 2002], with good results in-vitro, but poor

in-vivo results due to low sample rates and high noise levels.
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Figure 8.1 Section of filtered pulse waveforms from the aorta and femoral artery used to calculate
pulse transit time. The time difference between the identified feet of the aortic and femoral waveforms
is the PTT.

The goal of this chapter is to compare the foot-foot common feature PTT detection
method to the phase difference method in regional PTT estimation (aorta-femoral

PTT), where the shape and features of the two waveforms are different.
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8.2 METHODS

This chapter uses aortic and femoral pulse waveforms acquired from 5 pigs undergoing
induced cardiovascular changes. These experiments were part of a larger study into
cardiovascular monitoring. A subset of the data acquired can be used to investigate
the effect of differently shaped pulse waveforms on the accuracy of the phase difference
method at calculating PTT [Ghuysen et al. 2008, Morimont et al. 2012]. Catheters
placed in the aorta and femoral artery of each pig continuously measured the arterial
pressure signal. Previous research with this data by Balmer et el investigated using
a shear transform method to identify the foot of each waveform [Balmer et al. 2018a].
Each identified foot was then used to calculate the beat-beat PTT. This study com-
pares the phase difference method of measuring PTT to the shear transform method

developed by Balmer et el.

8.2.1 Subjects

Pig experiments were conducted at the Centre Hospitalier Universitaire de Liege, Bel-
gium and approved by the Ethics Committee of the University of Liege Medical Faculty,

permit number 1452 [Ghuysen et al. 2008, Morimont et al. 2012].

Five pure Piétrain pigs were used, weighing 18.5kg to 29.0kg. Diazepam (1 mgkg™1!)
and Zoletil (0.1 mLkg~!) were used for initial sedation and anaesthesia. To maintain
sedation and anesthesia, sufentanil ( 0.1 mLkg~'h~! at 0.005mgmL~!), Thiobarbital
(0.1mLkg 'h~!) and Nimbex (ImLkg 'h~! at 2mgmL~!) were delivered via supe-
rior vena cava catheter [Balmer et al. 2020]. A PEEP of 5 cmH0 and tidal volume of
10mL kg~! were maintained with mechanical ventilation via tracheostomy delivered by
a GE Engstrom CareStation mechanical ventilator (GE 92 Healthcare, Waukesha, WI,
USA). Blood pressure was measured in the proximal aorta (P,,) and femoral artery
(Pfem) using high fidelity pressure catheters (Transonic, Ithaca, NY, USA). The place-

ment of the pressure catheter is shown in Figure 8.2.

Each pig has two recordings of 5 minutes (445 pulse waveforms for each recording)
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Figure 8.2 Placement of the high fidelity pressure catheter in the porcine trial. The pressure wave-
forms are measured in the proximal aorta and the femoral artery.

at different haemodynamic states, totalling 4450 beats. While only 5 pigs have been
investigated, different cardiovascular states were recorded for each pig, so a range of
waveform shapes occurred in each recorded dataset. All data was sampled at 1kHz and
then filtered with a 5" order Butterworth lowpass filter, with a cut-off frequency of 20
Hz for the foot-foot method. The phase difference method used the unfiltered data as

inputs to the algorithm.

8.2.2 Sensor output processing

The main difference between the foot-foot and phase difference algorithm is the foot-
foot method returns beat-to-beat PTT, while, the phase detection method measures
across a section of beats, returning the average PTT. Calculation of PTT using the foot-
foot method is done in the time domain by locating a shared feature on each waveform,

usually the foot, and the time between the foot of each waveform is the PTT.
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Figure 8.3 Path of pulsatile data through the phase difference algorithm to calculate PTT.

In the phase difference method, each waveform of a common time base must first
be converted to the frequency domain, returning the frequency magnitude and phase
information. The phase from one FFT phase is then subtracted from the phase of the
other FFT to get the phase difference. As the shape of each waveform is expected to
be similar, the difference between the two phase waveforms is assumed to be the time
taken for the pulse waveform to travel between the two sites of measurement. The flow

of data through the algorithm is shown in Figure 8.3.

Reconstructing the phase difference back into the time domain using the geometric
mean spectral magnitude of the two waveforms creates a waveform with a peak am-
plitude occurring at the maximum phase difference, i.e. the pulse transit time. Thus,
the phase difference can be used to determine the time delay. Figure 8.4 shows the
reconstructed phase difference between the arterial pulse waveform measured at two

sites along the arterial tree (aorta-femoral).

By using geometric mean of the two spectral magnitudes, the reconstructed waveform
favours the FF'T with the larger magnitude at the reconstructed frequencies, such as the
harmonic [Pintelon et al. 1988]. Thus, the two arterial pulse waveforms can be different
amplitudes, and the reconstruction will bias towards the larger amplitude signal. The

steps used in the phase difference method are defined in Algorithm 8.1:

The phase delay is assumed to be consistent across a section of beats recorded at two
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Normalised Reconstructed PD in Time Domain
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Figure 8.4 Normalised phase difference (PD) waveform reconstructed in the time domain. The time
delay with the highest reconstructed phase difference is the pulse transit time (PTT). The green lines
represent the physiological boundaries of the expected PTT, and the red line shows the estimated PTT.

Algorithm 8.1 Phase Difference Algorithm

1 < aortic waveform
9 < femoral waveform

X1 =FFT(x1) > Generate FFT of data.
X2 = FFT(CL‘Q)

PD = phase(X;) — phase(X2) > Calculate phase difference (PD)
magn = sqrt(abs(X1) x abs(X3)) > Compute the geometric mean spectral
magnitude

recon = real(ifft(magn x exp(i x PD))) > Reconstruct weighted PD in time
domain.

[PeakTime, Peak Amp| = max(recon) > Locate the maximum peak in time
domain

return PTT < PeakTime
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sites. Therefore, the aortic and femoral waveforms are compared in the frequency
domain to obtain the phase difference. The resolution of the phase difference method
is limited to the sample rate of the sensor, for example a 1 kHz sample rate has a timing
resolution of 1 ms. Using the phase of the whole waveform is shown to improve timing
[Zhang et al. 2018]. The method takes in two waveforms of equal length and sample

rate. Various parameters of the model can be changed to fit different requirements:

e To improve algorithm response time to changing PTT, the algorithm can be run

on just a few beats, increasing time response, but reducing robustness to noise.

o Lowering the cutoff frequency for the low pass filter allows slower sampling rates,
but flattens the peak in Figure 8.4, increasing the risk of incorrect phase difference

time domain reconstruction.

e Sample rates also affect the accuracy of the algorithm as high frequency features

such as the feet of the waveforms, which may be lost at low sample rates.

8.2.3 Analysis

To investigate the effect of different sample lengths and sample rates over a range
of 4450 porcine beats, a sensitivity analysis was generated, comparing the low-pass
filter cutoff frequency, the time series sample length and the sampling frequency. The
original sample rate recorded at 1kHz was decimated to lower sample rates, ranging
from 1 (1kHz) to 10 (100Hz). A time series sample length of 1s to 15s was tested.
Four different cutoff frequencies were also tested (16, 20, 24, 28 Hz). This analysis will
show the RMSE between the foot-foot and phase difference PTT values at each of these
settings. Using the sensitivity analysis, we can determine the minimum of each setting

required to maximise accuracy.

The results of the foot-foot method and the phase difference method were compared us-
ing correlation analysis and Bland-Altman plots. Correlation plots show the regression

analysis as well as the coefficient of determination (R?). The coefficient of determina-
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tion represents the fraction of total observed variation between the two PTT calculation

methods captured by the model.

The closer R? is to 1, the smaller the variation between methods. However, correlation
does not imply agreement in the absolute sense [Bland and Altman 1986]. Therefore,
Bland Altman analysis was used to assess the degree of agreement between the foot-
foot method and phase difference method and identify any model bias in the phase

difference method.

To compare the sensitivity to noise, pink noise was introduced in the frequency band
of 1 Hz to 500 Hz to the data to compare the sensitivity to noise of both the foot-foot
method and phase difference method. The signal to noise ratio (SNR) values of the
noisy data ranged from 4dB to 36 dB. The phase method used a cut-off frequency of

35 Hz with a sample length of 5 beats.

8.3 RESULTS

The data from 5 pigs was sampled at 1kHz for 890 (2x 445 beat sections) beats per
pig. To reduce spectral leakage in the computation of the signal spectrum, an interval
corresponding to 5 complete beats was processed in each instance. Figure 8.5 shows
the varied pulse shapes measured in the pigs. Example 1 has the aortic and femoral
pulses overlapping other than the feet of each waveform. Examples 2 and 5 show a
femoral pulse with accentuated dicrotic notches, while examples 3 and 4 have defined
femoral systolic peaks, but differently shaped dicrotic notches. Example 6 displays a
completely different pulse shape with no femoral dicrotic notch and an aortic pulse

with a delayed dicrotic notch.

A sensitivity analysis was performed to assess the effects of the sample rate, low-pass
cut-off frequency and buffer length and is shown in Figure 8.6. The RMSE between

the foot-foot method and the phase method ranged from 2ms to 8 ms.

For all cutoff-frequencies, the minimum acceptable buffer length was found to be two sec-

onds (two heart beats). Increasing the cut-off frequency of the Kaiser window reduces
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Figure 8.5 Example mean-centred waveforms showing the variation in beat shape across the data-set.
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Figure 8.6 Sensitivity analysis of the RMSE between the foot-foot and phase difference method.
Each plot shows the effect of changing the decimation rate, low-pass cut-off frequency and the buffer

length.
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RMSE as the reconstructed time domain peaks are more pronounced. The decimation

rate of the data ranged from 1-10 (1 kHz-100 Hz).

Figure 8.7 compares the results from the foot-foot method and the phase difference
method. The phase difference method used a cut-off frequency of 35 Hz, a buffer length
of 4 seconds, and a sample rate of 1kHz. Depending on the pig, the phase difference
PTT sits just above or below the foot-foot PWV. Only Pig 1 has the phase difference
PTT change between over- and under-estimating the PTT, compared to the foot-foot

method.

The correlation (left) and Bland-Altman (right) plots in Figure 8.8 show the overall
regression analysis for the 5 pigs, with a total of 4450 beats. A cut-off frequency of
35 Hz with 5 beats sampled at 1 kHz was used for the phase difference method. The R?
value is 0.99, with PTT values ranging from 44 ms to 108 ms. However, these results

can be misleading due to the clustering of each individual pig data Bewick et al. [2003].

The correlation plot shows a modest underestimation of PTT at lower PTT values and
an overestimation at higher PTT values. The mean PTT offset is -1 ms (phase method

leads foot-foot by one sample) with a standard deviation of 3ms.

The Bland-Altman plot in Figure 8.8 shows that Pig 1 has the highest variation in
PTT estimations by the phase difference algorithm. Pigs 3 and 5 show close fit between
methods with few outliers in the reading, while Pigs 2 and 4 show a consistent under
estimation in the phase difference method. Pig 4 shows a high variation in the foot-foot

method, jumping between PWYV values.

8.3.1 Noise Sensitivity

Table 8.1 shows the results of introducing pink noise (0 Hz to 500 Hz) to the raw aortic
and femoral pulse data, increasing the SNR by 4dB each step. The RMSE error in
Table 8.1 is the difference between the foot-foot method results on the original signal
and the response of the phase difference and foot-foot method at each SNR level. The

phase difference method retains lower RMSE values at lower SNR values (higher noise).
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Figure 8.7 Calculated PTT values for the foot-foot method (blue), and the phase different method
(orange). Results from the two data-sets from each of the five pigs is shown.
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Figure 8.8 Correlation and Bland-Altman analysis: The correlation plot (left) shows the relationship
between relative change in the phase difference method relative to the foot-foot method. The Bland-
Altman plot (right) shows the agreements between the foot-foot and phase difference method for all

pigs.

Table 8.1 The response of the foot-foot method and phase difference method to signals with increas-
ing SNR. The RMSE error is the difference between the foot-foot method results on the original low
noise signal, and the response of the phase difference and foot-foot method at each SNR level.

Waveform SNR (dB)
4 8 12 16 20 24 28 32 36

Phase difference
RMSE (ms)
Foot-Foot
RMSE (ms)

23.7 207 140 7.8 35 28 25 24 24

54.2 344 174 9.0 47 34 24 23 22
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8.4 DISCUSSION

The results from the phase difference method gave consistent results with the gold
standard foot-foot method at a range of arterial pulse waveform shapes, and in the
presence of increasing noise levels. Thus, the phase difference method is viable for use

in calculating PTT.

The pig trials introduced various changes to the haemodynamic state [Ghuysen et al.
2008, Morimont et al. 2012], generating a wide range of aortic and femoral beat shapes
as shown in Figure 8.5. Pulse 1 (Pig 1) has the aortic and femoral pulse sharing the
same fundamental frequency and phase with only the feet of each waveform being
different. As the phase method reconstructs the phase difference with the geometric
mean of the two FFT magnitudes, the phase change at the foot is most prominent,
allowing the method to track PTT closely. However, as shown in Figure 8.8, this pulse
has the highest variation compared to the foot-foot method. Pulses 2 and 5 have poorly
defined femoral feet waveforms, causing the foot-foot method to often track to the start

or end of the flat section.

The phase method consistently tracked to the start of the poorly defined foot, causing
a constant offset in estimated PTT. The aortic and femoral waveforms in pulses 3 and
4 have the highest shape variance, but the lowest error in PTT calculation, implying
that the shape of the waveforms is not a large factor in PTT accuracy. Pulse 5 also
shows a waveform shape with low PTT measurement error, confirming while there are
only 5 pigs in this study, there is a wide variety of pulse waveform shapes to compare

the foot-foot method to the phase difference method.

Figure 8.6 shows the results of the sensitivity analysis. A cut-off frequency of 15 Hz led
to a high RMSE as the reconstructed phase difference waveform lacked high frequency
components needed for accurate reconstruction and a cut-off frequency above 35 Hz
was deemed unnecessary for retaining necessary frequency components. Thus, a cut-off

frequency above 25 Hz gives satisfactory results (RMSE < 3ms) at higher sample rates.

As expected, the RMSE increased with decimation rate, with sample rates decimated
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to 250 Hz having minimal increases in error. This result shows the method will work
with sensors operating at 250 Hz, or, sampling at 1 kHz with a 4x reduction in distance

between measurement sites.

The buffer length for the phase difference method ranged from 0.5s to 15s in increments
of 0.5s. An increase in accuracy coincided with an increase in buffer length. However,
a buffer length above 4 s gives minimal improvement and decreases sensitivity to beat
to beat changes in PTT, as shown in the minimal changes in RMSE after 4s in Figure

8.6 .

All analyses used a sample rate of 1 kHz, a cut-off frequency of 35 Hz and a buffer length
of 5 beats. Integer beats were used to reduce spectral leakage in the FFTs, although
Figure 8.6 shows that this has minimal effect. The correlation and Bland-Altman
plot in Figure 8.8 show the high accuracy of the phase detection method (R2) of 0.99.
However, there is an offset of -1 ms (one sample at 1kHz) shown in the Bland-Altman
plot. This offset is likely due to the lower frequency harmonics of the waveforms having
higher amplitudes than the higher frequencies responsible for the sharp edge forming

the feet of the waveforms.

Table 8.1 shows the phase difference method is less sensitive to noise than the foot-
foot method, as the phase difference method measures across multiple beats, using the
whole waveform to estimate PTT. In contrast, the foot-foot method only takes a single
point of the waveform, which is more susceptible to noise introduced errors. For the
phase method, an SNR of 20 dB has an acceptable RMSE of 3.5 ms, while the foot-foot
method requires an SNR of 24dB to achieve the same RMSE.

