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Abstract 

Introduction: Hyperglycaemia is a common complication of stress and prematurity 

in extremely-low-birth-weight infants. Model-based insulin therapy protocols have 

the ability to safely improve glycaemic control for this group. Estimating non-insulin-

mediated brain glucose uptake by the central nervous system in these models is 

typically done using population-based body weight models, which may not be ideal. 

Method: A head circumference–based model that separately treats small-for-

gestational-age (SGA) and appropriate-for-gestational-age (AGA) infants is compared 

to a body weight model in a retrospective analysis of 48 patients with a median birth 

weight of 750 g and median gestational age of 25 weeks. Estimated brain mass, model-

based insulin sensitivity (𝑆𝐼) profiles, and projected glycaemic control outcomes are 

investigated. SGA infants (5) are also analyzed as a separate cohort. 

Results: Across the entire cohort, estimated brain mass deviated by a median 10% 

between models, with a per-patient median difference in 𝑆𝐼 of 3.5%. For the SGA 

group, brain mass deviation was 42%, and per-patient 𝑆𝐼 deviation 13.7%. In virtual 

trials, 87–93% of recommended insulin rates were equal or slightly reduced (Δ < 0.16 

mU/hr) under the head circumference method, while glycaemic control outcomes 

showed little change. 

Conclusion: The results suggest that body weight methods are not as accurate as 

head circumference methods. Head circumference–based estimates may offer 

improved modelling accuracy and a small reduction in insulin administration, 

particularly for SGA infants. 



1.0 Introduction 

Hyperglycaemia, the elevation of blood glucose (BG) concentration, is common in 

extremely preterm infants, typically of 27 weeks gestation or less and is closely 

correlated with morbidity and mortality [1-3]. Hyperglycaemia in neonates is 

frequently treated with insulin to lower BG concentrations [4]. However, reported 

insulin protocols have increased the risk of hypoglycaemia in this cohort [5, 6], which 

is associated with neurological complications [7]. Hypoglycaemia is overrepresented 

in preterm infants, most severely in small-for-gestational-age (SGA) infants [8]. STAR 

(Stochastic TARgeted) is a model-based glycaemic control framework for critically-ill 

patients [9, 10]. In the neonatal intensive care unit (NICU) setting, STAR has delivered 

tight glycaemic control and reduced hypoglycaemia [11]. Its main attribute is a 

stochastic forecast of possible BG outcomes enabling a quantified level of risk of 

hypoglycaemia [12]. Hence, it directly mitigates the risk of inter- and intra-patient 

variability when using insulin. 

STAR utilizes the NICING model [13] to simulate insulin therapy. The NICING model 

is a pharmacokinetic description of insulin–glucose dynamics in the preterm infant 

that uses the same fundamental dynamics as a clinically well-validated adult model of 

acute care hyperglcaemia [14-16]. This model is similar in fundamental dynamics to 

well-known type-1 diabetes models [17, 18]. Patients are fit to this model to create 

treatment-independent insulin sensitivity profiles, which serve as the basis for 

describing patient condition. The glucose compartment of this model, with parameters 

given in Table 1, is defined: 

�̇� = −𝑝𝐺𝐺(𝑡) − 𝑆𝐼𝐺(𝑡)
𝑄(𝑡)

1+ 𝛼𝐺𝑄(𝑡)
+

𝑃(𝑡) + 𝐸𝐺𝑃 × 𝑚𝑏𝑜𝑑𝑦 − 𝐶𝑁𝑆 × 𝑚𝑏𝑟𝑎𝑖𝑛

𝑉𝑔,𝑓𝑟𝑎𝑐(𝑡) × 𝑚𝑏𝑜𝑑𝑦
  (1) 



Non-insulin-mediated glucose uptake by the central nervous system (CNS) is the rate 

at which glucose is removed from the blood for use in the brain. This rate is relatively 

constant [19], irrespective of the body’s plasma insulin concentrations [20]. CNS 

uptake is a required parameter in the NICING model, as [13] notes that in contrast to 

the adult case, the brain represents a major source of glucose uptake in infants, due to 

their larger brain-to-body weight ratio. Hence, given significant variability between 

preterm infants and no clinically practical ability to measure it directly, this parameter 

should be modeled as accurately as feasibly possible. 

