14,739 research outputs found

    Endogenous Business Cycles and the Economic Response to Exogenous Shocks

    Get PDF
    In this paper, we investigate the macroeconomic response to exogenous shocks, namely natural disasters and stochastic productivity shocks. To do so, we make use of an endogenous business cycle model in which cyclical behavior arises from the investment–profit instability; the amplitude of this instability is constrained by the increase in labor costs and the inertia of production capacity and thus results in a finite-amplitude business cycle. This model is found to exhibit a larger response to natural disasters during expansions than during recessions, because the exogenous shock amplifies pre-existing disequilibria when occurring during expansions, while the existence of unused resources during recessions allows for damping the shock. Our model also shows a higher output variability in response to stochastic productivity shocks during expansions than during recessions. This finding is at odds with the classical real-cycle theory, but it is supported by the analysis of quarterly U.S. Gross Domestic Product series; the latter series exhibits, on average, a variability that is 2.6 times larger during expansions than during recessions.Business cycles, Natural disasters, Productivity shocks, Output variability

    The ECMWF Ensemble Prediction System: Looking Back (more than) 25 Years and Projecting Forward 25 Years

    Full text link
    This paper has been written to mark 25 years of operational medium-range ensemble forecasting. The origins of the ECMWF Ensemble Prediction System are outlined, including the development of the precursor real-time Met Office monthly ensemble forecast system. In particular, the reasons for the development of singular vectors and stochastic physics - particular features of the ECMWF Ensemble Prediction System - are discussed. The author speculates about the development and use of ensemble prediction in the next 25 years.Comment: Submitted to Special Issue of the Quarterly Journal of the Royal Meteorological Society: 25 years of ensemble predictio

    A Framework for Developing and Integrating Effective Routing Strategies Within the Emergency Management Decision-Support System, Research Report 11-12

    Get PDF
    This report describes the modeling, calibration, and validation of a VISSIM traffic-flow simulation of the San José, California, downtown network and examines various evacuation scenarios and first-responder routings to assess strategies that would be effective in the event of a no-notice disaster. The modeled network required a large amount of data on network geometry, signal timings, signal coordination schemes, and turning-movement volumes. Turning-movement counts at intersections were used to validate the network with the empirical formula-based measure known as the GEH statistic. Once the base network was tested and validated, various scenarios were modeled to estimate evacuation and emergency vehicle arrival times. Based on these scenarios, a variety of emergency plans for San José’s downtown traffic circulation were tested and validated. The model could be used to evaluate scenarios in other communities by entering their community-specific data

    Landslide risk management through spatial analysis and stochastic prediction for territorial resilience evaluation

    Get PDF
    Natural materials, such as soils, are influenced by many factors acting during their formative and evolutionary process: atmospheric agents, erosion and transport phenomena, sedimentation conditions that give soil properties a non-reducible randomness by using sophisticated survey techniques and technologies. This character is reflected not only in spatial variability of properties which differs from point to point, but also in multivariate correlation as a function of reciprocal distance. Cognitive enrichment, offered by the response of soils associated with their intrinsic spatial variability, implies an increase in the evaluative capacity of the contributing causes and potential effects in failure phenomena. Stability analysis of natural slopes is well suited to stochastic treatment of uncertainty which characterized landslide risk. In particular, this study has been applied through a back- analysis procedure to a slope located in Southern Italy that was subject to repeated phenomena of hydrogeological instability (extended for several kilometres in recent years). The back-analysis has been carried out by applying spatial analysis to the controlling factors as well as quantifying the hydrogeological hazard through unbiased estimators. A natural phenomenon, defined as stochastic process characterized by mutually interacting spatial variables, has led to identify the most critical areas, giving reliability to the scenarios and improving the forecasting content. Moreover, the phenomenological characterization allows the optimization of the risk levels to the wide territory involved, supporting decision-making process for intervention priorities as well as the effective allocation of the available resources in social, environmental and economic contexts

    The impact of Mean Time Between Disasters on inventory pre-positioning strategy

    Get PDF
    Purpose - This paper addresses the impact of Mean Time Between Disasters (MTBD) to inventory pre-positioning strategy of medical supplies prior to a sudden-onset disaster

    Optimal management of bio-based energy supply chains under parametric uncertainty through a data-driven decision-support framework