As the phase difference method is capable of calculating PPT with different aortic and
femoral pulse shapes, this method should also be applicable to PTTs measured locally
to one artery. In this circumstance, the two waveforms are likely to have very similar

shape with all FF'T harmonics experiencing the same time delay.
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8.5 SUMMARY

This chapter investigated the phase difference method for measurement of peripheral
pulse transit time (PTT) between the aorta and femoral artery, identifying the PTT in
differently shaped pulse waveforms. The phase difference method gave the same PTT
results as the gold standard foot-foot method across a wide range of aortic and femoral
pulse shapes obtained from haemodynamic interventions during a porcine trial, but

had better immunity to noise.

The correlation between the two methods had an R? of 0.99 and a mean PTT difference
of 1ms (one sample at 1kHz). Noise at varying SNR values of 4dB to 36dB was
introduced to the system, with the phase difference method producing an RMSE of
3.5ms at 20dB, while the foot-foot method required an SNR, of 24 dB to achieve the
same result. Final parameters for the phase difference method uses a buffer size of 5
beats sampled at 1kHz and a low-pass cut-off frequency of 35 Hz. Therefore, the phase

difference method is a viable option to measure PTT for peripheral PWYV calculation.

The minimum sample rate identified by the sensitivity analysis was 250 Hz at an esti-
mated distance of 0.4 m between sites. Thus, for measuring the local PWV of an artery,
such as the radial artery, at a distance of 40 mm, the minimum sample period would
be 2.5kHz. The sensor presented in Chapter 7 should be redesigned to run at 3kHz

with a spatial distance of 40 mm to ensure sufficient timing resolution.






Chapter 9

PULSE WAVE VELOCITY SENSOR VALIDATION

The phase difference method developed in Chapter 8 was shown to be accurate at
calculating regional pulse wave velocity between the aorta and femoral artery in porcine
data. However, for the method to work on PWYV local to an artery, an improved
sensor needed to be developed. This sensor combines the pulse wave velocity concept
developed in Chapter 7 with the hardware developed in Chapter 4. As the previous
PWYV sensor array was not accurate enough, the SvO5 sensor was adapted to measure
PWYV. Both the foot-foot and phase detection methods are used to analyse human data

measured by the sensor.

9.1 INTRODUCTION

Pulse wave velocity measured locally in a single artery has the potential to provide
novel, clinically useful cardiovascular health information currently requiring invasive
methods [O’Rourke et al. 2002]. A non-invasive light-based sensor using reflectance
PPG allows measurement on arteries such as the carotid and radial arteries, providing
similar cardiovascular information to the aortic pulse waveform recorded invasively
[Millasseau et al. 2003]. The sensor presented in Chapter 7 demonstrated the ability to
measure the arterial pulse wave in the carotid artery. However, this sensor had several
limitations, including the low sample rate, low emitter light intensity, and intermittent

contact with the neck.

To obtain the high sample rate required to measure PTT along the radial artery, high-
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fidelity ’'pencil type’ micro-manometers are traditionally used [Gurovich and Braith
2011]. Commercial devices using oscillographic techniques have been released to market,
but are not yet accurate enough to be considered gold standards [Mahmud et al. 2009,
Nemcsik et al. 2009].

Obeid et al developed a piezo-electric sensor to measure the pulse wave at the radial
artery and finger tip, giving the radial-digit PWV [Obeid et al. 2021]. Results from this
sensor were consistent with the commercial device, Compilor (Alam Medical, France),
measuring at the same sites, giving an average radial PWV of 4.5 + 1.2ms~!. However,

the authors did not disclose the design of the sensor, or the sample rate.

This chapter builds on the initial proof of concept sensor from Chapter 7, replacing the
2D array of LEDs with three individual sensing LEDs at 20 mm intervals. This design
approach has the potential downside of requiring accurate sensor placement. However,
arterial pulse waveforms were able to be consistently detected across each of the 20
LEDs in each 1D lateral array of the previous design, so this change was expected to
have minimal impact on outcomes. This chapter also compares the foot-foot method
and phase difference methods for calculating PTT, using this sensor, as well as the

impact and quality of sampling at 3kHz.

9.2 METHODS

A trial was run to validate the performance of the improved PWV sensor. This trial
measured the radial artery pulse at three site separated by 20 mm for analysis. Both
the foot-foot and phase difference method are used to analyse the raw signals. The
sensor used in this chapter combines an array of LEDs as presented in Chapter 7, but
uses the Teensy 4.0 microprocessor used in Chapter 4 to achieve the 3kHz sampling

rate required to measure the PWYV at the radial artery.

Figure 9.1 shows the position of the sensor along the radial artery. The sensor is placed
over the radial artery with LED 1 proximal to the heart, as shown by the indicator

pointing to the heart in Figure 9.2. This specific placement ensures that the pulse wave
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first travels past LED 1, then LED 2, and finally LED 3. Analysis of this sensor will
focus on the 40 mm spacing between LEDs 1 and 3 as this separation is expected to

give the most accurate PWV measurement.

20mm 20 mm
—

¥_

Radial Artery

Figure 9.1 Approximate position of the pulse wave velocity sensor along the radial artery.

9.2.1 Subjects

The validate the local PWV sensor, a trial including four subjects was run. This trial
uses radial pulse data recorded from 4 subjects. All subjects recruited were healthy
individuals with no known cardiovascular health problems. The patient demographics
are included in Table 9.1. This study was approved by the Human Ethics Committee,
University of Canterbury (HEC2019/153) and informed consent was obtained from

each participant prior to the experiment.

Table 9.1 Local PWV trial subject demographics. Data is shown in median [IQR] where appropriate.

Subjects 4
Age (years) 26[24-28]
Sex (M/F) 3/1
Ethnicity (Maori/ NZ European/ other) | 3/1/0

Each subject was requested to be rested and seated at the time of measurement. The
radial artery in the right arm was held level with the heart for measuring PWV, and

the patient themselves applied the sensor for each test.
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9.2.2 Equipment

The sensor designed to measure SpvOy in Chapter 4 was adapted to measure pulse
wave velocity on the radial artery, with a sample rate of 3kHz. Figure 9.2 shows the
adapted sensor. The drive board of the SpvOs sensor is retained, with only the sense
board changed to contain 3 sensing locations using the XZM2MRTNI55W-8 (SunLED
[2017], USA) package of 660 nm and 940 nm LEDs.

5mm
20 mm
20 mm
Indicator for B
direction Emitter Detector

Figure 9.2 Pulse wave velocity sensor design for local PWV measurement on the radial artery. The
arterial pulse is measured at 20 mm intervals along the radial artery.

Data was transmitted from the sensor via serial for recording on a PC with an Intel
Core 17, 32 GB RAM running Windows 10. A graphical user interface was developed
to plot the photoplethysmograph waveform measured along the radial artery, shown
in Figure 9.3. Each of three coloured plots in the window represents one of the three
660nm LED. A 20Hz FIR lowpass filter was implemented to aid data visualisation.
The subject number, notes, and site measured are entered into the window for data-
logging. Once the data has been entered, the "Press To Save Info" button saves the
subject details. The "Start" button is then pressed and the GUI displays and records

30's of pulse waveforms.

If the subject moves, or the signal quality drops, the recording can be restarted with
the "Restart Recording" button. Once the GUI has finished recording for 30s, "Save

and stop recording" saves the data to file.
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Subject number:

Testi]
Start ]

Notes:

Restart Recording

Enter any notes here

Save and stop
recording

Save all data
to cloud

Press To Save Info
Close

Recording: 6 / 30 seconds.

Figure 9.3 User interface developed to plot the three measured pulse waveforms along the radial
artery.

Each sensing location is separated by 20 mm to measure the arterial pulse at 0, 20 and
40mm. The distance between emitting and detecting LEDs is 5mm. As in the PWV
sensing array sensor presented in Chapter 7, only the 660 nm LEDs are used to measure
the PWV. Each of the three sensing LEDs sample at the same time. This simultaneous
sampling removes the delay included by sequentially sampling each LED present in the
previous version of the sensor. The light emitted by each emitting LED is assumed to

not interfere with the other sensing LEDs due to the 20 mm spacing.

As the required sensing LED discharge voltage discharge time is <333 ps (sample rate
of 3kHz), the emitting LEDs are run at the maximum 57 mA to provide maximum illu-
mination. To reduce risk of eye light exposure from the bright emitters, the system use

the skin detection feature described in Chapter 3 to avoid unnecessary light exposure.

9.2.3 Sensor output processing

Once pulsatile data was recorded at the radial artery for each of the four subjects, the
foot-foot and phase difference methods were used to analyse the data. The foot-foot

method used the shear transform detection method developed by Balmer et al. [2018a].
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Normalised Reconstructed PD in Time Domain
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Figure 9.4 Normalised phase difference (PD) waveform reconstructed in the time domain with a
filter cut-off frequency of 35Hz and time series buffer length of 4 seconds. The time delay with the
highest amplitude within the expected range is the pulse transit time (PTT). The green lines represent
the physiological boundaries of the expected PTT, and the red line shows the estimated PTT.

The settings for the phase difference algorithm were first tested with the same settings
used in Chapter 8. Specifically, a filter cut-off frequency of 35 Hz and a time series buffer
size of four seconds. Once the signals have been converted to the frequency domain,
and the phase difference calculated, the phase difference is then combined with the
FFT magnitude spectrum of each signal to reconstruct a time domain waveform. The

time the peak of this reconstructed waveform occurs is the PTT.

The cut-off frequency of 35 Hz was found to be too low, not producing a definite peak
in the time domain reconstruction. This flat peak is shown in Figure 9.4, with the
calculated time delay varying greatly within the physiological range, shown in green.
Thus, the cut-off frequency and time series buffer length were increased to 75 Hz and
5 s respectively. While the new cut-off frequency was heuristically chosen, the settings
were consistent across all measured data. The time domain reconstruction with these

settings is shown in Figure 9.7.
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9.2.4 Analysis

Pulse wave velocity was assessed in four subjects at the radial artery. The range of

L to

acceptable PWYV values was limited to expected physiological range of 1.5ms™
15ms~!. The performance of the foot-foot and phase difference method was analysed

for their mean, CoV, and percentage of data outside of physiological range.

The required adjustment to the parameters of the phase difference method presented
in Chapter 8 is also assessed, as the increase in sample rate and decrease in distance

between measurement sites required new filter parameters.

9.3 RESULTS

Figure 9.5 plots an example set of three waveforms used to calculate PWV. A 0.67 Hz
to 15 Hz IIR bandpass filter is applied to the data for visualisation. The arterial pulse
waveforms for Subjects 1,3, and 4 are clearly visible for each of three sites measured.
However, each of the three pulse waveforms for Subject 2 have poorly defined pulse

features.

The foot of a single pulse in Subject 1’s data-set is shown in Figure 9.6. This plot
shows the raw data recorded by the sensor with the mean-centred lowpass filtered data
overlayed. The foot of the filtered waveform is visible just before 0.05s. However, the

foot is unable to be located in the raw waveform due to the high noise floor.

The time domain reconstructed phase difference (PD) waveform for the first 5 seconds
of Subject 4’s arterial pulse waveform is shown in Figure 9.7. The reconstruction
contains a peak at a delay of zero seconds in all reconstructions due to mains noise
occurring in all pulse waveforms with zero phase difference. The second peak within the
physiological PWV range of 1.5ms~! to 15ms™! is taken as the PTT for calculating
PWV.

Figure 9.8 shows the calculated PWV by both the phase difference method and the

foot-foot method at 40 mm separation. The bounds for acceptable PWV values were
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Figure 9.5 Example pulse waveform in the radial artery for each of the four subjects.
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Figure 9.6 Single raw(blue) and filtered (black) pulse waveform in the radial artery for Subject 1.
Note the flat shape of the foot just before systole.
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Figure 9.7 Normalised phase difference (PD) waveform reconstructed in the time domain. The time
delay with the highest reconstructed phase difference within the expected range is the pulse transit
time (PTT). The green lines represent the physiological boundaries of the expected PTT, and the red
line shows the estimated PTT.

limited to between 1.5ms~! to 15ms~ L.

The CoV for the foot-foot and phase difference methods are shown in Table 9.2. The
foot-foot results were variable beat-to-beat, with a mean CoV of 13%, while the phase
difference method had a lower CoV for each subject. For Subject 2, the foot-foot
method was unable to track the feet of each waveform, giving a mean PWV of 2.2ms™ .
The percentage of PWV calculations outside the expected PWV range is also given,
with the foot-foot and phase difference methods calculating an average of 23.7% and

2.0% outside range. At the sensing distance of 40 mm, an error of one sample gives a

relative PWV error of + 0.1ms™ 1.

Table 9.2 Results of the foot-foot (F-F) and phase difference (PD) method for calculating PWV.

Subject 1 Subject 2 Subject 3 Subject 4 | Mean £SD
F-F mean PWV (ms~1) 4.5 2.2 5.6 4.0 4.0 +14
PD mean PWV (ms™1) 3.9 4.9 5.0 5.1 4.7 £0.6
F-F CoV (%) 61 82 38 51 58.0 +£18.6
PD CoV (%) 37 3 22 18 20.0 £14.0
F-F rejected data (%) 11 23 38 23 23.8 £11.1
PD rejected data (%) 3 0 5 0 2.0 +2.4
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Figure 9.8 Calculated pulse wave velocity for each subject using the foot-foot and phase difference
method.
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9.4 DISCUSSION

The sensor developed in this chapter gave PWYV results within the expected physio-
logical range of 4.5 £1.2ms™! [Obeid et al. 2021]. The mean PWYV calculated by the
foot-foot method was 4.0 +1.4ms~!. However this method had a high mean CoV for
each subject (58%). The phase difference method returned a mean PWV calculation
of 4.7 £0.6ms—!, and a mean CoV of 20%. Thus, also with a much lower percentage
of rejected data, the phase difference method gave better results than the foot-foot

method when measuring local pulse wave velocity on the radial artery.

The main difficulty for the foot-foot method was identifying the position of the foot of
each waveform. While the approximate foot of each arterial pulse waveform was simple
to locate, determining the exact sample at which the foot occurred caused both the

foot-foot and phase difference method to incorrectly measure PTT.

The signal from Subject 2 was difficult for identifying arterial pulse features and the
foot-foot method failed to accuracy track PTT. However, as the shape of each wave-
form remained similar, the phase difference method retained consistent readings. This
outcome shows the benefit of not relying on a single feature to track PTT, rather taking
the waveform as a whole. Across each subject, the phase difference method had a lower
CoV and had few calculations outside of physiological range. Thus, when measuring
local PWV with noisy signals, the phase difference method produced more reliable

results than the foot-foot method.

The cut-off frequency of the filter used to retain the arterial pulse harmonic frequencies
required an increase of the cut-off frequency used in Chapter 8 (35Hz), as the peak
of the phase difference reconstruction was flattened, leading to varying PTT values.
While the new cut-off frequency was heuristically chosen at 75 Hz, all recorded data
was compared using the same settings. Further development of the method may further

adjust filter settings to improve accuracy.

Increasing the filter cut-off frequency above 50 Hz introduced a peak centred at a PTT

of zero seconds, and is suspected to be due to the 50 Hz mains noise present in the
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signal. Only when the cut-off frequency increased above 75Hz, did a second peak
appear within the expected PTT range. The peak at zero remained, with the second
peak varying in time for each of the subjects, This second peak was taken to be the
calculated PTT, and could be readily filtered by an added algorithm. The second peak
consistently appeared in all results, staying within the physiological bounds. It is likely
that the peak centred at zero from the mains noise reconstructed with a FFT magnitude

spike larger than the frequencies responsible for the actual PTT time domain peak.