Table 1: Parameters and variables in Equation (1) of the NICING model. 

Variabl
e 

Description Value 

𝑮(𝒕) BG concentration mg/dL 

𝒑𝑮 
Non-insulin-mediated endogenous glucose 

clearance 
0.0030 /min 

𝑺𝑰 Insulin sensitivity litre/mU/min 

𝑸(𝒕) Interstitial insulin concentration mU/litre 

𝜶𝑮 
Saturation parameter for insulin mediated glucose 

removal 
0 litre/mU 

𝑷(𝒕) 
Total glucose appearance in plasma from enteral 

and parenteral sources 
mg/min 

𝑬𝑮𝑷 Endogenous glucose production 5.112 mg/min 

𝒎𝒃𝒐𝒅𝒚 Body mass kg 

𝑪𝑵𝑺 Central nervous system glucose uptake 15.84 mg/min 

𝒎𝒃𝒓𝒂𝒊𝒏 Brain mass kg 

𝑽𝒈,𝒇𝒓𝒂𝒄 Plasma glucose distribution volume 0.5961 L/kg 

 

In Equation (1), CNS is weighted by a patient-specific brain mass 𝑚𝑏𝑟𝑎𝑖𝑛. 

Currently, 𝑚𝑏𝑟𝑎𝑖𝑛 is calculated as 14% of body mass 𝑚𝑏𝑜𝑑𝑦 [13]: 

                            𝑚𝑏𝑟𝑎𝑖𝑛 = 0.14 𝑚𝑏𝑜𝑑𝑦                    (2) 

 



This calculation assumes that brain mass is directly proportional to body mass 

(𝑚𝑏𝑜𝑑𝑦). Equation (2) is clinically convenient, as it requires only 𝑚𝑏𝑜𝑑𝑦 data, which is 

easily available. However, it may not be accurate. Dobbing and Sands [21] showed a 

trend between 𝑚𝑏𝑜𝑑𝑦 and brain mass, but with notable variance. A more precise 

measure for estimating brain mass may be head circumference (HC) [22]. 

Improving the estimation of the patient-specific CNS term in the NICING model is 

projected to have three potential benefits for patients and clincians: 1) it may improve 

glycaemic control and outcomes of patients; 2) it will improve the physiological 

accuracy of the model; and 3) it will provide a method of brain mass estimation that 

is better justified by the existing literature. This work serves as a feasibility study as to 

whether growth metrics, such as head circumference [22], which are also readily 

measured in infants, should be used in model-based glycaemic control methods to 

better account for and manage the inter-patient variability that can make control 

difficult for preterm infants [11, 23]. Ultimately, improvements in glycaemic control 

that may come by this investigation could reduce the incidence of hyper- and hypo- 

glycaemia in this fragile cohort. 

This work attempts to mitigate a limitation of STAR’s model-based stochastic 

forecasting technique by improving physiological parameter estimation. Methods are 

not only limited by parameter estimation and modelling constraints, but also on the 

quality of the stochastic forecasting. A key component of improving stochastic models 

is understanding inter-patient variability [24]. Accounting for head circumference in 

the physiological model can reduce variability in stochastic modelling and forecasting. 

 



 

  



2.0 Methods 

2.1 Values for Brain Mass 

Equation (2) is estimated using data from Ho et al. [25]. This paper reports the mean 

and standard deviation body and brain mass for a range of preterm infants, divided 

into sub-cohorts by sex and ethnicity. Ethnicity was defined by ‘black’ or ‘white’, with 

no further detail provided. 

 The ratio of these group means was taken for black female and black male cohorts, 

which had the lowest mean gestational ages (mean GA = 27.3 wk and 28.4 wk, 

respectively), and then averaged to give 𝑚𝑏𝑟𝑎𝑖𝑛 = 0.140 𝑚𝑏𝑜𝑑𝑦. White cohorts were 

neglected due to the larger mean body mass (1367 g for the white cohort versus 1058 g 

for the black cohort) and greater gestational age (30.0 wk vs. 27.9 wk), which do not 

reflect the weight of infants who typically require glycaemic control [5, 11]. If the same 

method was applied to the white cohort, it would give 𝑚𝑏𝑟𝑎𝑖𝑛 = 0.131 𝑚𝑏𝑜𝑑𝑦, and if the 

entire cohort was used, then 𝑚𝑏𝑟𝑎𝑖𝑛 = 0.136 𝑚𝑏𝑜𝑑𝑦. The calculated ratio for each 

cohort is summarized in Table 2. 