    Get PDF
    This paper addresses the optimal management of a multi-objective bio-based energy supply chain network subjected to multiple sources of uncertainty. The complexity to obtain an optimal solution using traditional uncertainty management methods dramatically increases with the number of uncertain factors considered. Such a complexity produces that, if tractable, the problem is solved after a large computational effort. Therefore, in this work a data-driven decision-making framework is proposed to address this issue. Such a framework exploits machine learning techniques to efficiently approximate the optimal management decisions considering a set of uncertain parameters that continuously influence the process behavior as an input. A design of computer experiments technique is used in order to combine these parameters and produce a matrix of representative information. These data are used to optimize the deterministic multi-objective bio-based energy network problem through conventional optimization methods, leading to a detailed (but elementary) map of the optimal management decisions based on the uncertain parameters. Afterwards, the detailed data-driven relations are described/identified using an Ordinary Kriging meta-model. The result exhibits a very high accuracy of the parametric meta-models for predicting the optimal decision variables in comparison with the traditional stochastic approach. Besides, and more importantly, a dramatic reduction of the computational effort required to obtain these optimal values in response to the change of the uncertain parameters is achieved. Thus the use of the proposed data-driven decision tool promotes a time-effective optimal decision making, which represents a step forward to use data-driven strategy in large-scale/complex industrial problems.Peer ReviewedPostprint (published version

    Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster

    Full text link
    We develop a stochastic modeling approach based on spatial point processes of log-Gaussian Cox type for a collection of around 5000 landslide events provoked by a precipitation trigger in Sicily, Italy. Through the embedding into a hierarchical Bayesian estimation framework, we can use the Integrated Nested Laplace Approximation methodology to make inference and obtain the posterior estimates. Several mapping units are useful to partition a given study area in landslide prediction studies. These units hierarchically subdivide the geographic space from the highest grid-based resolution to the stronger morphodynamic-oriented slope units. Here we integrate both mapping units into a single hierarchical model, by treating the landslide triggering locations as a random point pattern. This approach diverges fundamentally from the unanimously used presence-absence structure for areal units since we focus on modeling the expected landslide count jointly within the two mapping units. Predicting this landslide intensity provides more detailed and complete information as compared to the classically used susceptibility mapping approach based on relative probabilities. To illustrate the model's versatility, we compute absolute probability maps of landslide occurrences and check its predictive power over space. While the landslide community typically produces spatial predictive models for landslides only in the sense that covariates are spatially distributed, no actual spatial dependence has been explicitly integrated so far for landslide susceptibility. Our novel approach features a spatial latent effect defined at the slope unit level, allowing us to assess the spatial influence that remains unexplained by the covariates in the model

    Pembangunan modul pembelajaran autocad dan kajian penerimaan pelajar. Satu kajian kes di Politeknik Kota Bharu

    Get PDF
    Modul Pengajaran dan Pembelajaran AutoCAD (MPP) merupakan satu media pengajaran yang mengandungi asas-asas mengenai komputer, perisian AutoCAD 2000 dan langkah-langkah berperingkat membuat lukisan teknikal menggunakan AutoCAD 2000. Kajian ini adalah bertujuan untuk menilai sejauh mana MPP ini boleh digunakan dalam proses pengajaran dan pembelajaran dalam aspek kesesuaian isi kandungan, sifat mesra pengguna dan kebolehlaksanaannya. Respondan untuk kajian ini ialah seramai 42 orang pelajar Diploma Kejuruteraan Elektrik Politeknik Kota Bharu. Untuk kajian ini instrumen yang digunakan ialah borang soal selidik di mana penilaian dilakukan berdasarkan persepsi responden terhadap MPP. Data-data yang dikumpulkan dianalisis menggunakan SPSS VI1.0 yang melibatkan skor min. Hasil kajian melaporkan dapatan yang diperolehi berkenaan penerimaan terhadap MPP. Hasil dapatan kajian menunjukkan penerimaan yang positif terhadap MPP oleh pelajar dan ianya mempimyai kebolehlaksanaan yang tinggi (skor min = 3.96) untuk diaplikasikan dalam proses pengajaran dan pembelajaran. Walaubagaimanapun pengkaji percaya MPP ini mempunyai ruang untuk penambahbaikan seperti saranan oleh penilai yang mengesahkan MPP ini agar ia lebih menarik dan sesuai digunakan pada masa depan
    • …
    corecore