A third peak would sometimes occur in the time domain reconstruction of the phase
difference. At times this third peak would increase in amplitude above the second
peak, and the algorithm would switch to this new peak as the PTT. This behaviour
is evident in Figure 9.8, where the calculated PWV drops to 2ms~!. The third peak
is not always present in the reconstruction waveform, so was assumed to not be the

actual calculated PTT.

The sensor was not validated against an invasive gold standard reference. However,
the results are based on known pulse detection methods that have been validated
against invasive methods. The calculated PWYV is within the expected ranges, so the

performance of the sensor is validated.

9.5 SUMMARY

This chapter developed a sensor to measure the local pulse wave velocity at the radial
artery. The sensor, adapted from the designs in Chapters 4 and 7, measured across a
40 mm section of the radial artery at a sample rate of 3kHz. The conventional foot-foot
method of calculating the PWV gave unreliable results, with 13% of estimated PWV
values outside the expected physiological range. The phase difference method gave
more reliable results, with 2% of reading outside the physiological range. However, the
phase difference method was sensitive to the filter cut-off frequency the method used,

often jumping between PWYV values.

The 3kHz sampling rate was deemed sufficiently fast for calculating PTT across a
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40 mm sensing distance. Thus, the use of PPG for measuring PWV local to an artery

is a viable method.
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Part 1V

Non-invasive Estimation of Blood

Glucose Concentration






Chapter 10

DESIGN OF A DISCRETE LED-LED
SPECTROMETRIC GLUCOMETER

This chapter develops a discrete wavelength LED-LED spectrometric light-based sensor
to measure in-vitro blood glucose concentrations. The sensor uses the LED-LED sens-
ing method described in Chapter 3, with a total of six discrete wavelength LEDs used
(660 nm, 850 nm, 940 nm, 1450 nm, 1550 nm, 1650 nm). Glucose concentration ranges
of 0mmoll~! to 20mmol1~! in water and porcine blood are measured, via differential

absorption of these wavelengths.

10.1 INTRODUCTION

Type 1 Diabetes is a metabolic disorder resulting from the inability of the body to regu-
late the concentration of glucose in the blood. The prevalence of diabetes worldwide is
ever-increasing, with over 9.4% of the world population expected to be diagnosed with
either Type 1 or Type 2 diabetes by 2030 [Ampofo and Boateng 2020]. Countries in
Oceania have the highest age-standardised incidence rate (ASIR) [Liu et al. 2020]. Cur-
rently, individuals with diabetes need to use invasive methods, such as finger pricks, or
continuous glucose monitors (CGM), to monitor blood glucose concentration. The dis-
comfort and possible complications caused by these methods lead to reduced frequency
of monitoring by patients, reducing the effectiveness of diabetes prevention [Chowdhury

et al. 2013].

An alternative to the finger stick glucometer is a minimally invasive continuous glucose
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monitor (CGM). The majority of CGMs require subcutaneous insertion of a filament
for electro-chemical measurement of local interstitial glucose concentrations and re-
quire multiple calibrations each day. They are complex and have significant drift and
dynamics [Zhou et al. 2018]. Futures in healthcare rely as much on enabling patient self-
management as on new innovative technologies. A non-invasive glucose sensing method
would facilitate more patient monitoring, reducing complications and improving quality

of life.

Similar to pulse oximetry, other components in blood can be analysed using NIR, spec-
troscopy. Wavelengths of light other than the traditional 660 nm and 940 nm are used
to identify spectral fingerprints of components in blood. Continuous non-invasive glu-
cose sensing has been a topic of research for over 20 years [Liu et al. 2005], includ-
ing techniques such as near-infrared (NIR) spectroscopy, but as yet, there have been
no commercialised products providing a solution. Products using NIR measurements
have reported good correlation with blood glucose, but none were clinically acceptable
[Nybacka 2016, Poddar et al. 2008, Smith 2017]. This chapter builds on the NIR spec-
troscopy background provided in Chapter 2 with the discrete wavelengths used in this

project, and their rationale.

The main difficulty in non-invasive NIR detection is the weak absorption characteristics
of glucose occurs in a spectral region dominated by absorption from water, haemoglobin
and lipids [Amerov et al. 2004]. Conventional spectroscopy has been investigated
through the wavelength range of 500 nm to 2000 nm with three main bands of interest:
2000 nm-2500 nm (combination overtone), 1400 nm-2000 nm(first overtone) and 750 nm-
1400 nm (second overtone) [Yadav et al. 2015]. Yamakoshi and Yamakoshi [2006] de-
veloped a pulse glucometer using spectrometry from 900 nm to 1700 nm wavelengths.
Through PLS methods, they gained accurate results from glucose measurement, but
required further work on their instrumentation to take the sensor out of the laboratory

[Yamakoshi et al. 2009].

Haxha et al used a 940nm LED to monitor changes in glucose concentration [Haxha

and Jhoja 2016]. In this region, haemoglobin is the dominant absorber, so any changes
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Figure 10.1 Absorption spectrum of the major light absorbers in the NIR range, not to scale. Derived
from [Amerov et al. 2004, Yadav et al. 2015]

in blood oxygen concentration will skew the results [Bashkatov et al. 2005]. An LED
emitting around 850 nm was used by Chan et al to isolate the isosbestic point of oxy-
haemoglobin and de-oxyhaemoglobin at 800nm [Chan et al. 2013]. At the isosbestic
point, the absorption by oxyhaemoglobin and de-oxyhaemoglobin is equal, regardless

of the oxygen saturation.

In the second absorption band, glucose has dominant absorption peaks at 1550 nm and
1650 nm [Jain et al. 2019]. Figure 10.1 shows the approximate absorption by glucose,
water, lipids and albumin from 500 nm to 2000 nm, adapted from the coefficients iden-
tified in table 10.1. At 1450 nm absorption is dominated by water, meaning variations
in concentrations of glucose and other blood constituents cause a minimal change in
absorption at this wavelength. At 1550 nm and 1650 nm, glucose is the dominant ab-
sorber, so a rise in glucose concentration is expected to increase absorption at these

wavelengths.

Table 10.1 gives the absorption coefficients of the 5 blood components of interest at
each of the 6 wavelengths. The absorption and scattering coefficients of skin, as well as
the depth of penetration into the tissue is also given. The light penetration depth does

not take into account the entire optical path-length of each wavelength as it depends
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on the LED emitter-detector spacing.

10.1.1 Beer-Lambert’s Law

Beer Lambert’s law describes the exponential attenuation of light travelling through a
medium. The attenuation of light along a path length (d) results from the concentration

of the solution (¢) and how much light it absorbs (€) [Mendelson 1992], yielding:

Ip = Ipet® (10.1)

Where,

Ip: Detected light intensity

Ir: Emitted light intensity

€: Absorption coefficients

¢: Concentration of molecules

d: Optical path length

This chapter develops an LED-LED based discrete reflectance glucometer to measure
glucose concentration. Testing varying glucose concentrations in water and porcine
blood provides a method for proof-of-concept testing, as the concentrations of glucose
and other constituents can be controlled or known. Six different wavelength LEDs
are utilised to isolate the spectral fingerprint of glucose from solution. Literature has
investigated wavelengths at, or similar to the six developed here. However, none have
used the digital LED-LED method of light detection, nor investigated both the first

and second absorption band using these LED wavelengths.
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Table 10.1 Optical properties of five main components in blood (water, glucose, albumin, lipids,
haemoglobin) as well as tissue absorption and light penetration depth at 660nm, 850 nm, 940 nm,
1450 nm,1550 nm, 1650 nm from literature

Water (cm™1)
660nm 850nm 940nm 1450nm 1550nm 1650nm

Cao et al. [2013] - 001 3 100 - -
Altshuler et al. [2006] | - 0.05 05 40 20 6
Kraitl et al. [2005] ; ; 03 35 15 6
Kohl et al. [1995] 0.003 004 03 - . .
Amerov et al. [2004] - 0.005  0.25 23.0 8.0 4.5
Maruo et al. [2006b] - - - 29.0 10.0 5.0

Glucose (cm™1)
660nm 850nm 940nm 1450nm 1550nm 1650nm

Kohl et al. [1995] 0.001  0.0015 0.002 - - -
Amerov et al. [2004] - - - - 5.06 7.19
Maruo et al. [2006b] - - - 3.0 13.0 11.0

Albumin (cm™1)
660nm 850nm 940nm 1450nm  1550nm  1650nm
Cao et al. [2013] - 0.2 0.5 2.0 - -
Maruo et al. [2006b] - - - 4.0 7.0 5.0

Lipids (cm~1)
660nm 850nm 940nm 1450nm 1550nm 1650nm
Cao et al. [2013] - 0.06 003 05 - -
Altshuler et al. [2006] | - 0.03 0.02 0.6 0.16 0.2
van Veen et al. [2004] | 0.04 0.06 0.85 - - -
Maruo et al. [2006b] | - . - 2.0 1.0 1.0

Haemoglobin (cm™1)
660nm 850nm 940nm 1450nm 1550nm  1650nm
Cao et al. [2013] 17 17 10 - - -
Scott Prahl [1998] 174 5.7 6.5 - - -

Skin (Absorption plus Scattering) (cm~!)
660nm 850nm 940nm 1450nm 1550nm  1650nm
Wilson et al. [2015] - 15 16 15 15 15
Bashkatov et al. [2005] | 23.4 18.8 17.7 15.1 14.8 14.6

Light penetration depth (mm)
660nm 850nm 940nm 1450nm 1550nm 1650nm
Ritz et al. [2001] 3.6 6.0 45 0.6 0.8 1.6
Bashkatov et al. [2005] | 1.75 2.5 3 0.2 0.4 0.8
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10.2 METHODS

To measure absorption of light at the various wavelengths, a sensor with 6 pairs of
emitting and detecting LEDs was built. The digital LED-LED light detection method
presented in Chapter 3 was used. The sensor was designed in a rosette shape to ensure
the light path of each wavelength travelled through the same space, and is shown in

Figure 10.2.

10 mm spacing

850 nm detector

1650 nm emitter
1550 nm emitter

1450 nm emitter

850 nm emitter
1650 nm detector g0 940 nm emitters

Figure 10.2 Diagram of the glucose sensor developed in this work. Each of the 6 wavelength has a
dedicated sensing and emitting LED placed across from each other.

This chapter analyses the response of the sensor to glucose concentrations in-vitro. Glu-
cose was added to solutions, exposing the sensor to a glucose concentration ranging from
0Ommol1~! to 20 mmol 17!, Two different tests to detect changes in light absorption were
conducted: adding glucose to de-ionised water; and fresh porcine blood. The target
physiological range of blood glucose in a person is between 4 mmoll~! to 8 mmoll~!.
While blood glucose concentrations may climb above 20 mmoll~! in hyperglycaemic
patients, the range from 0 mmoll~! to 20 mmol1~! provides a physiologically relevant

range to show a response to glucose.

10.2.1 Materials

The first sensor test used 40 litres of de-ionised water at 37°C inside an insulated

container to minimise the effect of outside variables during testing. The container used
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Figure 10.3 Experimental setup for water testing.

a lid to block ambient light from reaching the sensor, which was placed in a plastic

housing 200 mm below the surface of the water, as shown in Figure 10.3.

The second test used two litres of pigs blood, with 1.8 g of EDTA per 11 of pig blood
added as an anticoagulant. The fresh pig blood was obtained from a local supplier not
more than one hour after slaughter, and kept in an insulated container between 0°C
to 4°C during transport and storage. The blood was partitioned into two portions for
testing, 1.1 litre, and 0.9 litre. Testing of the 1.1 litre portion occurred three hours
after obtaining the blood, and the 0.9 litre portion test occurred 48 hours later. The
second test was conducted two days after the first to further reduce the blood glucose
content as glucose continues to be consumed by the on-going metabolism of cellular
constituents in blood [Nwosu and Nwani 2009]. The temperature of the blood remained
between 2 °C to 8 °C during the waiting period and was brought to room temperature

for testing.

An ACCU-CHEK Performa Glucometer was used to measure the blood glucose con-
centration throughout the sensor calibration test. Table 10.2 gives the test conditions
and Figure 10.4 shows the setup for both tests. The sensor was mounted underneath

the flask, in contact with the glass.
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Figure 10.4 Experimental setup for pig blood testing.

Table 10.2 Experimental setup for testing the response of the senor to a range of glucose concentra-
tions.

Test Volume (1) | Gstart (mmol171) | Gstep (mmoll™1) | Genq mmol 171
Water 40.20 0 0.50 20.0
Blood 1 1.10 4.9 0.50 16.8
Blood 2 0.94 4.3 0.50 20.6

10.2.2 Procedures

Glucose was added to the 401 of water in increments of 3.60 g to increase the concen-
tration by 0.5mmoll~! at each step. The concentration was increased from 0 mmol 1~

up to 20 mmol 171,

Upon each addition of glucose, the water was stirred for 20 seconds and allowed to
come to rest. Data was recorded over 30 seconds and the average LED voltage decay
time was used for analysis. Each set of recording was conducted in a dark room with

no light source other than the sensor.

The next step in testing the sensor’s response to glucose was to add glucose to blood
under the same conditions as the test in water. The first test with the pigs blood was
conducted within 3 hours of obtaining the fresh blood with a volume of 1.1 litre and
an initial blood glucose concentration of 4.9mmoll~!. The second test using the pigs

blood was conducted 48 hours after the first, with a volume of 0.94 litre.
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For the first and second test, 0.09 g and 0.08 g respectively of glucose powder was stirred
into the blood for 30 seconds and allowed to settle. One minute of data was recorded

and the average LED voltage decay time used for analysis.

10.2.3 Equipment

The LEDs used in the sensor were 660, 940 nm [SunLED 2017], 850 nm [Wirth Elec-
tronic 2021], 1450 nm [Marktech 2018], 1550 nm [Marktech 2017a] and 1650 nm [Mark-
tech 2017b]. The 660nm and 940nm LEDs are contained in the same package to
minimise the footprint. Each emitting and detecting pair of LEDs are separated by
10 mm, with the path-length of all LEDs crossing at the centre of the rosette, as shown

in Figure 10.2.

LEDs of wavelengths 660 nm, 850 nm and 940 nm were implemented to take advantage
of the light absorption bands of glucose at 750 nm-1400nm. The 1450 nm LED was
chosen due to the peak absorption by water at this wavelength. LEDs at 1550 nm and
1650 nm were chosen as the absorption of lipids differ greatly between them, potentially
allowing extraction of the lipid concentration and discrimination between lipids and

glucose. Extracting lipids concentrations is also clinically useful.

An ATMEGA32U2 running at 16 MHz powers the emitting LEDs and also times the
discharge of the reverse-biased sensing LED. Each wavelength LED was sampled se-
quentially to ensure no influence from other emitting wavelengths. The total sample
rate of the sensor was 24 Hz to allow time for the LED voltage of the higher wavelength
LEDs to decay to logic LOW on the microcontroller pin. Table 10.3 gives the power
output, forward current and forward voltage of each LED. Due to the current source
limit of the ATMEGA32U2 GPIO pins, the drive current of each LED was limited to
20mA. At a forward current of 20mA, the 660 nm LED has the highest radiant flux

(8.3mW) and the 1450 nm to 1650 nm LEDs have the lowest (0.8 mW).
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Table 10.3 Electrical and optical characteristics of each LED wavelength tested.