Table 2: Mean statistics on body and brain mass from Ho et al. [25]. 

Cohort 
Gestational 

Age (wk) 
𝒎𝒃𝒐𝒅𝒚 

(g) 
𝒎𝒃𝒓𝒂𝒊𝒏 

(g) 

𝒎𝒃𝒓𝒂𝒊𝒏
𝒎𝒃𝒐𝒅𝒚

⁄  

(g/g) 
Black 

Female 
27.3 958 139 0.145 

Black 
Male 

28.4 1151 157 0.136 

White 
Female 

29.2 1258 165 0.131 

White 
Male 

30.4 1434 190 0.132 

 



While Equation (2) captures a ratio that may be applicable to a patient around the 

median mass of 1055 g, it assumes a linear relationship with no offset between 𝑚𝑏𝑟𝑎𝑖𝑛 

and 𝑚𝑏𝑜𝑑𝑦, which is not realistic far from this value. Because the cohort this method 

will be applied to is typically much smaller than 1055 g [11], the errors from this 

assumption will be amplified. Finally, the apparent choice of ethnic cohort may not 

best reflect the population of patients in New Zealand, where patients are 

predominantly of New Zealand European, Māori, Pacific Island, and Asian descent.  

2.2 Head circumference and brain mass 

A model relating HC to brain mass from Cooke et al. [22] is compared to the original 

NICING assumption that brain mass is 14% of 𝑚𝑏𝑜𝑑𝑦, based on Ho et al. [25] and in 

Equation (2). 

Cooke et al. [22] provide a relationship between HC and brain mass following a post-

mortem study of 485 premature infants with gestational ages (GA) between 18 and 43 

weeks. Small-for-gestational-age (SGA) infants are accounted for using a different 

parameter set to those that were appropriate-for-gestational-age (AGA). This 

separation was the result of SGA infants having a statistically higher brain mass for 

their gestational age than AGA infants [22]. Such a distinction may also be necessary 

in the relationship between 𝑚𝑏𝑜𝑑𝑦 and brain mass, which has not been investigated 

using the 𝑚𝑏𝑜𝑑𝑦 model. 

The HC model from Cooke et al. [22] is defined:  

𝑚𝑏𝑟𝑎𝑖𝑛 =  𝐶𝑏 × 𝑘   (3) 

where 𝐶 is the head circumference in centimetres and 𝑚𝑏𝑟𝑎𝑖𝑛 is the brain mass in 

grams. The remaining parameters given are in Table 3. 



 

Table 3: Parameters in HC model [22]. 

Cohort 𝒃 𝒌 

Appropriate-for-Gestational-Age 3.001 0.0093 

Small-for-Gestational-Age 3.225 0.0048 

 

Head circumference and weight data for this feasibility analysis are taken from the 

HINT trial of 88 preterm infants undergoing tight glycaemic control, for which the 

population is described in [6]. Of this cohort, patients were included that had episodes 

of insulin therapy with five or more consecutive BG measurements that were recorded 

less than eight hours apart. Inclusion also required a head circumference 

measurement during, or 24 hours before the start of the episode. These criteria were 

necessary to fit patients to the NICING model, and to compare brain mass estimates. 

Multiple episodes were recorded per patient where applicable. A total of 48 patients 

were selected, totaling 82 episodes. None of the mothers of patients in the study 

experienced maternal diabetes. 17 of 48 patients experienced intraventricular 

haemorrhage (IVH), all of whom were AGA infants. IVH was rated on a scale of 1–5 in 

order of increasing severity; the 17 patients had a median [IQR] IVH score of 2 [1–3.5]. 

Table 4 has demographic data from the overall cohort with further details in [6].  

  



Table 4: Median [IQR] cohort demographics. 

Birth Weight (g) 750 [678–894] 

GA at birth (weeks) 25.0 [24.0–26.5] 

Age at start of trial 
(days) 

4 [2–7] 

Ethnicity (%)  

NZ European 28 

Māori 35 

Pacific Islander 6 

Asian 10 

The SGA cohort is investigated in greater detail in each analysis to discern the effect of 

separating this group in estimation, and whether they may be more at-risk. Of the 

entire cohort, 5 of 48 patients were SGA, corresponding to 7 of 82 patient episodes. 

