115 research outputs found

    Federated Learning for Connected and Automated Vehicles: A Survey of Existing Approaches and Challenges

    Full text link
    Machine learning (ML) is widely used for key tasks in Connected and Automated Vehicles (CAV), including perception, planning, and control. However, its reliance on vehicular data for model training presents significant challenges related to in-vehicle user privacy and communication overhead generated by massive data volumes. Federated learning (FL) is a decentralized ML approach that enables multiple vehicles to collaboratively develop models, broadening learning from various driving environments, enhancing overall performance, and simultaneously securing local vehicle data privacy and security. This survey paper presents a review of the advancements made in the application of FL for CAV (FL4CAV). First, centralized and decentralized frameworks of FL are analyzed, highlighting their key characteristics and methodologies. Second, diverse data sources, models, and data security techniques relevant to FL in CAVs are reviewed, emphasizing their significance in ensuring privacy and confidentiality. Third, specific and important applications of FL are explored, providing insight into the base models and datasets employed for each application. Finally, existing challenges for FL4CAV are listed and potential directions for future work are discussed to further enhance the effectiveness and efficiency of FL in the context of CAV

    Situational Awareness Enhancement for Connected and Automated Vehicle Systems

    Get PDF
    Recent developments in the area of Connected and Automated Vehicles (CAVs) have boosted the interest in Intelligent Transportation Systems (ITSs). While ITS is intended to resolve and mitigate serious traffic issues such as passenger and pedestrian fatalities, accidents, and traffic congestion; these goals are only achievable by vehicles that are fully aware of their situation and surroundings in real-time. Therefore, connected and automated vehicle systems heavily rely on communication technologies to create a real-time map of their surrounding environment and extend their range of situational awareness. In this dissertation, we propose novel approaches to enhance situational awareness, its applications, and effective sharing of information among vehicles.;The communication technology for CAVs is known as vehicle-to-everything (V2x) communication, in which vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) have been targeted for the first round of deployment based on dedicated short-range communication (DSRC) devices for vehicles and road-side transportation infrastructures. Wireless communication among these entities creates self-organizing networks, known as Vehicular Ad-hoc Networks (VANETs). Due to the mobile, rapidly changing, and intrinsically error-prone nature of VANETs, traditional network architectures are generally unsatisfactory to address VANETs fundamental performance requirements. Therefore, we first investigate imperfections of the vehicular communication channel and propose a new modeling scheme for large-scale and small-scale components of the communication channel in dense vehicular networks. Subsequently, we introduce an innovative method for a joint modeling of the situational awareness and networking components of CAVs in a single framework. Based on these two models, we propose a novel network-aware broadcast protocol for fast broadcasting of information over multiple hops to extend the range of situational awareness. Afterward, motivated by the most common and injury-prone pedestrian crash scenarios, we extend our work by proposing an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection for vulnerable road users. Finally, as humans are the most spontaneous and influential entity for transportation systems, we design a learning-based driver behavior model and integrate it into our situational awareness component. Consequently, higher accuracy of situational awareness and overall system performance are achieved by exchange of more useful information

    The OpenCDA Open-source Ecosystem for Cooperative Driving Automation Research

    Full text link
    Advances in Single-vehicle intelligence of automated driving have encountered significant challenges because of limited capabilities in perception and interaction with complex traffic environments. Cooperative Driving Automation~(CDA) has been considered a pivotal solution to next-generation automated driving and intelligent transportation. Though CDA has attracted much attention from both academia and industry, exploration of its potential is still in its infancy. In industry, companies tend to build their in-house data collection pipeline and research tools to tailor their needs and protect intellectual properties. Reinventing the wheels, however, wastes resources and limits the generalizability of the developed approaches since no standardized benchmarks exist. On the other hand, in academia, due to the absence of real-world traffic data and computation resources, researchers often investigate CDA topics in simplified and mostly simulated environments, restricting the possibility of scaling the research outputs to real-world scenarios. Therefore, there is an urgent need to establish an open-source ecosystem~(OSE) to address the demands of different communities for CDA research, particularly in the early exploratory research stages, and provide the bridge to ensure an integrated development and testing pipeline that diverse communities can share. In this paper, we introduce the OpenCDA research ecosystem, a unified OSE integrated with a model zoo, a suite of driving simulators at various resolutions, large-scale real-world and simulated datasets, complete development toolkits for benchmark training/testing, and a scenario database/generator. We also demonstrate the effectiveness of OpenCDA OSE through example use cases, including cooperative 3D LiDAR detection, cooperative merge, cooperative camera-based map prediction, and adversarial scenario generation