Wavelength (nm)
660 850 940 1450 1550 1650
Nominal Iy (mA) 20 20 20 50 50 50
Viorward (V) 21 14 1.2 13 105 0.75

Radiant Flux (mW) 83 10 13 08 08 08

(I =20 mA)
Radiant Intensity (mW m~2)
(It =20 mA) 21.3 25 33 20 2.0 2.0

10.2.4 Sensor output processing

The sensor returns the decay time of each of the six reverse biased LEDs using the
digital LED-LED light detection method. Thus, all data presented in this chapter is a
function of LED voltage discharge time. Data recorded for 30 seconds at each glucose

concentration was averaged, and the mean used for analysis.

The displacement of water by glucose must be accounted for (displacement factor of
6.24) when calculating the absorption of light due to glucose [Amerov et al. 2004]. The
relatively strong absorption properties of water in the NIR spectrum causes significant
changes in total absorbance when glucose is added. Upon dissolution of glucose, water
molecules are displaced from the optical path length. At wavelengths where water dom-
inates absorption (1450 nm), the total absorbance is expected to drop with increasing
glucose. At 1550nm and 1650 nm, glucose is the dominant absorber of light, so even
with displacement of water, the absorbance is expected to increase with glucose con-
centration. The combinations of these wavelengths and their differences in absorption
of different primary elements of pulsatile blood allow better discrimination of these

elements.

When calculating SpOs, the units of light intensity is not needed as the detected light,
Ip is normalised by the emitted light intensity, /g, making the relative light absorption
unitless. Thus, as the intensity units are not needed, the reflected light returning to

the sensing LEDs in this chapter is represented by the LED voltage decay time.
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10.2.5 Analysis

For both the water and porcine blood tests, the absorption of each wavelength of light
by glucose was calculated. The range of glucose values will be plotted to analyse the

change in absorption at each wavelength.

Compared to 1450 nm, the reflected light intensity at 1550 nm should increase with the
addition of glucose. Thus, the ratio of 1450 nm and 1550 nm should increase, following
the Beer-Lambert model. Absorption by 1650 nm is also expected to increase with
glucose, but not as much as 1550 nm. Therefore, the ratios are plotted against a known

glucose concentration.

The three main wavelength relationships of interest were between 1450 nm and 1550 nm,
1550 nm and 1560 nm and 940 nm and 850 nm. At 1450 nm and 1550 nm is the greatest
difference between glucose absorbance coefficients and at 940 nm and 850 nm is the
isosbestic point of haemoglobin and a limited absorbance by glucose. At 1650 nm and

1550 nm, there is a difference in absorption by albumin and lipids, as well as glucose.

For analysis of the wavelength ratios against changing glucose concentrations, the ratio
responses were normalised. First, each ratio’s response was divided by the maximum
value to scale from 0-1. Next, the minimum value of each ratio was subtracted to centre

the plot on zero.

10.3 RESULTS

10.3.1 Water Testing

Testing showed the predicted relationship between glucose levels and light absorption.
Increases in absorption at 940 nm, 1550 nm and 1650 nm were recorded, while at 660 nm
and 850 nm, a decrease in absorption was observed. Figure 10.5 plots the discharge
time of each wavelength at increasing glucose levels. At 1450 nm and 850 nm, the data

was very noisy with small upwards and downwards trends respectively over the range
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of glucose. At 660nm there was a slight decrease and at 940 nm, an increase. This

increase is due to the slight absorption peak at 940 nm.
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Figure 10.5 Change in LED discharge time in water with an increase in glucose concentration.

10.3.2 Porcine Blood Testing

Testing in blood gave different absorptions, compared to the water testing. Figure 10.6
shows at 1450 nm and 1650 nm there was decreased absorption with increasing glucose.
This difference is represented in the change in absorption at 850 nm, as this wavelength
represents the total haemoglobin count. Absorption at 1450 nm, 660 nm, 940 nm and

1650 nm were consistent between the two porcine blood tests.

10.3.3 Wavelength Ratios

In Figure 10.6, the noise variation in readings are present in all wavelengths. Taking

the ratio of each wavelength pair removes the constant noise component during each
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Figure 10.6 Change in LED discharge time in pigs blood with an increase in glucose concentration.
A longer LED discharge time implies a higher amount of light absorption.

measurement such as ambient lighting.

Figure 10.7 plots each of the wavelength ratios against the measured glucose. Each
response is normalised and centred at zero. The absorbance at 1650 nm has the largest
decrease, so the ratio of 1550 nm to 1650 nm was also calculated (Ris50/1650). This
ratio gives the greatest response to the normalised data, with Ry550/1450 second greatest.

Ratio Rgyg/850 gives the lowest response to increasing glucose.

10.4 DISCUSSION

The sensor developed in this chapter showed a clear change in light absorption with

increasing glucose values. Each wavelength tested increased, or decreased the amount
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Figure 10.7 Normalised and centred absorbance ratios of Ris50/1650, Ri550/1450 and Rgasg/850 in pigs
blood over an increasing glucose level.

of returned light in line with the absorption spectrum displayed in Figure 10.1. The
ratio of Rys50/1650 gave the biggest change with glucose concentration, with a rapid
change in absorption at lower blood glucose concentrations (<10mmoll~1), then a

flattening off at higher concentrations (>10mmol171).

The 850nm to 1650 nm LEDs returned a change in absorption due to glucose, and are
recommended for further development. The 660 nm LED showed minimal change, but
as the 660 nm and 940 nm LEDs are included in the same package, there is no point

removing the LED from the circuit.

In water, the change in absorbance was solely due to the increase in glucose concen-
tration and the displacement of water molecules. At 1650 nm and 1550 nm, the signal
gave the greatest rise in absorption. The response at 1450 nm was expected to reduce
due to the displacement of water. However, it remained noisy, slightly increasing with
glucose level. This high variation is likely due to the minimal effect of water displace-

ment due to glucose. The high absorption of light by water at 1450 nm means minimal
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light entering the solution returned to the sensor.

The intensity of reflected light was much higher for 660 nm and 940 nm, as water and
glucose absorb minimally at these wavelengths. Absorption of 660 nm and 940 nm light
in the pig blood were much higher due to the presence of haemoglobin. It is also
expected the glass of the flask reduced the amount of reflected light reaching the sensor
as the LED discharge times for an empty flask were very similar to those with blood
present for these wavelengths. The exact absorption by the glass is not further explored
as the purpose of this test is to measure a change in absorption with increasing glucose

concentrations, so a constant effect from glass does not affect the conclusions.

Testing in porcine blood yielded different absorption responses to testing in water. The
presence of haemoglobin reduced the intensity of reflected light in the first absorption
band and the presence of other lipids and albumin in the blood resulted in an opposite
response to water at 1650nm. At 1650 nm, glucose, water, albumin and lipids have
similar absorption coefficients. As glucose displaces the other molecules from the op-
tical path, the corresponding increase in absorption by glucose does not account for
the reduced absorption by displacement of water and other components. Thus, the
absorption in blood at 1650 nm decreases with increasing glucose levels. In contrast,
the increased absorption from glucose at 1550 nm is more than the reduction in absorp-
tion from displacement, so the overall absorption at 1550 nm increases with increasing

glucose concentration.

Ratios of absorbance at various wavelengths were calculated to test the response to glu-
cose. The wavelength 1450 nm was chosen for testing as water is the primary absorber
(Figure 10.1). By comparing the increasing absorbance at 1550 nm to the decreasing
absorption at 1450 nm, the effect of glucose concentration can be seen. Water has
minimal absorption in the first absorption band, so the ratio between 940nm and
850 nm shows the relationship between glucose and haemoglobin. At the isosbestic
point of haemoglobin (850 nm) the decrease in absorption is due to the displacement of
haemoglobin and at 940 nm, the increase in absorption is from the increased absorption

of glucose. This behaviour can also be seen at 660 nm as absorbance decreases with
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increasing glucose. The ratio of 1650 nm to 1550 nm gave the largest change with in-
creasing glucose in blood. Other than 1650 nm, all other wavelength absorptions were

as expected.

This sensor design used emitting and detecting LEDs spaced by 10mm. This large
spacing resulted in long LED voltage discharge times of almost 20ms per LED. As
each of the LEDs need to be sampled sequentially to avoid interference, the possible
sample rate was reduced to 24 Hz. This low sample rate did not matter for in-vitro
testing in porcine blood, but future testing in-vivo on people requires a much faster
sample rate. The next version of the glucose sensor will need to have a greatly reduced
separation between emitting and detecting LEDs (4mm) and a dedicated LED driver
to emit light at a greater intensity than the current 20 mA GPIO pin limit to reduce

the sensing LED discharge time.

Conventional pulse oximeters sample at a minimum rate of 200 Hz to remove mains
line noise. To reach this goal sample rate, the total discharge time across the 6 LEDs
must be less than 5ms. A possible means to reduce the decay time is to measure the
voltage decay waveform and predict the shape of the decay. Thus, a short measurement
of 500 ps could be taken and the remaining 19.5ms of the decay waveform predicted

from a model equation.

10.5 SUMMARY

A sensor was developed to measure the light absorption by glucose in the NIR spectrum.
The overall results provide initial proof of concept validation for this sensing approach.
Using discrete spectroscopy at 660 nm, 850 nm, 940 nm, 1450 nm, 1550 nm and 1650 nm,
varied responses were found through testing in both water and porcine blood. The
results obtained can be explained by Beer Lambert’s law as the only factor affecting
absorbance is the change in glucose concentration. The glucose concentrations tested

were within the expected physiological range of blood glucose concentrations.

Using LED-LED detection methods, the sensor integrates the reflected light intensity of
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the six wavelengths. The ratio of Rgyg/850 increases with glucose due to the absorption
peak at 940 nm and minimal change at the isosbestic point of haemoglobin (850 nm).
In the first overtone, Ry550/1450 gives an increase in absorption because glucose is the
dominant absorber at 1550 nm, while water is the only absorber at 1450 nm. The final
ratio calculated was Ry550/1650 Which gave the greatest rise due to the displacement of
other absorbing molecules (lipids, albumin). Thus, the 660 nm LED is not needed for

future work with this sensor.

Future work on the sensor will adapt the LED layout and sampling time to allow
measurement of the blood pulse. This design change will be done using a model of
the LED voltage decay using an ADC to estimate photocurrent as well as using an

additional emitting LED of each wavelength to increase the emitted light intensity.






Chapter 11

A MODEL FOR LED LIGHT DETECTION USING AN
ADC

The sensor developed in Chapter 10 showed a relationship between glucose concentra-
tion and light absorption at the wavelengths tested. This chapter develops a model
for the LED voltage decay waveform to enable faster sampling rates using the ADC
method of sensing. LED wavelengths 1450 nm and 1550 nm are used to validate the

model.

11.1 INTRODUCTION

This chapter develops a model for the measurement of light using just a microcontroller
with an on-board ADC, and an LED acting as a photodiode. A model is necessary for
three reasons. First, a sensor sample rate of >200 Hz is recommended [Kennedy 2015].
Thus, measuring 6 different wavelength LEDs sequentially at 200 Hz allocates only
800 ps to each LED. For the wavelength LEDs <1000 nm, this is not a problem. How-
ever, the LEDs with wavelength >1000nm can take up to 5ms to decay. Secondly,
the impedance of the LED acting as a photodiode is close the impedance of the mi-
crocontroller input pins, so the pin impedance has a significant effect on the measured
voltage. Third, during the sensing process, the LED acting as a photodiode is transi-
tioning from photoconductive to photovoltaic mode. This model can then be solved for

the photocurrent, I,,, which is proportional to the incident light on the sensing LED.

Figure 11.1 shows the equivalent circuit for a photodiode [Jau-Ji Jou et al. 2002, Jiang
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and Yu 1998]. A photodiode can be represented by a current source in parallel with an
ideal diode, where the current source represents the photocurrent generated by incident
light and the diode represents the P-N junction. The junction capacitance (C;) ranging
1nF-100 nF [Gongalves et al. 2013] and shunt resistance (Rs;) 1 MQ-100 GS2 [Thompson
and Larason 2001] determine the voltage decay time constant of the diode [Hamamatsu
2021]. The right side of the circuit in Figure 11.1 represents the equivalent impedance
of the microcontroller pin the photodiode is connected to (Zpi,). The series resistance
(10 2-1k) of the photodiode results from the physical circuit contacts and is minimal

compared to the shunt resistance.

R g

N3 A =

Iy

I~

Figure 11.1 Equivalent circuit of a photodiode under incident light: consisting of the photocur-
rent (I,), p-n diode junction current (I;), junction capacitance (R;), shunt resistance (Rsp) and the
impedance (Zpin) of the uC pin the photodiode connects to. Zpin consists of the series and load
resistance (R, R;), and the microcontroller pin capacitance (Cp).

The photodiode/LED can operate in either photovoltaic, or photoconductive mode. In
photoconductive mode, a constant reverse bias is applied to the diode’s P-N junction.
This reverse bias reduces the inherent capacitance of the diode, allowing faster response
times, but also introducing dark current (1z4,) into the signal, reducing accuracy in low
light conditions. In a reverse bias condition, the depletion width of the LED junction
is increased, reducing the effective junction capacitance [Hamamatsu 2021, Kowalczyk
and Siuzdak 2017, Meneghini et al. 2010]. In photovoltaic mode, no reverse bias is
applied to the photodiode, making the sensor better suited for low light applications
as the dark current is much reduced [Hamamatsu 2021]. This trade off is a greatly

reduced response time caused by the increased junction capacitance.

Photodiodes are generally operated in either photoconductive or photovoltaic modes.
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However, this proposed method transitions between the two modes. At a reverse bias
of 3.3V, the LED is operating under photoconductive mode, but as the pin discharges,
the reverse bias voltage across the LED reduces, transitioning the LED closer to pho-
tovoltaic mode (no reverse bias). This reduction in reverse bias reduces the effect of
dark current towards the end of the discharge cycle. Unless under high incident light
intensities, the dark current is assumed to be a constant as the LED remains at a small

reverse bias.

In many settings for electronics design, it is assumed the input impedance for a micro-
controller pin is near infinite and no current passes through it. However, this assump-
tion is not true for microcontrollers, as there are limitations on the input impedance
[NXP Semiconductors 2020a]. Thus, the model for the photodiode must incorporate

the influence of the connected microcontroller GPIO pin.
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Figure 11.2 Ranges in discharge times of the LED and microcontroller pin under zero incident light
(dashed orange), and high incident light intensities (dot-dashed red), as well as the pin disconnected
from the LED (blue).

Figure 11.2 shows the voltage decay waveform of a pin without an LED connected
to it transitions from being pulled to V.. to HiZ. The voltage decays to the resting
voltage created by the internal pullup and pulldown resistors (1.3 V in this case). When

connecting the LED to the GPIO pin, the decay time constant is increased, or decreased,
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depending of the incident light. As the discharge time of the pin has a similar time
constant (7) compared to the pin connected to the LED, the pin model must be included

in the calculation of discharge time.

This chapter will cover the development of a model for the LED voltage decay waveform.
The model will be able to track the decay waveform, and calculate the generated
photocurrent (Ip). Decay data under zero incident light is used to calibrate the model.
Once the model has been calibrated, the fit of the model will be compared to at 500 ps

to assess the viability of the model-based approach and resulting decay rate estimation.

11.2 METHODS

The model presented in this chapter provides a solution to the low sampling rate of the
sensor. If the microcontroller’s on-board ADC can sample the voltage across the LED
for a short time (500 ps), then predict the rest of the voltage decay using the model, the
sample rate would be increased to 2kHz for a single LED. For long LED decay times,
the model provides a method to replace the timing method to maintain a fast sample
rate. The voltage decay is recorded over 3 ms and the model fit to the first 500 ns. The

fit of the model generated on the first 500 ps is then compared to the full 3 ms of data.