SGA infants were defined as patients at or below the 10th percentile of weight for their 

GA using growth charts from New South Wales, Australia [26] that have been used in 

New Zealand hospitals. 4 of the 5 SGA patients were asymmetric SGA, as determined 

by the Ponderal index [27]. Due to the small SGA cohort, asymmetric and symmetric 

patients are not analysed separately.  

2.3 Analyses 

First, changes in the estimated value of 𝑚𝑏𝑟𝑎𝑖𝑛 were investigated. For each head 

circumference measurement, patient brain mass is estimated using both models of 

Equations (2)–(3).  

Next, changes in glycaemic control were analyzed using clinically-validated virtual 

patients [11, 28]. In particular, both models for estimating brain mass were compared 

by fitting data to create virtual patients. Patients were fit for treatment-independent 

insulin sensitivity profiles (SI) to create virtual patients [29] using the NICING model. 



Finally, glycaemic control outcomes were simulated in clinically-validated virtual 

trials [29], to assess the effect on glycaemia and interventions. 

Because it is not known which of the two brain mass estimation methods is most 

accurate or useful in control, SI profiles from both are used to create virtual patients. 

Both models are also tested within the model-based control. Hence, four combinations 

are tested, shown in Table 5. Cases B and C in Table 5 give estimates of the worst-case 

effects of estimation where model-based control and physiology are mismatched, in 

relation to A and D respectively. 

Control simulations used the STAR controller defined in [30], with four-hourly insulin 

interventions. Insulin infusions are given through an IV pump, with a minimum rate 

of 0.1 mL/hr and step size of 0.01 U/kg/hr. 

Table 5: Combinations of assumed model and controller-perceived model used in virtual trials. 

 
SI profile in Control 

HC-fit control 𝑚𝑏𝑜𝑑𝑦-fit control 

SI profile 

in 

Simulation 

HC-fit 

virtual 

profile 

A. 
Assume HC gives the 

best estimate, and 
control with it. 

B. 
Assume HC gives the 

best estimate, but 
control with 𝑚𝑏𝑜𝑑𝑦. 

𝑚𝑏𝑜𝑑𝑦-

fit 

virtual 

profile 

C. 
Assume 𝑚𝑏𝑜𝑑𝑦 gives 

the best estimate, but 
control with HC. 

D. 
Assume 𝑚𝑏𝑜𝑑𝑦 gives 

the best estimate, 
and control with it. 

 

Nonparametric statistics were used in this analysis. Distributed data are compared 

using the Wilcoxon rank-sum (Mann–Whitney U test). Values of 𝑝 <  0.05 are 

considered statistically significant.  



3.0 Results 

3.1 Model Comparison 

Estimations of brain mass from the 𝑚𝑏𝑜𝑑𝑦 model, 𝑓(𝑚𝑏𝑜𝑑𝑦), based on body weight, and 

the HC model, 𝑓(HC), based on head circumference are compared in a Bland–Altman 

plot in Figure 1. The figure shows a bias towards the 𝑚𝑏𝑜𝑑𝑦 model estimating a 

significantly lower value for 𝑚𝑏𝑟𝑎𝑖𝑛 (𝑝 < 0.005). The median difference (𝑓(𝑚𝑏𝑜𝑑𝑦) −

 𝑓(HC)) was −11.4 g, with an inter-quartile range (IQR) of (−22.3, 0.8) g. The median 

brain mass estimated for the 𝑚𝑏𝑜𝑑𝑦 model was 110 g, and was 121 g for the HC model. 

Hence, the HC model predicts a median increase in the brain mass of approximately 

10%. 

 

Figure 1: Comparison of 𝒎𝒃𝒐𝒅𝒚 and HC estimations for brain mass, highlighting SGA infants. 

 

SGA infants are discriminated in Figure 1. These patients are clearly biased, with a 

median difference of −40 g (42%), and inter-quartile range of (−49, −33) g (𝑝 ≪
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0.001). This result shows that the distinction between AGA and SGA infants that Cooke 

et al. [22] required for their HC model may also be necessary when using a body mass 

estimate, this highlighting difficulty with Equation (2). 