    Connected and Automated Vehicles in Urban Transportation Cyber-Physical Systems

    Get PDF
    Understanding the components of Transportation Cyber-Physical Systems (TCPS), and inter-relation and interactions among these components are key factors to leverage the full potentials of Connected and Automated Vehicles (CAVs). In a connected environment, CAVs can communicate with other components of TCPS, which include other CAVs, other connected road users, and digital infrastructure. Deploying supporting infrastructure for TCPS, and developing and testing CAV-specific applications in a TCPS environment are mandatory to achieve the CAV potentials. This dissertation specifically focuses on the study of current TCPS infrastructure (Part 1), and the development and verification of CAV applications for an urban TCPS environment (Part 2). Among the TCPS components, digital infrastructure bears sheer importance as without connected infrastructure, the Vehicle-to-Infrastructure (V2I) applications cannot be implemented. While focusing on the V2I applications in Part 1, this dissertation evaluates the current digital roadway infrastructure status. The dissertation presents a set of recommendations, based on a review of current practices and future needs. In Part 2, To synergize the digital infrastructure deployment with CAV deployments, two V2I applications are developed for CAVs for an urban TCPS environment. At first, a real-time adaptive traffic signal control algorithm is developed, which utilizes CAV data to compute the signal timing parameters for an urban arterial in the near-congested traffic condition. The analysis reveals that the CAV-based adaptive signal control provides operational benefits to both CVs and non-CVs with limited data from 5% CVs, with 5.6% average speed increase, and 66.7% and 32.4% average maximum queue length and stopped delay reduction, respectively, on a corridor compared to the actuated coordinated scenario. The second application includes the development of a situation-aware left-turning CAV controller module, which optimizes CAV speed based on the follower driver\u27s aggressiveness. Existing autonomous vehicle controllers do not consider the surrounding driver\u27s behavior, which may lead to road rage, and rear-end crashes. The analysis shows that the average travel time reduction for the scenarios with 600, 800 and 1000 veh/hr/lane opposite traffic stream are 61%, 23%, and 41%, respectively, for the follower vehicles, if the follower driver\u27s behavior is considered by CAVs

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    MAVEN Deliverable 7.2: Impact Assessment - Technical Report

    Get PDF
    This deliverable focuses on an important topic within the MAVEN project - evaluation of the project impact. This is an important step that will allow us to say what the results and impact of the different technologies, functionalities as well as assumptions are. It covers different dimensions of the impact assessment as stated in the Deliverable D7.1 - Impact assessment plan [10]. The field tests proved that the technology in the vehicle works together with the infrastructure and the solution is technically feasible. This was demonstrated also during particular events and is reported in the attached test protocols. At the same time, the emulation and simulation in Dominion software proved the functionality, for example with respect to the cooperative perception or safety indicators. The tests also proved that the key performance indicator "minimum time to the collision" decreases when applying the cooperative sensing. Also, the number of human interventions needed was zero in all the tests. This deliverable also discussed selected results of a detailed user survey aiming at understanding the expected impacts and transition of automated vehicles. The overall number of respondents reached 209. The responses have revealed some interesting facts. For example, over 80% of the respondents believe that CAVs will decrease the number of traffic accidents. Similarly, about 70% of the respondents expect improvements in traffic congestions. Over 82% of respondents declared that they would accept some detour when driving if it helps the overall traffic situation. The literature review, however, indicated that autonomous vehicles will have either a positive or a negative effect on the environment, depending on the policies. For example, opening cars as a mode of transport to new user groups (seniors, children etc.) together with improvements of the traffic, flow parameters can increase the traffic volume on roads. Policy makers shall focus on the integration of the CAVs into a broader policy concept including car or ride-sharing, electromobility and others. In order to evaluate the transition, for example, the influence of different penetration rates of CAVs on the performance, a microscopic traffic simulation was performed. Here the particular MAVEN use cases, as well as their combination, was addressed. The results of the simulation are rather promising. The potential for improvements in traffic performance is clearly there. It was demonstrated that a proper integration of CAVs into city traffic management can, for example, help with respect to the environmental goals (Climate Action of the European Commission) and reduce CO2 emissions by up to 12 % (a combination of GLOSA and signal optimization). On corridors with a green wave, a capacity increase of up to 34% was achieved. The conclusions from this project can be used not only by other researchers but mainly by traffic managers and decision-makers in cities. The findings can get a better idea about the real impacts of particular use cases (such as green wave, GLOSA and others) in the cities. An important added value is also the focus on the transition phase. It was demonstrated that already for lower penetration rates (even 20% penetration of automated vehicles), there are significant improvements in traffic performance. For example, the platooning leads to a decrease of CO2 emissions of 2,6% or the impact indicator by 17,7%