The response of the tested LEDs to incident light of the same wavelength was tested.
The test setup involved placing the LEDs 5 mm away from a mirror inside a cabinet
with approximately zero ambient light as shown in Figure 11.3. Tests were conducted
at light intensities increasing from 0% to 100% emitter light intensity (0-2mW m~?2) in

10% increments. The response of the LED to incident light is expected to be linear.

The mirror used is transparent to visible light, but may be opaque in the NIR range.
However, this chapter is measuring a proportional change in generated photocurrent,
so a constant absorption by the glass would only provide an absorption offset at each

emitter intensity.

An additional metric tested was the effect of LED emitter-detector separation on the

generated photocurrent. Seven sensing LEDs of the same wavelength were used on
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Figure 11.3 Experimental test setup, including the emitting and detecting LEDs 5 mm away from
a mirror.

a sensing board, surrounding a single emitting LED. Each sensing LED is a different

distance from the emitter.

11.2.1 Materials

Two different wavelength LEDs were analysed with this model: 1450nm (Marktech,
USA) and 1550 nm (Marktech, USA). The 1450 nm and 1550 nm LEDs have a nominal
drive current of 50mA [Marktech 2017a, 2018]. These two wavelengths were chosen as
they were expected to give the greatest response to changing glucose, as identified in

Chapter 10.

11.2.2 Equipment

Testing the 1450 nm and 1550 nm LEDs involved development of a test board for each
LED. However, the entire approach and modelling are generalisable to any relevant
wavelength LED. The 1550 nm LED sensing board is shown in Figure 11.4, with the
1450 nm LED sensing board identically set up. These boards connect to the SvOy sensor
developed in Chapter 4, but use 7 LEDs of the same wavelength LEDs at separate

distances, surrounding a central emitting LED.



180 CHAPTER 11 A MODEL FOR LED LIGHT DETECTION USING AN ADC

3
$
:
g
g
]

-

)

pRows
pLetasp wo g Bujdoy s,auay

'JET6T12A_Y1

Figure 11.4 LED distance calibration board for the 1550 nm wavelength LEDs. 7 sensing LEDs
surround a central emitting LED at different sensing distances.

This new sensing board has a single emitting LED at the centre, with detecting LEDs
spaced vertically and horizontally at separate distances. The vertical sensing distances
included 2mm, 2.5mm, 4mm, 5mm, 6 mm (V2, V2.5, V4, V5, V6). The horizontal
spacing consisted of 5mm and 6 mm (H5, H6) to investigate whether the orientation
of the sensing LED to the emitter affects the light detection. The layout of each LED

is shown in Figure 11.5.

The microcontroller records the voltage decay across each LED at a sample rate of
64 kHz, sending the decay waveforms of all 7 LEDs to the PC via serial, and the

Arduino serial monitor was used to record the incoming serial data.

11.2.3 Sensor output processing

The model developed in this chapter represents the voltage-time relationship of the
microcontroller pin and LED under incident light, allowing the generated photocurrent
to be calculated. The circuit in Figure 11.6 represents the LED during the sensing
cycle. This model is a combination of the photodiode equivalent circuit and the high

impedance mode of the ADC pin on a microcontroller.

The LED model section contains the current source (I,), junction capacitance (Cj),

shunt resistance (Rs,). The ADC pin model on the left hand side includes a voltage
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Figure 11.5 Layout of the emitting LED, and seven sensing LEDs used for validating the model.

source at Ve (3.3V), Ry, and R,y as the pullup and pulldown resistors, R, is the ADC
pin input impedance and C), is the internal capacitance of the microcontroller pin. The

model can be solved to determine the input voltage to the ADC pin at the node V5.

Connecting the LED to the pin circuit increases the decay time constant (7), as seen
in Figure 11.2. As the input resistance (R;) and shunt resistance (Rgj,) are an order
of magnitude larger than the pulldown resistor (R,q), the voltage divider remains the
same. The method described in [Thompson and Larason 2001] was used to calculate
the shunt resistance of each LED. This method measures the leakage current through
the reverse biased LED in the voltage range of -50mV to 50mV. The slope of this

current-voltage relationship is equivalent to the shunt resistance.

From the equivalent circuit model of Figure 11.6, the Laplace domain representation of
the model for V5 is given, where the voltages Vi, and V¢, represent the initial conditions

across ), and Cj, respectively:

2
a1s“ +ass + as
= 11.1
‘/2(8) S(b182 + b25 + b3) ( )
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Figure 11.6 Equivalent circuit of a reverse biased led detecting light. Ry, and Rpq are the pullup and
pulldown resistors, Cpin is the microcontroller pin input capacitance, R is the input ADC resistance,
R, is the led shunt resistance, C; is the led junction capacitance and I, is the generated photocurrent.
Va is Vee (3.3V), Vi and V are the nodal voltages solved for.

Where,

ai: CpC] RpudeRS RShVCp

ag: CpRpudeRsVCp + CpRpudeRshVCp +
CjRpudeRshVCj + CjdeRsRshVa

agz: RstdVa + RsthdVa - (Idark + Ip)RpudeRsh
b12 CpCjRpudeRSRsh
bo: CpRpudeRs + CpRpudeRsh + CjRpudeRsh + CjRpuRsRsh + CszdeRsh

bs: RpuRpq + RpuRs + RpuRsp + RsRpg + RepRpq

Inverse Laplace of Equation 11.1 yields the time domain voltage representation of the

model at node Vs:

Va(t) = a1e® + age + a3 (11.2)
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Where,

(ar = %) (b + /08 — dbabg) — 2b1(az — 422) (11.3)
o] = |

2by /b2 — 4bybs

(a1 — %)(—bZ + b% — 4b1b3) + 2b1 (a2 — %) (11.4)

2by /b2 — 4bybs

g =

ag = — (11.5)

p1 = (11.6)

by — /b3 — 4by b3
B2 = (11.7)

Therefore, the time domain response of the system is the sum of two exponential decays
with a voltage offset. The model assumes that at zero incident light the only current
flowing through the LED is the dark current present in the diode under reverse bias

conditions (I4,4,%), and is accounted for by setting the calibration measurement to zero.

Each component of the model must be identified to calculate photocurrent as every
LED has different parameter values (Cj, Rs, and Rg). Once these parameters are
calculated through the calibration process, the shape of the voltage decay across the

LED under varying light levels can be used to calculate photocurrent.

11.2.3.1 Solving for Cpin, Rpu, Rpd

Before the LED is connected to the Teensy 4.0, the characteristics of the Teensy’s GPIO
pin musts first be found. By reverse biasing the pin without an LED, the voltage decay

curve provides information about the values for Cp;,, Ry, an R,4. The equivalent circuit
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for the ADC pin model in Figure 11.6 assumes an open circuit between V7 and GND.
The relationship between the time constant (7) and the resistance and capacitance

values, where R, is the equivalent resistance of the pullup and pulldown resistors is

given:
T = Req X Cpin (11.8)
Where,
Ry Ry
Reg = 22 11.9
q Rpu +de ( )

Figure 11.7 shows the decay times of the reverse biased Teensy 4.0 GPIO pins with
no LEDs connected (orange) and with the cathode of the 1450 nm and 1550 nm LEDs
connected (blue). Two different wavelength LEDs are shown in this analysis as they
were identified in Chapter 10 to be the most likely to show a change in absorption in
the presence of glucose. The orange dashed lines show the decay curve under near zero
incident light and the dashed red line shows the decay curve under high incident light,
where the model’s double exponential shape is clear. Using the time constant of the
pin voltage decay with no LED connected gives a time constant of 500 pus. Assuming
a pin capacitance of 1.5pF to 2pF gives an R, value of 250 MQ to 333 MQ [NXP

Semiconductors 2020a].

Using the floating voltage of the GPIO pin at V; in Figure 11.6, a voltage divider is
generated between Ry, and R,;. With V.. of 3.3V and a GPIO pin floating voltage of

1.3V, the voltage divider ratio is 0.4, giving the relationship between R, and R,q:

Ryq

1.3V =33V ——""7"-—
Rpu + de

(11.10)

Ry

04= ——"——
Rpu + de

(11.11)
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Figure 11.7 Voltage decay waveforms for the Teensy 4.0 GPIO pins (orange), and the GPIO pin
with the 1450 nm and 1550 nm LEDs connected to their respective GPIO pin.

Rpy = 1.5R) (11.12)

Using the Req value range of 250 MS2 to 333 M(2, combining Equations 11.9 and 11.12
gives a value range of 410 M) to 550 M2 for R,; and 630 Mf2 to 850 M2 for R,,.

11.2.3.2 Solving for Rsh

The shunt resistance of the LED is defined to be the inverse slope of the photodiode I-V
curve at 0 V. An alternative to measuring the current at 0V is to measure the current
at £ 10mV and fit a slope between the two readings [Thompson and Larason 2001].
Using Ohm’s law, the gradient of the fit between 4+ 25 mV is the shunt resistance. The
anodes and cathodes of each wavelength LED in the developed sensor was calculated
using this method. Figure 11.8 shows the current-voltage relationship used to calculate

the shunt resistance of both the 1450 nm and 1550 nm LED.
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Figure 11.8 Current-voltage relationship for a reverse biased LED. The gradient between the -0.25 V
to 0.25V range gives the LED shunt resistance.

11.2.3.3 Solve for Rs

The voltage of the GPIO pin under zero reverse bias and zero incident light is the
combination of the resistances creating a resistor divider between V.. and ground. The

relationship between V; and V. is used to calculate Rg:

Vi Rpu de

R; =
de‘/;c - VI(Rpu + de)

— R, (11.13)

The voltage measured at V; is lower than the voltage used to calculate Ry, and R,q

(1.3V) due to the additional resistors in parallel with R,,.

11.2.3.4 Solve for VCp and VCj

V¢, and V¢, are the initial condition voltages across Cpi, and Cj respectively. These
voltages can be calculated once all resistor values are calculated as the capacitors do
not impact steady state voltages. When calibrating the decay curve under near zero

light conditions, I is assumed to be 0. The matrix used to solve for V¢ and V¢, is
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given:

1 o, 1 4 1 _1 Vo

il vl A N L | (11.14)
1 1 1
Ry " Rs R V2 Ip

11.2.3.5 Solve for Cj

The LED junction capacitance (C}) can be solved using the decay time of the pin and
LED under near zero light conditions. However, the junction capacitance of an LED
varies with reverse bias so the calculation here is only an approximation [Hamamatsu
2021]. Using an equation based off the RC' decay presented in Equation 11.8 to calculate

C; gives:

T

RsRsh
Rs+Rgp,

C; = (11.15)

After fitting the model to the decay with near zero incident light conditions, the re-
sponse of each LED to varying light intensities was assessed. For a perfect model fit,

the I, calculated at 500 ps and 3 ms should be the same.

11.2.4 Analysis

The performance of the ADC to track the voltage decay will be analysed by compar-
ing the mean decay waveform to 400 raw decay waveforms. The error in the ADC

measurement will be represented by the standard deviation.

The model decay of each LED under near zero incident light will be compared to the
recorded voltage decay. The RMSE between the model and recorded voltage decay will
indicate the outcome of the model. The spacing of each sensing LED from the emitter
will be assessed. It is assumed that the generated I, will decrease with distance from

the emitting LED.
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The calculated I, of each LED at 500pns will be compared to the calculated I, at
3ms. This 3ms time is assumed to the LED steady state voltage after decaying. This
relationship will be represented as the gradient of the I, at 500 ps vs 3ms across the
range of emitter light intensities. A gradient of 1 would indicate zero error between the
calculated I, at each point in time. A gradient greater, or, less than 1 indicates an error
in the model at calculating I,,. However, if this gradient is constant, then the error
in the model is a linear offset than can be accounted for in calibration. Assuming the
offset will is linear allows the ratio of the "AC" to "DC" components in pulse oximetry

to remove this offset. The R? will be used to analyse the gradient fit.

11.3 RESULTS

The results of fitting the model to the Teensy 4 GPIO pin as well as the dark voltage
discharge data is shown in Figure 11.9. The microcontroller GPIO pin decay waveforms
were consistent across each pin tested, with a resting voltage of 1.312V +0.007V.
Connecting LEDs to the circuit reduced the resting voltage. The parameters fit to the
model track to the fit the final resting voltage of the GPIO pin and LED as shown in

the green decay waveform.

Figure 11.10 shows the noise levels of the 12-bit Teensy 4.0 ADC across 400 voltage
decay waveforms under constant incident light. The mean decay waveforms is plotted

in black.

The decay waveforms of the seven 1450 nm and 1550 nm LEDs were measured under
increasing emitting LED light intensity. Figures 11.11 and 11.12 show the calculated
photocurrent () for the 1450 nm and 1550 nm LEDs respectively. The sensing 1450 nm
LEDs generated a photocurrent (I,) in the range of 0 A to 3.7 pA, with the closer the
LED to the emitter, the higher the generated I, at each emitter intensity. The sensing
1550 nm LEDs generated an I, in the range of 0nA to 130nA. However, for the 1550 nm
LEDs, the distance from the emitting LED did not solely determine the generated I, as

the V2 and V5 give higher than expected I,,. All seven LEDs across both wavelengths
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Figure 11.9 Voltage decay curves for the two tested LEDs. The blue decay plot is the voltage decay
of the Teensy 4 GPIO pin with no LED connected. The red plot is the voltage decay of the GPIO pin
with the LED connected and the green plot is the model fit to the decay data.
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Figure 11.10 Noise levels of the 12-bit ADC measuring decay under zero incident light and the mean
decay curve (black). Time shown from 0.5 ms to show the noise at the settling voltage.
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Figure 11.11 Calculated photocurrent for each of the seven 1450 nm LEDs under varying emitting
LED intensity. The emitting 1450 nm LED radiant intensity increased from 0mW m ™2 to 2mW m™? in
10% increments. The vertical and horizontal LEDs are represented by V2-V6, and H5-H6 respectively.

returned an R? > 0.99.

Table 11.1 shows the relationship between the calculated I, at 500 ps, and 3 ms. Each
of the seven LEDs returns a positive gradient, with an R? > 0.97, showing a linear
error between the I, calculated at each time. Thus, the linear error in the I, calculated

at 500 s can be calibrated for to calculate the I, at 3 ms.

Table 11.1 Gradient of the relationship between the I, calculated at 500 ps, and 3 ms.

| V2 V25 H5 V5 H6 V4 V6

mean gradient | 4.3 2.8 52 46 34 3.0 28
1450nm R? | 099 0.98 0.99 099 0.98 0.99 0.99
1550nm R?> | 0.99 0.99 0.97 098 0.98 099 0.98

11.4 DISCUSSION

The proposed model demonstrates a linear relationship between the photocurrent in-
duced in an LED acting as a photodiode when directly attached to the pin of a micro-
controller and incident light at varying intensities. The linear relationship between the
emitter and each detector for both wavelengths tested is linear, with all LEDs return-

ing an R? > 0.99. Thus, providing an accurate measure of incident light for use in the
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Figure 11.12 Calculated photocurrent for each of the seven 1550 nm LEDs under varying emitting
LED intensity. The emitting 1550 nm LED radiant intensity increased from 0mW m™2 to 2mW m™? in
10% increments. The vertical and horizontal LEDs are represented by V2-V6, and H5-H6 respectively.

CGM sensor. The units of the measurement are removed, as the ratio of the AC to
DC is taken when measuring pulsatile data, so only the linear relationship is required

for accurate measurements.

Using the calculated photocurrent at 500 us to predict the photocurrent calculated at
3ms had a linear relationship, with the worst fit having an R? of 0.97. Thus, while the
model does have errors in prediction, this error is linear and can be accounted for with

calibration.