Two infants in Figure 1 with average estimated brain mass greater than 150 g had a 

bias of over 80 g. This result suggests a further, nonlinear deviation between the two 

models at greater brain mass. However, the scarcity of data in this region is a reflection 

of the typical cohort and, as such, only a very small minority of patients undergoing 

insulin therapy might be expected to exist in this region. 

Figure 2 classifies the points in Figure 1 by the GA percentile bands. In general, infants 

in the lower GA percentiles, who are thus low weight for their GA, were 

underestimated by the 𝑚𝑏𝑜𝑑𝑦 model, and those with higher percentiles were 

overestimated. This result indicates that the body weight and head circumference 

methods represent significantly different measures of brain mass. 

 

Figure 2: Comparison of 𝒎𝒃𝒐𝒅𝒚 and HC estimations for brain mass at different expected weight 

percentile bands [26]. 
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3.2 Effect on Model-Based Insulin Sensitivity 

Patients are fit to the NICING model to generate 𝑆𝐼 profiles for virtual patients using 

both methods of brain estimation. The resulting 𝑆𝐼 profiles identified are summarized 

in Table 6. 

Table 6: Deviations in 𝑺𝑰 profiles under different models. 

 Entire cohort SGA only 

𝑺𝑰 with 𝑚𝑏𝑜𝑑𝑦 model (Med [IQR]) 

(mL/mU/min) 
1.09 [0.70–1.49] 0.82 [0.66–1.35] 

𝑺𝑰 with HC model (Med [IQR]) 
(mL/mU/min) 

1.08 [0.68–1.43] 0.75 [0.59–1.22] 

Per-patient %𝚫𝑺𝑰  (Med) 3.5 13.7 

 

The median [IQR] 𝑆𝐼 for the cohort fit by the 𝑚𝑏𝑜𝑑𝑦 model was 1.09 [0.70–1.49] 

mL/mU/min, and for the HC model, 1.08 [0.68–1.43] mL/mU/min. Per patient, the 

median change in 𝑆𝐼 (𝑓(𝑚𝑏𝑜𝑑𝑦) −  𝑓(HC)) was 3.5% (𝑝 = 0.0048). This result shows a 

small but significant reduction in model-based 𝑆𝐼 under the Cooke model using HC. 

For the SGA group, 𝑚𝑏𝑜𝑑𝑦-fit 𝑆𝐼 was 0.82 [0.66–1.35] mL/mU/min while HC-fit 𝑆𝐼 was 

0.75 [0.59–1.22] mL/mU/min. Per-patient median change in 𝑆𝐼 was much greater for 

this group at 13.7% (𝑝 =  0.0015). The results for this cohort are much more 

significant than for the wider cohort, indicating that this particular group may be 

particularly poorly modeled by the current 𝑚𝑏𝑜𝑑𝑦 model. In particular, significantly 

different 𝑆𝐼 may yield significantly different insulin interventions in model-based 

control. 

Despite changes in the absolute values of 𝑆𝐼, both the full cohort and the SGA subgroup 

displayed relatively similar IQRs across the two models. Variability is a much more 

important factor in glycaemic control and forecasting than absolute 𝑆𝐼 [12, 23, 31], 



particularly for safety from hypoglycaemia. Hence, glycaemic control outcomes for 

SGA patients may not be compromised by this discrepancy if, despite differing values 

of median 𝑆𝐼, profiles are only shifted, rather than altered with changed variability. 

3.3 Effect on Control 

Results for virtual trials across the entire cohort are shown in Table 7. The 82 episodes 

simulated constituted 7032 hours of care, with 1881 BG measurements (mean 3.7 

hrs/intervention). Electing to use HC in control instead of body mass could potentially 

decrease insulin interventions by as much as a median of 0.03 U/kg/hr or 7.1% 

(compare A–B or C–D in Table 7). BG outcomes are not significantly altered, with a 

negligible change to the time in band (% of BG measurements 4.0–8.0 mmol/L) and 

hypoglycaemia (% of BG measurements < 2.6 mmol/L). For both simulation SI 

profiles, controlling with HC gave a small decrease in excessive hyperglycaemia (% BG 

> 10 mmol/L).  

Table 7: Control interventions and outcomes from virtual trials for entire cohort. 

