308 research outputs found

    LearnFCA: A Fuzzy FCA and Probability Based Approach for Learning and Classification

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Dr Jitender Deogu

    A Semantic Similarity Method for Products and Processes

    Get PDF
    豊橋技術科学大

    Ontology-based similarity for product information retrieval

    Get PDF
    Product development of today is becoming increasingly knowledge intensive. Specifically, design teams face considerable challenges in making effective use of increasing amounts of information. In order to support product information retrieval and reuse, one approach is to use case-based reasoning (CBR) in which problems are solved ‘‘by using or adapting solutions to old problems.’’ In CBR, a case includes both a representation of the problem and a solution to that problem. Case-based reasoning uses similarity measures to identify cases which are more relevant to the problem to be solved. However, most nonnumeric similarity measures are based on syntactic grounds, which often fail to produce good matches when confronted with the meaning associated to the words they compare. To overcome this limitation, ontologies can be used to produce similarity measures that are based on semantics. This paper presents an ontology-based approach that can determine the similarity between two classes using feature-based similarity measures that replace features with attributes. The proposed approach is evaluated against other existing similarities. Finally, the effectiveness of the proposed approach is illustrated with a case study on product–service–system design problems

    Enhancing Trust –A Unified Meta-Model for Software Security Vulnerability Analysis

    Get PDF
    Over the last decade, a globalization of the software industry has taken place which has facilitated the sharing and reuse of code across existing project boundaries. At the same time, such global reuse also introduces new challenges to the Software Engineering community, with not only code implementation being shared across systems but also any vulnerabilities it is exposed to as well. Hence, vulnerabilities found in APIs no longer affect only individual projects but instead might spread across projects and even global software ecosystem borders. Tracing such vulnerabilities on a global scale becomes an inherently difficult task, with many of the resources required for the analysis not only growing at unprecedented rates but also being spread across heterogeneous resources. Software developers are struggling to identify and locate the required data to take full advantage of these resources. The Semantic Web and its supporting technology stack have been widely promoted to model, integrate, and support interoperability among heterogeneous data sources. This dissertation introduces four major contributions to address these challenges: (1) It provides a literature review of the use of software vulnerabilities databases (SVDBs) in the Software Engineering community. (2) Based on findings from this literature review, we present SEVONT, a Semantic Web based modeling approach to support a formal and semi-automated approach for unifying vulnerability information resources. SEVONT introduces a multi-layer knowledge model which not only provides a unified knowledge representation, but also captures software vulnerability information at different abstract levels to allow for seamless integration, analysis, and reuse of the modeled knowledge. The modeling approach takes advantage of Formal Concept Analysis (FCA) to guide knowledge engineers in identifying reusable knowledge concepts and modeling them. (3) A Security Vulnerability Analysis Framework (SV-AF) is introduced, which is an instantiation of the SEVONT knowledge model to support evidence-based vulnerability detection. The framework integrates vulnerability ontologies (and data) with existing Software Engineering ontologies allowing for the use of Semantic Web reasoning services to trace and assess the impact of security vulnerabilities across project boundaries. Several case studies are presented to illustrate the applicability and flexibility of our modelling approach, demonstrating that the presented knowledge modeling approach cannot only unify heterogeneous vulnerability data sources but also enables new types of vulnerability analysis

    Knowledge management and Discovery for advanced Enterprise Knowledge Engineering

    Get PDF
    2012 - 2013The research work addresses mainly issues related to the adoption of models, methodologies and knowledge management tools that implement a pervasive use of the latest technologies in the area of Semantic Web for the improvement of business processes and Enterprise 2.0 applications. The first phase of the research has focused on the study and analysis of the state of the art and the problems of Knowledge Discovery database, paying more attention to the data mining systems. The most innovative approaches which were investigated for the "Enterprise Knowledge Engineering" are listed below. In detail, the problems analyzed are those relating to architectural aspects and the integration of Legacy Systems (or not). The contribution of research that is intended to give, consists in the identification and definition of a uniform and general model, a "Knowledge Enterprise Model", the original model with respect to the canonical approaches of enterprise architecture (for example with respect to the Object Management - OMG - standard). The introduction of the tools and principles of Enterprise 2.0 in the company have been investigated and, simultaneously, Semantic Enterprise based appropriate solutions have been defined to the problem of fragmentation of information and improvement of the process of knowledge discovery and functional knowledge sharing. All studies and analysis are finalized and validated by defining a methodology and related software tools to support, for the improvement of processes related to the life cycles of best practices across the enterprise. Collaborative tools, knowledge modeling, algorithms, knowledge discovery and extraction are applied synergistically to support these processes. [edited by author]XII n.s

    LEARNFCA: A FUZZY FCA AND PROBABILITY BASED APPROACH FOR LEARNING AND CLASSIFICATION

    Get PDF
    Formal concept analysis(FCA) is a mathematical theory based on lattice and order theory used for data analysis and knowledge representation. Over the past several years, many of its extensions have been proposed and applied in several domains including data mining, machine learning, knowledge management, semantic web, software development, chemistry ,biology, medicine, data analytics, biology and ontology engineering. This thesis reviews the state-of-the-art of theory of Formal Concept Analysis(FCA) and its various extensions that have been developed and well-studied in the past several years. We discuss their historical roots, reproduce the original definitions and derivations with illustrative examples. Further, we provide a literature review of it’s applications and various approaches adopted by researchers in the areas of dataanalysis, knowledge management with emphasis to data-learning and classification problems. We propose LearnFCA, a novel approach based on FuzzyFCA and probability theory for learning and classification problems. LearnFCA uses an enhanced version of FuzzyLattice which has been developed to store class labels and probability vectors and has the capability to be used for classifying instances with encoded and unlabelled features. We evaluate LearnFCA on encodings from three datasets - mnist, omniglot and cancer images with interesting results and varying degrees of success. Adviser: Jitender Deogu
    • …
    corecore