Either the ADC sensing method, or timing to a threshold voltage can be used to
determine incident light. The timing method is the simpler option, but requires a fast
microcontroller clock and has a variable sample rate which can result in sampling rates
in the region of 50 Hz. The ADC method requires an additional component (ADC),
but is more accurate and you can generate a much faster and fixed sample rate as the
sensor does not have to wait for the voltage across the LED to decay past the threshold

voltage.

Figure 11.10 shows the final stages of decay of the LED under zero incident light. The

variance is due to the resolution of the ADC. As the Teensy 4.0 ADC has a resolution of



192 CHAPTER 11 A MODEL FOR LED LIGHT DETECTION USING AN ADC

8001V, the resolution limit of the ADC is clearly reached. Using an external ADC to

the Teensy 4.0, such as a 16 or 24 bit ADC would increase the accuracy of the sensor.

At high light intensities, the decayed voltage at the pin reaches zero, transitioning from
photoconductive sensing to photovoltaic. This change means the dark current at high
incident light intensities is reduced, while the response times at low incident light levels
remain faster due to the reverse bias. A reduction in dark current (I4,,1) could be be an
additional reason for the reduction in the data-set variance at higher intensities. This
model assumes the dark current is constant at every light intensity and can explain the
slight drop in the calculated current in Figures 11.11 and 11.12 at high light intensities.
To detect at higher light intensities may require an adaptive (Igq,1) value to maintain

a linear response to incident light.

Unlike photodiodes, LED datasheets do not give important values, such as shunt re-
sistance [Kowalczyk and Siuzdak 2017]. Unless the I-V curve method described by
Thompson and Larason [2001] can be used to measure the shunt resistance, the range
for Ry, is one of the large unknowns. The dark current (Zg4,%) is also not given, but is

generally in the pA range.

The calculated photocurrent calculated ranged from 0pA to 3.7 pA. This result shows
the sensor comprising just a microcontroller (Teensy 4.0), an LED, and the model
presented are capable of low light measurement. The 1450nm LED gave expected
results for generated I, at each distance from the emitting LED. However, the 1550 nm
sensing results gave skewed results, biasing one side of the emitting LED (V2.5, V5 mm),
compared to the other side (V2,V4, V5mm). This discrepancy is likely due to the
emitting LED being mounted at an angle facing the V2 and V5 LEDs. The horizontal
LEDs, H5, H6 give results as expected, further showing the bias of the emitting 1550 nm

LED to one side of the sensing board.

While the Teensy 4.0, and the 1450 nm and 1450 nm LEDs were chosen for validation of
the model, the model can extend to other microcontrollers and LEDs. The pin decay
section of the model is adjustable to whichever ADC is used and the model should

capture the changing junction capacitance and shunt resistance of different chemistry
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LEDs.

11.5 SUMMARY

This chapter developed a model for the discharge of an LED under reverse bias and
while connected to a microcontroller’s inbuilt ADC pin. This model allows fast, simple
detection of incident light with a fixed sample time of 500 s, compared to a threshold
crossing timing method which has can take up to 10 ms to wait for the voltage to decay.
The calculated photocurrent ranged from OpA to 3.7 pA across an emission range of

0-2mW m~2 radiant intensity.

Thus, a new sensor can be developed to use an ADC to increase the sample rate of the
sensor to be usable for in-vivo trials. To improve reading accuracy, an ADC with higher
resolution than the in-buit 12-bit Teensy 4.0 ADC is needed. Using a 24-bit ADC that

can sample all six wavelength LEDs should be implemented in the next sensor.






Chapter 12

VALIDATION OF A NON-INVASIVE CONTINUOUS
GLUCOSE MONITOR

This chapter covers the validation of a non-invasive NIR discrete glucometer. Chapters
10 and 11 developed the proof of concept hardware and model for the sensor. The
sensor presented in this chapter was designed for use in-vivo, measuring blood glucose
concentrations (BGC) for both adults and babies. A pilot clinical trial in adults was

conducted, as well as a clinical trial in the neonatal intensive care unit (NICU).

12.1 INTRODUCTION

Measuring blood glucose in the NICU is critical to analysis and treatment of hypergly-
caemia and hypoglycaemia, with up to 30% of neonates at risk of low blood glucose
[McKinlay et al. 2017a], and 15% formally diagnosed [McKinlay et al. 2015], which is
up to 8-9000 babies per year in New Zealand. While hyperglycaemia should also be
avoided, neonatal hypoglycaemia can cause permanent brain damage, or death [Spitzer
et al. 1984]. Equally, hyperglycaemia can have negative outcomes on pre-term infants,
including mortality, but control is very hard as very small blood volumes limit blood
glucose testing [Dickson et al. 2013, 2017, Knopp nee Dickson]. In both cases, current
methods of diagnosis from blood glucose measurements require blood samples to be

taken, often hours apart, so key low or high values may be missed [Signal et al. 2012b].

Treatment of hypoglycaemia in the neonate is often dependent on the their birth-weight,

and gestational age. For late pre-term and term babies, this involves repeated, painful
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blood tests [Harris et al. 2013], and if the blood glucose concentration remains low,
admission to the NICU is common [Vain and Chiarelli 2021]. Using a CGM would po-
tentially improve glycaemic management and hypoglycaemia detection, while requiring
fewer blood samples. To date, no continuous glucose monitor (CGM) has regulatory
approval for use in infants, and there are concerns about the accuracy of these devices

at the low blood glucose range seen in babies [McKinlay et al. 2017b].

Invasive, continuous glucose monitors have been investigated for use in the NICU [Har-
ris et al. 2010, Signal et al. 2012a]. However, these sensors still require invasive calibra-
tion measurements, and themselves are invasive. Using a non-invasive NIR glucometer
would provide the benefits of the CGM in glycaemic control, while reducing the need

for additionally invasive blood sampling.

This chapter focuses on the design and validation of a discrete LED-LED NIR spec-
trometer for use in glucose monitoring in the NICU. The sensor designed in Chapter 10
has been adapted to use the model designed in Chapter 11, using an external ADC to
track the LED voltage decay waveforms. The waveforms will be retrospectively anal-
ysed and fit to a physiological model, which will be compared to the paired clinical
blood glucose measurement. Pairs of NIR and standard blood glucose measurements
outcomes will provide proof-of concept outcomes for the use of this sensor in a neonatal
cohort, as well as evidence for its extrapolation to other cohorts via the adult clinical

testing implemented.

12.2 METHODS

To validate the sensor’s ability to measure blood glucose, a wide range of concentrations
must be tested. A pilot trial was run in healthy adults to measure the expected adult
range of blood glucose from 4.0 mmol 17! to 10.0mmol 1! [Frier et al. 2011, Kovatchev
2018]. Conducting a trial in the neonatal ICU provides blood glucose concentrations
ranging 2mmol1~! to 5mmol1~! [McKinlay et al. 2015]. Combining these two trials

covers a range of 2.0mmoll~! to 8.0mmoll~!. While this range does not cover more
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extreme hyperglycaemia in adults, further trials can assess these ranges, where accuracy

has less impact on clinical decisions [Clarke 2005].

12.2.1 Pilot trial protocol

A pilot trial with adults was initially run to test the proof of concept sensor. The trial
consisted of an OGTT to cause a change in blood glucose concentrations. Subjects are
required to have not eaten for 12 hours (overnight), to ensure blood glucose concentra-
tions are at fasting level. The goal of this trial is to take measurements with a reference
finger stick glucometer as well as the light-based NIR reflectance glucometer. Before
the trial begins, an initial glucose measurement is taken to read the fasting level blood
glucose. To commence the test after the basal blood glucose measurement, a 330 ml can
of Coca Cola, containing 35 g of sucrose (17.5g glucose), is drunk and a timer started.

The timeline for the entire test, including measurements is given in Figure 12.1.
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Figure 12.1 Trial timeline for the adult pilot trial.

Three sites are measured with the light-based sensor, the carotid artery, palm, and
finger tip. Measuring at the carotid artery places the sensor over a major artery,
compared to the capillaries in the palm and finger, giving a range of sensing sites.
The user interface designed in Figure 12.2 records the subject number, reference blood

glucose value, and measurement site.



198 CHAPTER 12 VALIDATION OF A NON-INVASIVE CONTINUOUS GLUCOSE MONITOR
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Figure 12.2 User interface used for the pilot adult trial and the NICU trial.

Once the sensor has been placed on the site, and the plot shows a pulsatile waveform,
the start button is pressed, recording for 30 seconds. After recording data, the user
has the option to save locally, or to send the data to a git repository stored local to

the University of Canterbury for secure storage.

12.2.1.1 Adult Subjects

This study uses data obtained from participants between 18-40 years old, with no
diagnosed haematological conditions, no disease affecting blood sugar regulation except
diabetes or pre-diabetes, and are not smokers. During the two hour long trial, the
subjects are required to be seated, and not consume any food or water. Table 12.1 shows
the subject demographics. This study was approved by the Human Ethics Committee,
University of Canterbury (HEC2019/153) and informed consent was obtained from

each participant prior to the experiment.
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Table 12.1 Light based continuous glucose monitor adult pilot trial subject demographics. Data is
shown in median [IQR] where appropriate.

Subjects 5
Age (years) 25 [22-28]
Sex (M/F) 3/2
Ethnicity (Maori/ NZ European/ other) 1/4/0

12.2.2 NICU trial protocol

The NICU study consisted of an observational cross-sectional methods comparison
study in neonates. Following written, informed parental consent, the light-based glucose
sensor was held against the neonate’s skin for approximately 30 seconds, at three sites
(foot, wrist and chest). Immediately before this measurement, a standard clinical BGC
measurement was performed as part of standard care. No additional blood sampling
was performed in the study, as standard clinical BGC measurements triggered NIR

sensor measurements. The NICU study schedule is given in Figure 12.3.

L L L L
— N
1 t, t;

L J

Enrolment: Y
* Eligibility screening
* Informed consent

3 routine BG measurements (over 12-48 hours)

Workflow per measurement:

Place sensor on Take routine clinical
sole of foot: hold blood glucose measure
for 20-30s
I | | I
1 1
... Place sensor on an

alternative site:
wrist/chest

Figure 12.3 Trial timeline for the NICU trial.

12.2.2.1 NICU Subjects

The inclusion criteria for this study included neonates born at >34 weeks gestation at
risk of hypoglycemia, or undergoing clinical BGC monitoring, recruited from the NICU
and postnatal wards. The planned sample size is 20-30 neonates recruited across two

hospitals, Auckland Hospital, and Middlemore Hospital.
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Exclusion criteria include: skin irritation/infection on feet/hands/chest; neonates in
isolation due to infection risk; neonates who are critically unwell; and a patient who
has a parent or whanau with suspected COVID19. Enrolment in this trial does not

affect, or limit eligibility of the neonate to participate in other trials.

Table 12.2 shows the demographics of the neonates recruited for the trial. Note, skin
colour is recorded due to the applicability to NIR light based sensing, and is quantified

using the Fitzpatrick Scale [Sachdeva 2009).

Table 12.2 Light based continuous glucose monitor NICU trial patient demographics. Data is shown
in median [IQR] where appropriate.

Patients 22
Hospital (Auckland/Middlemore) 15/7
Gestational age (wk + day) 38+4 [37+4, 39+5]
Sex (M/F) 10/12
Birth-weight (g) 3302 [2686, 3806]
Customised Birth-weight Centile (%) 24.5 [8.5, 81.0]
Skin Colour (1-6) 2/11/7/1/1

12.2.3 Equipment

The model developed in Chapter 11 showed good results for increasing the sampling
rate, while tracking the LED voltage decay with an ADC. However, at low light levels,
the resolution of the Teensy 4.0 inbuilt 12-bit ADC was too low. Thus, an external

ADC has been implemented on the new board.

The sensor presented in Chapter 10 used six different wavelength LEDs spaced with
10 mm between emitting and sensing LEDs. An additional arrangement between LEDs
was presented in Chapter 4, placing the LEDs in a grid with the sensing LED of
each wavelength surrounded two emitting LEDs spaced 5mm apart. The final LED
arrangement used in this chapter is the same as the SjvOs sensor, except with 4 mm
between emitting and detecting LEDs. The design of the circuit board is shown in
Figure 12.4. For each wavelength measured, a sensing LED has two emitting LEDs

separated by 4 mm.

To reduce noise in the circuit, the emitting and sensing boards presented in Chapter 4
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Figure 12.4 Design of the circuit board for use in the NICU. Each detector LED has two emitting
LEDs of the same wavelength separated by 4mm. LED D1 contains the wavelengths 660 nm and
940 nm, while D2-D5 contain wavelenths 850 nm,1450 nm,1550 nm,1650 nm respectively.

were combined onto one board. This combination removes the need for an FPC cable.
However, as all hardware is on a single board, the LEDs has to be placed separately
to the remainder of the components. To ensure the LEDs can be placed on a neonatal
wrist, the width of the circuit board at the LEDs was limited to 20 mm, and the total

sensing area of the LED matrix is 8x10 mm.

12.2.3.1 Component choice

Many of the sensor components presented in Chapter 4 are retained in this design,
including: the Teensy 4.0; all LEDs; the 57 mA constant current LED driver; and the
right leg driver (RLD) circuit. However, the RLD circuit is not used in either of the

two trials, so the components were not populated on the circuit board.

The AD7768BSTZ 24 bit ADC is used in this project to monitor the LED decay voltage
at 33kHz [Analog Devices 2016]. This ADC has the capacity to simultaneously read

eight channels, of which this sensor uses six, one for each sensing LED. To reduce the
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noise present in the analogue signal, hardware filtering was included. Three rail-rail
quad opamp AD8608s were chosen to filter the six inputs from the sensing LEDs [Analog
Devices 2017]. The first opamp forms a voltage follower to create a high impedance
path between the LED and ADC, while the second creates a 5 kHz cutoff (F,) lowpass

RC filter, given:

1
F,. =
27 RC

(12.1)

Thus, the combination of a 95 resister, with a 330nF capacitor creates this 5kHz

cutoff frequency.

12.2.3.2 Design considerations for the NICU

The sensor must be capable of being sanitised between each patient. Thus, the housing
was designed to be splash proof, and wet alcohol wipes can be used between each test.
This splash proof design was implemented using a 3D printed housing with rubber
grommets set between each of the attachment points. The LEDs were separated from
the skin by an optically clear, anti static plastic screen designed for overhead projectors.

This screen provides a moisture barrier, while retaining optical clarity for sensing.

Figure 12.5 shows the design of the housing for the NICU sensor. As the sensor has
the emitting and detecting LEDs located on the bottom of the board, the bottom of
the housing must be flat to ensure flush placement on sites, such as the carotid artery,

or chest.

12.2.4 Sensor output processing

The raw pulsatile data must first be processed before calculating blood glucose con-
centration. The data flow is shown in Figure 12.6, where the raw LED voltage decay
waveform gets processed using the ADC decay method presented in Chapter 11. The

"AC" and "DC" components of the signal were calculated using the rolling RMS method
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Figure 12.5 Design of the sensor housing. The ergonomic grip is flat along the bottom to ensure
flush placement on the measuring site.

as the peaks and troughs were too difficult accurately identify. The AC/DC ratio of
each wavelength are then used in the absorption model to get the model predicted
glucose concentration. Passing the data through a calibration equation returns the

calculated blood glucose concentration.

Raw data:
850nm Signal filtering to
940nm . . Absorption model Calibration equation
» find ratio of AC and DC _ > —>BG_ i
1450nm (Ry) BGabsorption =A 1R/1 BGeaiipratea = aBGabsm"p[ion + ,B calibrated
1550nm
1650nm

Figure 12.6 Processing flow of the recorded arterial pulse waveform at each LED wavelength mea-
sured.