Whole cohort 
statistics 

A. 
Simulate HC 
Control HC 

B. 
Simulate HC 

Control 
𝒎𝒃𝒐𝒅𝒚 

C. 
Simulate 𝒎𝒃𝒐𝒅𝒚 

Control HC 

D. 
Simulate 𝒎𝒃𝒐𝒅𝒚 

Control  𝒎𝒃𝒐𝒅𝒚 

Median insulin rate 
[IQR] (U/kg/hr): 

0.042 
[0.030–0.061] 

0.045 
[0.032–0.062] 

0.040 
[0.030– 0.061] 

0.042 
[0.030– 0.061] 

% BG within 4.0–
8.0 mmol/L 

68.92 68.41 69.58 68.92 

% BG > 10 mmol/L 7.89 8.49 6.94 7.72 
% BG < 4.0 mmol/L 1.50 1.48 1.66 1.52 
% BG < 2.6 mmol/L 0.17 0.17 0.18 0.16 

 

Control is also assessed for patients for the SGA cohort only. Results from just these 

virtual trials are shown in Table 8. Time in band is marginally improved by controlling 

using the HC model. This simulation of 7 patient episodes was 622 hours, with 166 BG 

measurements (9% of total hours).  



The same trend for insulin interventions and glycaemic outcomes are seen in the SGA 

cohort simulation. However, the time in band for this group is significantly lower 

across all simulations, indicating another underlying reason for difficulty in control. It 

is worth noting that SGA infant data (N=7), contributing only 9% of total hours, is 

reasonably sparse and highly influenced by outlying patients. 

 

Table 8: Control interventions and outcomes from virtual trials for SGA infants. 

Whole cohort 
statistics 

A. 
Simulate 

HC 
Control HC 

B. 
Simulate HC 
Control 𝒎𝒃𝒐𝒅𝒚 

C. 
Simulate 

𝒎𝒃𝒐𝒅𝒚 

Control HC 

D. 
Simulate 𝒎𝒃𝒐𝒅𝒚 

Control  𝒎𝒃𝒐𝒅𝒚 

Median insulin rate 
[IQR] (U/kg/hr): 

0.046 
[0.036–
0.075] 

0.051 
[0.039–0.085] 

0.041 
[0.033–0.064] 

0.046 
[0.037–0.073] 

% BG within 4.0–8.0 
mmol/L 

62.96 61.84 64.07 62.80 

% BG > 10 mmol/L 17.97 20.19 13.35 17.65 

% BG < 4.0 mmol/L 2.70 2.38 3.18 2.70 

% BG < 2.6 mmol/L 0.16 0.16 0.32 0.16 

 

 

The matched difference in insulin interventions between Cases A–B and A–D are 

shown in Figure 3 and summarized in Table 9. Comparing A–B shows the difference 

between doses for either controller method, assuming that the HC model is a true in 

simulation, while using HC (Case A) or 𝑚𝑏𝑜𝑑𝑦 (Case B) in model-based control. 

Comparing A–D shows the difference between best-case model selections, with no 

mismatch between virtual patient and controller model. For both comparisons, Case 

A is most likely to give the equal or slightly less insulin (87–93% of doses across 

comparisons and sub-cohorts). This result shows that changes in interventions are 

small, and that the majority of these changes reduce insulin and therefore associated 



risk. Less than 1% of interventions would be increased by more than 0.16 U/hr, the 

standard step increase in insulin between STAR interventions. 

 

Table 9: Changes in insulin dosing comparing Cases A–B and A–D. 

 
Cohort 

Percent change in insulin rates by using Case A (%) 

Large decrease 
(by > 0.16 U/hr) 

Decrease within 
0.00–0.16 U/hr 

Equal 
Increase within 
0.00–0.16 U/hr 

Large increase 
(by > 0.16 U/hr) 

A–B 
AGA 3.4 37.0 50.8 7.9 0.9 

SGA 7.5 64.2 24.9 2.9 0.6 

A–D 
AGA 1.7 16.1 74.1 7.1 0.9 

SGA 0.0 34.7 57.8 7.5 0.0 

 



 

Figure 3: Changes in insulin interventions between Cases A–B (top) and Cases A–D 
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4.0 Discussion 

Across the entire cohort, parameter changes in 𝑆𝐼 were negligible. However, for SGA 

infants, 𝑚𝑏𝑟𝑎𝑖𝑛 fit under the HC model was notably larger, and the resulting 𝑆𝐼 profiles 

fit were reduced. This indicates that insulin has less effect in BG changes observed, 

assuming this model. Hence, there is an indication that any discrepancies in between 

the two methods of estimation are exacerbated in SGA infants. This result may be 

attributed to the median mass of 1055 g of the cohort from which Equation (2) was 

derived [25], versus the median mass of 750 g used here and 760 g in Le Compte et al. 