    Trajectory planning based on adaptive model predictive control: Study of the performance of an autonomous vehicle in critical highway scenarios

    Get PDF
    Increasing automation in automotive industry is an important contribution to overcome many of the major societal challenges. However, testing and validating a highly autonomous vehicle is one of the biggest obstacles to the deployment of such vehicles, since they rely on data-driven and real-time sensors, actuators, complex algorithms, machine learning systems, and powerful processors to execute software, and they must be proven to be reliable and safe. For this reason, the verification, validation and testing (VVT) of autonomous vehicles is gaining interest and attention among the scientific community and there has been a number of significant efforts in this field. VVT helps developers and testers to determine any hidden faults, increasing systems confidence in safety, security, functional analysis, and in the ability to integrate autonomous prototypes into existing road networks. Other stakeholders like higher-management, public authorities and the public are also crucial to complete the VTT process. As autonomous vehicles require hundreds of millions of kilometers of testing driven on public roads before vehicle certification, simulations are playing a key role as they allow the simulation tools to virtually test millions of real-life scenarios, increasing safety and reducing costs, time and the need for physical road tests. In this study, a literature review is conducted to classify approaches for the VVT and an existing simulation tool is used to implement an autonomous driving system. The system will be characterized from the point of view of its performance in some critical highway scenarios.O aumento da automação na indústria automotiva é uma importante contribuição para superar muitos dos principais desafios da sociedade. No entanto, testar e validar um veículo altamente autónomo é um dos maiores obstáculos para a implantação de tais veículos, uma vez que eles contam com sensores, atuadores, algoritmos complexos, sistemas de aprendizagem de máquina e processadores potentes para executar softwares em tempo real, e devem ser comprovadamente confiáveis e seguros. Por esta razão, a verificação, validação e teste (VVT) de veículos autónomos está a ganhar interesse e atenção entre a comunidade científica e tem havido uma série de esforços significativos neste campo. A VVT ajuda os desenvolvedores e testadores a determinar quaisquer falhas ocultas, aumentando a confiança dos sistemas na segurança, proteção, análise funcional e na capacidade de integrar protótipos autónomos em redes rodoviárias existentes. Outras partes interessadas, como a alta administração, autoridades públicas e o público também são cruciais para concluir o processo de VTT. Como os veículos autónomos exigem centenas de milhões de quilómetros de testes conduzidos em vias públicas antes da certificação do veículo, as simulações estão a desempenhar cada vez mais um papel fundamental, pois permitem que as ferramentas de simulação testem virtualmente milhões de cenários da vida real, aumentando a segurança e reduzindo custos, tempo e necessidade de testes físicos em estrada. Neste estudo, é realizada uma revisão da literatura para classificar abordagens para a VVT e uma ferramenta de simulação existente é usada para implementar um sistema de direção autónoma. O sistema é caracterizado do ponto de vista do seu desempenho em alguns cenários críticos de autoestrad

    Real-time crash prediction models: State-of-the-art, design pathways and ubiquitous requirements

    Get PDF
    Proactive traffic safety management systems can monitor traffic conditions in real-time, identify the formation of unsafe traffic dynamics, and implement suitable interventions to bring unsafe conditions back to normal traffic situations. Recent advancements in artificial intelligence, sensor fusion and algorithms have brought about the introduction of a proactive safety management system closer to reality. The basic prerequisite for developing such a system is to have a reliable crash prediction model that takes real-time traffic data as input and evaluates their association with crash risk. Since the early 21st century, several studies have focused on developing such models. Although the idea has considerably matured over time, the endeavours have been quite discrete and fragmented at best because the fundamental aspects of the overall modelling approach substantially vary. Therefore, a number of transitional challenges have to be identified and subsequently addressed before a ubiquitous proactive safety management system can be formulated, designed and implemented in real-world scenarios. This manuscript conducts a comprehensive review of existing real-time crash prediction models with the aim of illustrating the state-of-the-art and systematically synthesizing the thoughts presented in existing studies in order to facilitate its translation from an idea into a ready to use technology. Towards that journey, it conducts a systematic review by applying various text mining methods and topic modelling. Based on the findings, this paper ascertains the development pathways followed in various studies, formulates the ubiquitous design requirements of such models from existing studies and knowledge of similar systems. Finally, this study evaluates the universality and design compatibility of existing models. This paper is, therefore, expected to serve as a one stop knowledge source for facilitating a faster transition from the idea of real-time crash prediction models to a real-world operational proactive traffic safety management system
    corecore