The absorption model was developed to use light absorption from the 850 nm, 940 nm,
1450 nm, 1550 nm, 1650 nm wavelength LEDs. The 660 nm wavelength data was not
included due to its minimal glucose absorption band [Amerov et al. 2004]. The compo-
nents analysed in this model include: water (W), glucose (G), albumin (A), lipids (L),

and tissue (7T"). This absorption model was developed based on Beer-Lambert’s law, as
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described in Chapter 10, and defined:

Ip = Ipe® ¢ (12.2)

Where,

Ig: LED voltage decay time under maximum incident light intensity from the

emitting LEDs.

Ip: LED voltage decay time under varying incident light intensity reflected from

tissue.
Ajy: Combined absorption coefficient €y, and optical path-length, d

C: Concentration of each component

The absorption coefficient of glucose must account for the displacement of water ( I )

at each wavelength. Thus, each new glucose absorption coefficient (e’GA) takes the form:

e'GA =e€G, —€wy X [, (12.3)

Rearranging Equation 12.2 to solve for the absorption for an individual wavelength

gives:

In(2) = A,C (12.4)

The LED voltage decay time under maximum light intensity is considered to be Ig,
and the LED voltage decay when placed on the tissue is Ip. The voltage decay time

from each detecting LED was normalised by dividing by If.

Using the principles of pulse oximetry, the ratio of the AC and DC components of

the pulsatile waveform at each wavelength were calculated. This ratio is denoted as
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R). Combining the combined absorption coefficients and path-length each wavelength

travels, with the concentration of each component gives:

Ry = A\C (12.5)

Thus, including the five measured wavelengths:

Rgs0 Agsow  Assoc Assoa  Assor  Assor | |[Cw
Rya0 Aggow  Aogoc  Aos0a  Aosor  Aosor | | Ca
Rygso| = [Awsow  Aussog A1as0a Arssor Awusor| | Ca (12.6)
Ri550 Assow  Aissoe Aissoa Assor Aissor| | CL
| Rigso|  |Awesow  Aiesoc Aiesoa  Aresor  Aiesor| | O |

Equation 12.6 is then rearranged to solve for the physiological concentration of each

component:
_ - _ o1 - _
Cw Agsow  Assoc  Assoa  Assor  Assor Rgso
Ca Agsow  Agsoc  Aosoa  Agsor,  Agaor Rogs0
Cal| = |Ausow Aisoc Arasoa Aissor Arasor Ria50 (12.7)
Cr Atssow  Aissoc Aissoa Aissor Aissor Ris50
Cr Aesow  Aiesoc Atesoa  Atesor  Aiesor Ri650

The result of solving this series of equations using the inverted equation returns a

glucose concentration in mgdl~™'. A conversion factor of 18.018 is used to convert to

mmol 171,

Table 12.3 gives the absorption coefficients for each wavelength, adapted from [Altshuler
et al. 2006, Cao et al. 2013, Kohl et al. 1995, Maruo et al. 2006a, b]. The model
includes absorption for water glucose, albumin, lipids, and tissue. The tissue component
accounts for the remaining components in blood. The results of each measurement is

then compared to the reference finger prick measurement taken at the same point in
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time, and plotted in a Clarke Error Grid (CEG) for analysis.

Table 12.3 Absorption coefficients of blood components at each wavelength measured.

Wavelength (nm)
Absorption (€) (em™1) | 850 940 1450 1550 1650
Water 0.05 0.5 40 20 6
Glucose 0.0015 0.002 4 14 1
Albumin 0.4 1 4 7 5
Lipids 0.8 0.1 2 2 2
Tissue 15 16 15 15 15

Similar to the raw output of the pulse oximeter ratio equation, the result of Equation
12.7 requires a calibration equation. An absorption model does not account for addi-
tional impacts on light absorption, such as light reflection, ambient lighting, and sensor
error. Additional absorption and scattering is still expected to be present at zero glu-
cose in the blood, so will create result in a non-zero crossing of the absorption model.
Thus, a linear calibration model will be created to adjust for the non-zero offset, as

given:

BGcalibrated = aBGabsorption + 5 (128)

Where,

a: calibrated gradient

B: calibrated absorption offset

K-fold cross-validation is used to calibrate the linear model. Cross-validation is a re-
sampling method which uses different portions of the data-set to train, then test a
model. The goal of the calibration is to test the ability of the calibration to predict
data which wasn’t used to train the model. K-fold cross-validation uses K sections of
equally sized training and testing sets. For example, 10-fold cross-validation randomly

separates a data-set of 200 samples into 10 sets of 20.

Each set of 20 data points is then used as a test set of the calibration, where the

remaining 180 out of the 200 data points are used to train the model. The RMSE of each
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test set between the reference BGC and calibrated BGC is calculated for comparison.
After each of the models have been fit to the split data, the mean coefficients from each
fit are used for the final calibration equation. The calibrated blood glucose calculation

is then compared to the reference blood glucose for analysis.

Conventional parameter fitting for a linear model minimises the error between each
data point and the line of best fit. While this method will return a valid calibration,
the parameter fitting assumes the x-data to be truly accurate. However, the reference
glucose measurements themselves have error. Thus, TLS is used to calculate the line
of best fit. This method optimises the perpendicular distance between the data point
and the linear line of best fit, accounting for error in both the x and y-axis [Golub and
van Loan 1980]. The GMD fitting method is often used instead of TLS as it is scale
invariant. However, as the reference and estimated glucose are on the same scale, the

TLS method is used in this chapter.

The coefficient of determination, R?, calculates the difference between how the y-axis
error from the line of best fit is compared to the y-axis error to the mean. Similar to
TLS fitting, the error in the reference measurement must also be accounted for [Lam
et al. 2020]. Thus, a TLS coefficient of determination will also be presented. This R%; ¢

measures the error perpendicular to the line of best fit.

12.2.5 Analysis

Blood glucose was assessed in both adults and neonates, providing a range in glucose
between 2.2mmoll~! to 8.0mmoll™!'. The results from both trials will be included
together in a CEG, as well as Bland-Altman analysis. The average reading from each

of the three sites is also presented.

Data exclusion criteria was included to remove noisy data. A rolling RMS window
of the pulsatile data is used to threshold the noise level. If the RMS of the pulsatile
waveform from one of the waveforms exceeds this threshold, the section of data is

excluded from the analysis. This increase in RMS is often due to motion artefacts
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introduced by movement of the neonate. The exclusion criteria will be run at three

different noise thresholds to demonstrate the effect of each threshold.

The performance of the k-fold cross validation will be assessed using the RMSE at each
step of calibration. A larger range in RMSE indicates a poor fit to the data. The mean

and standard deviation of the a and 5 values will also be presented.

The primary outcome of these trials is the proportion of predicted BGC measurements
with a MARD <20% compared to the reference method. MARD will be calculated
overall, and by skin site and at lower (<3.5mmol171) and higher (>3.5mmol171) BGC
[Rodbard 2014]. MARD gives the average percentage difference between the experimen-
tal and testing device. Invasive glucometers have a MARD of 5-10%, while a MARD
of 15% would be deemed very good for a non-invasive system [Smith 2017]. However,

the CEG indicates a MARD of 20% is within clinical accuracy requirements.

12.3 RESULTS

In total, 27 subjects were tested, with 22 neonates, and 5 adults. A combined 290
measurements were taken across the three sites: foot, wrist, and chest for neonates,
and finger, palm, and carotid artery for adults. Each invasive glucose measurement

was paired with measurements at each of the three sites.

The RMS thresholding determined 117 measurements did not record a pulse for data
analysis. This percentage of lost data, 43%, was generally recorded at the early stages
of the trial as each user learnt how to best apply the sensor. Thus they declined with

practice with the device.

Figure 12.7 plots the reference glucose reading against the raw output of the absorption
model. The mean RMSE from each of the the 10-fold cross validation calibrations was

1.6 0.4 mmol1~!, indicating a consistent linear calibration model. The model is given:

BGcatibrated = 1.32(£0.06) BG gpsorption — 1.25(£0.27) (12.9)
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Figure 12.7 K-fold cross validation method for calibrating the raw output from the absorption
model.

Figure 12.8 plots the CEG generated from the neonatal data (blue) and adult data
(red). The error grid contains 62% percent in Zone A, 31% in Zone B, 6% in Zone
C, and 1% in Zone D. The sensor shows a greater spread in estimated BGC in adults,
compared to neonates, with the two neonate readings clear outliers. The R? of the
calibrated estimated blood glucose concentration compared to the reference is 0.33.

Table 12.4 shows the results from the CEG analysis.

The effect of different noise thresholds on the sensor calibration is shown in Figure 12.9,

with the results shown in Table 12.4.

The Bland Altman analysis is shown in Figure 12.10, demonstrating an overestima-
tion of blood glucose concentration for the neonates, and an under estimation for
adults. The mean difference between the light-based and reference measurements was

-0.21 mmol 171,

The calculated light-based glucose values were separated into each recording site, with
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Figure 12.8 Clarke Error grid for the calculated light-based glucose sensor compared to a reference
glucometer measurement after calibrating for reflectance at zero glucose, with an R* = 0.33. The blue

data is recorded from neonates, and the red data from adults.
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Figure 12.9 Clarke Error grid for the calculated light-based glucose sensor compared to a reference
glucometer measurement at three different noise threshold levels of the total 290 estimated glucose

values. CEG A plots 210/290, CEG C plots 149/290, CEG C plots 78/290.
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Figure 12.10 Bland Altman plot for the calculated light-based glucose sensor compared to a reference
glucometer measurement. The blue data is recorded from neonates, and the red data from adults.
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Table 12.4 Combined results from the adult and NICU trial.

Total | RMSE MARD MARD

R* R?

Reads | (mmoll™') <3.5mmoll~! >3.5mmoll! TLS
Foot 50 1.6 24 25 -1.2 0.71
Wrist 63 2.0 28 29 -0.43  0.73
Chest 47 1.9 33 21 -0.62  0.73
Average of 52 1.2 15 31 0.47 077
three sites
Threshold A 210 1.9 28 52 0.18 0.72
Threshold B | 167 1.0 24 40 0.33 0.71
Threshold C 78 1.0 24 40 0.34 0.73

the foot and finger, wrist and palm, and chest and neck plotted for the neonate and
adult respectively. Figure 12.11 shows these three site plots, as well as the mean across
the recorded sites for each invasive reference measurement taken. The CEG showing

the mean estimations contained 85% in Zone A, 11% in Zone B, and 4% in Zone C.

The CEG containing the foot and finger data had the lowest MARD of 25%, repre-
senting the best fit of each of the sites. However, the adults’ thumb had the greatest
variation of the three sites, excluding the two outliers in the neonatal wrist data. The

combined average has much reduced variation, leading to an R? of 0.47.

12.4 DISCUSSION

The calculated glucose concentration using the light-based sensor gave a positive corre-
lation to the measured reference, with an R? of 0.33. This R? improved to 0.47 when
taking the average measurement at the measured sites for each invasive reference mea-
surement. However, these values are likely influenced by the outliers present in the
neonate wrist data. The R3¢ of the mean data returned a value of 0.77. This R, ¢
is expected to be higher than the conventional R? as the perpendicular distance to the

best fit line. rather than the y distance is taken.

The measured range of 2.2mmoll~! to 8.0mmoll~! provided a spectrum covering the
healthy range, 4.0mmoll~! to 8.0mmoll~!, while also covering concentrations that

would indicate hypoglycaemia. An advantage of conducting the NICU trial was the
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Figure 12.11 Clarke Error grid for the calculated light-based glucose sensor compared to a reference
glucometer measurement separated into the recorded sites. The bottom right CEG plots the average of
each site for each invasive reference taken, with an R? = 0.47. The blue data is recorded from neonates,
and the red data from adults.
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ability to gain access to these low glucose concentrations, which are not feasible to
induce in adults without rising hypoglycaemia. However, this range needs to extend
further into the hyperglycaemia range to give a true reading of the model fit. Equally,
as seen in a CEG, accuracy is less important in how it impacts clinical decisions at

these higher BGC levels.

The goal MARD for the sensor was a 20% error across the full range of measured glucose.
While the raw output from the model only generated a MARD of 28% across the mea-
sured range, the MARD at the foot demonstrated a MARD of 24% <3.5mmoll~! and
25% >3.5mmol1~'. While these individual MARD values did not reach the goal 20%,
taking the average read from each site returned an overall MARD of 19%, achieving

the set goal.

The R? value calculated at each of the sites returned a negative value. This means
that fitting to the mean of the data points returns less error than to the line of best fit.
This often occurs when data is clustered, and outliers skew the line of best fit. Taking
the R%Ls is a better metric as it captures the error perpendicular to the model, not

just the y-axis, especially with variability in the reference measurements.

The oral glucose tolerance test is a simple test to indicate whether a sensor is capable
of tracking changing glucose concentration. However, ingesting the glucose required for
the test has been known to cause changes in core and surface temperature, peripheral
perfusion, skin hydration, enzyme levels, and many others [Smith 2017]. As these fac-
tors also exhibit changes with glucose concentration, a sensor may instead be tracking

these parameters.

While the adult trial method involved an OGTT, the NICU trial involved random time
sampling, avoiding the potential correlation to different parameters than glucose. Three
different sensors were used across both trials. Using these different sensors reduces the

risk of each reading being senor dependent.

The data recorded from the neonates shows a smaller spread than the adults, with

a higher spread at lower blood glucose concentrations. This spread is not ideal as
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accuracy at lower glucose concentrations is critical to diagnosing, and treating hypogly-
caemia. To account for the difference in spread between adults and neonates, separate
calibrations may be required. This difference in spread is likely due to the different
physiological parameters of the neonatal skin, such as, neonatal skin dermal thickness

being only 60% that of adults [Fox 2011].

The influence of the RMS noise threshold for the AC component was evident in Figure
12.9. Each level of thresholding returned an increasing R?, although the thresholding
B plot further shown in Figure 12.8 was likely influenced by the two outliers in the D
region. Each plot is 12.9 shows different spread data as the calibration algorithm had
a different amount of data for training and testing. When calibrating using k-means
clustering, the lowest noise threshold with 78 data points only had 70 data points to
train and 7-8 for testing. Thus, the lower noise threshold likely requires more data

before using that getting a reliable calibration.

Each site recorded gave a different spread of estimated glucose concentrations, with
the neonatal foot, and adult finger having the highest correlation, but also a greater
spread. The palm and wrist show promise. However, the wrist of a neonate is difficult
to measure due to motion artefacts. These are the conventional sites of measurements
for pulse oximeters in both neonates and adults, and will be the future site for mea-
surements when analysing pulse glucometry. If the sensor is used without the need for
finding a pulse, then the other sites may be an option, allowing incorporation of the

sensor into devices such as smart watches.

Figure 12.11 plots the glucose estimation from each of the three sites, with the average
at each site plotted in the bottom right figure. This average is much smoother than the
raw data, implying that taking the average reading over time would reduce the error.
Conventional CGMs also take the average over many readings, making this a viable

method to improve sensing accuracy.

The correlation plot has a y-crossing above zero. The total least squares method was
used to calculate the linear fit, as this method assumes both the light-based sensor,

and the reference measurements both contain errors [Golub and van Loan 1980]. A
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positive non-zero y-axis crossing point is expected due to the model not accounting for

absorption in the blood or tissue influencing the returning light intensity.