[11]. 

Control performance negligibly improved by using the HC model for control decisions. 

This result was independent of which model was used in simulation. However, the 

using the HC model resulted in less insulin being recommended for the same 

glycaemic outcomes. Such a result indicates that insulin was used more effectively, and 

potentially improves the safety of care by reducing the risks associated with insulin 

intake.  

It is worth noting that the data acquired from the HINT trial has some longer periods 

between interventions than those for which NICING was designed. This difference 

may have degraded some of the virtual trials by reducing some potential 𝑆𝐼 variability 

[12]. However, in each case, these virtual trials are comparing the patients and cohort 

as their own control. Head circumference data has not yet been analysed for patients 

undergoing STAR at Christchurch Women’s Hospital NICU, or any other cohort with 

more frequent BG measurement, which eliminated other sources of clinical data. 

Other than frequency of measurement, data from the HINT trial contains sufficient 

information that is of practical use in glycaemic modelling. 



The introduction of the Cooke method using HC would require an additional input for 

clinical staff when starting glycaemic control. Additional complexity to clinical 

protocols may increase clinical burden and potential for error [32, 33]. However, HC 

is routinely measured, and thus should not require any additional effort at the point of 

care. Furthermore, if for computer-based protocols this input was left as optional in a 

graphical user interface (e.g. “Head circumference (if available):”), it would minimise 

clinical burden when inconvenient. 

As the comparative accuracy of both the HC and body mass models is not known it 

would be beneficial to have an objective study compare the two models against a more 

accurate method. For example, both could be compared to PET scans of patients, using 

approaches such as in [34], which would provide a significantly better estimate, 

although is impractical at the bedside. HC and body mass methods could be compared 

against this baseline metric. 

The discrepancies observed between SGA and AGA infants is of interest, however, 

more data on SGA infants is necessary to claim robust conclusions. In particular, this 

investigation was not able to distinguish differences in symmetric and asymmetric 

SGA infants due to lack of data. As SGA infants are the most affected by model choice, 

this distinction may be of clinical use. Future research should investigate these cohorts 

in greater detail. Additionally, further variables of interest could be investigated. These 

variables could include placental insufficiency, maternal anti-hyperintensive therapy, 

and enteral/parenteral, protein, calorie and lipid intake. 

Although the HC model is much more likely to be physiologically accurate both due to 

the nature of the measurement [21] and because the method is derived from a cohort 

of the same demographics it will be used on, it may not necessarily affect clinical 



outcomes. However, the authors suggest that it should be used in preference to body 

mass–based estimates for neonatal glycaemic modeling, particularly for SGA infants. 

The similarity in glycaemic control outcomes demonstrates the robustness of the 

model-based stochastic forecasting approach for glycaemic control that STAR utilizes. 

  



5.0 Conclusions 

An alternative model for estimating brain mass using head circumference in preterm 

infants has been investigated. This model is likely to have greater physiological 

accuracy than previous and better reflects the demographics of the cohort of patients 

that typically require glycaemic control. Cohort-wide, changes in brain mass were 

significant, but changes in resulting insulin sensitivity profiles were negligible. The 

SGA subgroup was estimated to have a median brain mass difference of 40 g, reducing 

median insulin sensitivity by 13.7%. These results were statistically significant. 

Simulated glycaemic control under the STAR protocol suggested that 87–93% of 

insulin interventions would be the same or slightly reduced (within 0.16 U/hr), for 

similar glycaemic outcomes. Further, prospective research with larger cohorts is 

necessary to better understand the implications of the discussed modelling 

differences. Due to the improved physiological accuracy and mildly reduced insulin 

intake, there are preliminary indications that head circumference–based models for 

glycaemic modeling and model-based control may be preferable, particularly for SGA 

infants. 
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