Changes in glucose concentration for a person living with diabetes ranges from 2 mmol 17!
to 20mmol1~'. While the measurements are in mmol1™!, there is still an order of mag-
nitude difference across the physiological range, as shown in Chapter 10 with a clear
change in absorption across this range. It is expected that in-vivo testing would have
higher noise levels due to the additional interference from other molecules, as shown in

the higher noise levels present in the NICU and adult testing data.

12.5 SUMMARY

This chapter covered the validation of a non-invasive, discrete NIR spectrometric glu-
cometer through two trials, one in adults, and the other in the NICU with neonates.
The sensor gave a positive, but weak correlation of R? = 0.34. Data from the neonatal
foot and adult finger returned the most consistent MARD values (24% at <3.5 mmol 171
and 25% at >3.5mmol1~!), and taking the average recording at each site for a reference
glucose measurement achieved the 20% goal with a 19% MARD. A large portion data
was unable to measure pulsatile data. However, user training and experience reduced

the amount of lost data.

The results suggest there is still a way to go before the sensor is ready for any clinical
use, especially at low BGC. Improvements may include calibrations to each individual,
possibly daily with invasive measurements. Additional testing is needed in adults at a
higher glucose range than presented in this trial. This higher range will provide greater

insight into the accuracy of the model and the calibrated best fit.

The sensor shows promise for non-invasive glucose measurement, especially with an
improved model and data averaging. Non-invasive glucose measurements and their
algorithms can play a significant role in monitoring hypoglycaemia in neonates, as well

as providing a pain free monitoring method for adults.
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CONCLUSIONS

The aim of this thesis was to develop non-invasive, optical methods of monitoring im-
portant dynamic physiological variables, venous oxygen saturation, pulse wave velocity,
and blood glucose concentration. These goal measurements assess key metrics needed
to provide better care. The thesis achieved this goal, with each key measurement val-
idated against gold standard reference measurements (BGC), or where this was not

possible, against literature values (SpjvOs2 and PWV).

Achieving the aim of this thesis required development of a non-invasive reflectance pho-
toplethysmograph (PPG) sensor capable of using multiple different wavelength LEDs
to both emit and detect the returning light. This novel sensor provides discrete wave-
length spectroscopy using LEDs of different wavelengths. The digital method of sensing
lowers the complexity and cost of pulse oximeter design. A model was developed for
the voltage decay of the reverse biased LED under varying light conditions, using an
ADC to increase the sensor sample rate. This ADC method of detection is a novel

adaption of the conventional digital timing method of voltage decay.

The sensor developed was successfully adapted to measure the jugular venous pulse
(JVP), as well as estimate the jugular venous oxygen saturation. A study of 15 subjects
all returned a visible JVP, allowing the estimation of oxygen saturation, with a mean
SpjvOs of 82.4 £5.2%. The novel contribution of this sensor is the contribution of a non-
invasive central venous oxygen saturation measurement. An adapted pulse oximeter
calibration equation was also used to estimate SpjvOs from the breathing induced pulse

in the neck. While the senor did estimate SpjvO3 in the higher range, this was expected
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as the healthy test subjects were at rest, lying supine, where the brain would consume

minimal additional oxygen.

A sensor capable of sampling the pulse at two points local to an artery using PPG
signals was developed. This sensor sampled at 3kHz to measure the PWYV in the
artery. A signal processing method of calculating PWV using the phase difference
across multiple beats improved the results of the sensor (SD of 0.6 ms~!, and CoV of
20%), compared to the gold standard "foot-foot" method (SD of +1.2ms™!, and CoV
of 58%). The phase difference method performs better under high noise levels, and
when the features of the arterial pulse waveform are difficult to identify. The novel
contribution of this sensor included the ability to measure the arterial pulse waveform

using an array of LEDs placed over either the carotid artery, or radial artery.

The final sensor developed used six different wavelength LEDs to isolate the spectral fin-
gerprint of glucose in blood. Initial testing in porcine blood showed a clear relationship
between the LED light absorption and BGC. A subsequently improved version of the
sensor used, novel, discrete spectrometry with the ADC sensing method to estimate the
BGC in humans. Trials conducted in adults and neonates returned a MARD of 19%,
achieving the goal of developing a sensor with a MARD <20%. The sensor is a novel

contribution towards non-invasive NIR measurement, both in adults and neonates.



Chapter 14

FUTURE WORK

The overall goal of this thesis was dedicated to developing a sensor capable to detecting
light using the LED-LED detection method for the use in biomedical applications.
There is much work to be done to improve the accuracy of the sensor for each of the

applications presented in this thesis:

14.1 SENSOR DESIGN

In early versions of the sensor, the accuracy was proportional to the clock speed of the
microcontroller timing the voltage decay of the reverse biased LED. However, the cur-
rent microcontroller using the digital timing method is the ARM Cortex-M7, running
at 600 MHz, and is currently one of the fastest consumer microcontrollers available.
The accuracy the sensor is likely no longer proportional to the sample rate, and thus,

possible improvements to the sensor outside of the microcontroller include:

o A dedicated pulse oximeter LED driver to reduce voltage jitter on the emitting
LED. The current LED driver is designed for consumer products, rather than
precision LED driving, so replacing the driver would reduce noise introduced by

the emitting LED.

e The ADC method uses a 24-bit ADC capable of sampling at 33 kHz, giving fewer
than 10 voltage reads during high light intensities. While the accuracy of the ADC

is sufficient, a higher sample rate ADC with a 16-bit resolution would provide a
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more useful output as the ADC can sample more points along the LED decay

waveform.

e The emitter-detector separation varied throughout the thesis, ranging from 2 mm
to 10 mm. For the 1450 nm to 1650 nm LEDs, the smaller the separation, the
better, with the 2mm spacing returning the largest response to incident light.
Thus, future LED layout could utilise a spacing of 2mm for the 1450 nm to
1650 nm LEDs, and a greater separation for the 660 nm to 940 nm LEDs due to

the reduced absorption at these wavelengths.

14.2 VENOUS OXYGEN SENSING

The venous oxygen sensor returned SpjvOq values in the expected physiological range
when compared to literature. However, the sensor requires a validation against the
gold standard venous bulb catheter measured SvOsy. The sensor returned clear JVP
waveforms. However, converting the sensor to a small patch that could be taped over
the EJV would reduce motion artefacts, and the external pressure applied by the sensor,
reducing the risk of collapsing the vein. Using the breathing induced pulsatile signal
appears to have more potential than the JVP directly. As the use case of the sensor is

likely in the hospital, the respiratory rate would also be of use.

14.3 PULSE WAVE VELOCITY SENSING

Literature has not yet been able to develop a PWV sensor capable of simple, reliable
measurement of PWYV. The sensor developed in this thesis would require improvements
to return more viable results. Migrating the LED driver board and sensor board to a
single board would reduce the noise coupled into the circuit. The middle sensing LED
did not return usable results on either of the two sensors, so only the LEDs placed at
the edges of the sensor are required for sensing. The separation between the two sensing
sites could increase from 40 mm to 50 mm, giving a 20% increase in PTT. Validation

against gold standard measurements, either invasively, or through Doppler ultrasound.
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14.4 NON-INVASIVE GLUCOSE SENSING

The discrete LED-LED spectrometer showed a clear change in light absorption, pro-
portional to glucose concentration. However, in-vivo testing in humans highlighted key

improvements.

o Over 40% of the reads across the adult and neonatal trial did not return a pulsatile
signal. This rate improved with further training and understanding of how the
sensor worked. Thus, the sensor needs to remove the user variability, likely by
being attached to the skin, rather than held on by the user, as the user introduces
additional pressure and motion artefacts. A sensor similar to a conventional pulse
oximeter finger-clip would reduce this error, although a smart watch style sensor

would be more friendly at a trade off of lower pulsatile signal strength.

e The sensor had to use the RMS method of calculating the AC component of the
signal. Reducing the LED emitter-detector separation would increase the amount

of light returning to the sensor, potentially improving the pulsatile signal.

e There is the potential that the sensor may not need to read the pulsatile signal.
Many NIR glucose sensors look at the interstitial glucose concentration, similar
to conventional CGMs. Removing the need for an arterial pulse allows a greater

range in sensor placement, such as the upper arm, or wrist.






Appendix A

VENOUS OXYGEN SENSING

A.1 DRIVE BOARD AND SENSE BOARD SCHEMATICS

The KiCad schematic files are included here. All design files including the Schematics,
Gerber files, Arduino code, and STL files can be found online at an Open Science

Framework repository:

https://doi.org/10.17605/0SF.10/VA3JW
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A.1 DRIVE BOARD AND SENSE BOARD SCHEMATICS

Table A.1 BOM for the LED drive board and the LED sense board.

229

Designator Component Num Unit Cost Tot Cost Source of
($USD) ($USD)  Materials
Driver board
J1-1 Teensy 4.0 1 $19.95 $19.95 PJRC
J1-2 Teensy 4.0 hat 1 $6.30 $6.30 OshPark
J2,J3,J4 1 pos header 3 $0.05 $0.15 Digi-Key
J5 24 pin FPC 1 $1.58 $1.58 Digi-Key
J6 14 pos header 2 $1.08 $2.16 Digi-Key
H7 2 pos header 1 $0.21 $0.21 Digi-Key
HS8 5" FPC cable 1 $5.99 $5.99 Digi-Key
F1 200 mA Fuse 1 $0.73 $0.73 Digi-Key
U1l LED driver 1 $3.32 $3.32 Digi-Key
U2 2.5V regulator 1 $1.74 $1.74 Digi-Key
U3 -2.5V regulator 1 $6.45 $6.45 Digi-Key
U5 Quad op-amp 1 $2.60 $2.60 Digi-Key
R1 Resistor 1k 1 $0.10 $0.10 Digi-Key
R2,R3,R4,R5 Resistor 4.7 MS2 4 $0.17 $0.68 Digi-Key
R7,R8 Resistor 682 2 $0.11 $0.22 Digi-Key
R6,R9 Resistor 33k 2 $0.25 $0.50 Digi-Key
R10,R13 Resistor 5.1 k(2 2 $0.11 $0.22 Digi-Key
R11.R12 Resistor 510 k2 2 $0.11 $0.22 Digi-Key
gffé’l(é?é(i;’cm’ Cap 100nF 16V 8 $0.11 $0.88  Digi-Key
C1,C11,C12,C15 Cap 1pF 6.3V 4 $0.11 $0.44 Digi-Key
C3,08,09 Cap 10pF 10V 3 $0.11 $0.33  Digi-Key
5 Cap 270uF 16V 1 $0.28 0.8  Digi-Key
C10 Cap 10pF 10V 1 $0.38 $0.38 Digi-Key
Total Driver Board Cost: $56
Sensor board
J1 24 pin FPC 1 $1.58 $1.58 Digi-Key
U1l Temp sensor 1 $1.48 $1.48 Digi-Key
D1 LED (660,940nm) 3 $1.48 $444  Digi-Key
D2 LED (850nm) 3 $0.33 $0.99 Digi-Key
D3 LED (1450nm) 3 $22.25 $66.74 Digi-Key
D4 LED (1550nm) 3 $13.79 $41.37 Digi-Key
D5 LED (1650nm) 3 $22.25 $66.74 Digi-Key
C1,03 Cap 10 pF 1 $0.35 $0.7  Digi-Key
C2 Cap 100nF 1 $0.11 $0.11 Digi-Key
E1,E2,RLD %?éiiii dselslvf;m 60mm  $8.30 $0.5 Regal
Total Sense Board Cost: $184
PCBway PCB (5 of each board): $20
3D Printing Cost (16 g) $1
Total Cost: $261
Total Cost without specialist LEDs: $86



https://www.pjrc.com/store/teensy40.html
https://oshpark.com/shared_projects/tZbsjC0v
https://www.digikey.co.nz/product-detail/en/sullins-connector-solutions/PRPC001SAAN-RC/S1011EC-01-ND/2775253
https://www.digikey.co.nz/product-detail/en/molex/0512812494/WM6240CT-ND/2185198
https://www.digikey.co.nz/product-detail/en/sullins-connector-solutions/PPPC072LFBN-RC/S7110-ND/810247
https://www.digikey.co.nz/product-detail/en/amphenol-icc-fci/77311-118-02LF/609-4434-ND/1523689
https://www.digikey.co.nz/product-detail/en/parlex-usa-llc/050R24-127B/HFF-24U-05-ND/660092
https://www.digikey.co.nz/product-detail/en/murata-electronics/PRG18BC2R2MM1RB/490-6994-1-ND/3846191
https://www.digikey.co.nz/product-detail/en/nxp-usa-inc/PCA9745BTWJ/568-14156-1-ND/9449780
https://www.digikey.co.nz/product-detail/en/texas-instruments/REG710NA-2-5-250/296-12133-1-ND/404724
https://www.digikey.co.nz/product-detail/en/analog-devices-inc/LTC1550LCMS8-2-5-PBF/LTC1550LCMS8-2-5-PBF-ND/962402
https://www.digikey.co.nz/product-detail/en/texas-instruments/TLC2274CDR/296-1306-1-ND/276574
https://www.digikey.co.nz/product-detail/en/susumu/RR0510P-102-D/RR05P1.0KDCT-ND/432937
https://www.digikey.co.nz/product-detail/en/vishay-beyschlag-draloric-bc-components/MCT06030C4704FP500/749-1656-1-ND/7347964
https://www.digikey.co.nz/product-detail/en/susumu/RR0816Q-680-D/RR08Q68DCT-ND/432696
https://www.digikey.co.nz/product-detail/en/panasonic-electronic-components/ERJ-PB3B3302V/P20143CT-ND/6214398
https://www.digikey.co.nz/product-detail/en/yageo/RC0603FR-075K1L/311-5-10KHRCT-ND/730215
https://www.digikey.co.nz/product-detail/en/yageo/RC0603FR-07510KL/311-510KHRCT-ND/730233
https://www.digikey.co.nz/product-detail/en/kemet/C0603C104M4RACTU/399-1099-1-ND/411374
https://www.digikey.co.nz/product-detail/en/samsung-electro-mechanics/CL05A105JQ5NNNC/1276-1444-1-ND/3889530
https://www.digikey.co.nz/product-detail/en/avx-corporation/0603ZD106KAT2A/478-10766-1-ND/7536554
https://www.digikey.co.nz/product-detail/en/avx-corporation/0603ZD106KAT2A/478-10766-1-ND/7536554
https://www.digikey.co.nz/product-detail/en/avx-corporation/TAJA106K010SNJ/478-13122-1-ND/9948637
https://www.digikey.co.nz/product-detail/en/molex/0512812494/WM6240CT-ND/2185198
https://www.digikey.co.nz/product-detail/en/texas-instruments/TMP20AIDRLR/296-46458-1-ND/7033631
https://www.digikey.co.nz/product-detail/en/sunled/XZM2MRTNI55W-8/1497-1371-1-ND/6709150
https://www.digikey.co.nz/product-detail/en/w%C3%BCrth-elektronik/15412085A3060/732-12009-2-ND/8557174
https://www.digikey.co.nz/product-detail/en/marktech-optoelectronics/MTSM5014-843-IR/1125-1360-ND/5872629
https://www.digikey.co.nz/product-detail/en/marktech-optoelectronics/MTSM5015-844-IR/1125-MTSM5015-844-IRDKR-ND/13663067
https://www.digikey.co.nz/product-detail/en/marktech-optoelectronics/MTSM5016-843-IR/1125-1362-ND/5872631
https://www.digikey.co.nz/product-detail/en/kemet/C0603C106M9PACTU/399-5504-1-ND/1950682
https://www.digikey.co.nz/product-detail/en/kemet/C0603C104M4RACTU/399-1099-1-ND/411374
https://www.regal.co.nz/index.php
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