6,583 research outputs found

    Modeling and analysis of power processing systems: Feasibility investigation and formulation of a methodology

    Get PDF
    A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks

    Systems design analysis applied to launch vehicle configuration

    Get PDF
    As emphasis shifts from optimum-performance aerospace systems to least lift-cycle costs, systems designs must seek, adapt, and innovate cost improvement techniques in design through operations. The systems design process of concept, definition, and design was assessed for the types and flow of total quality management techniques that may be applicable in a launch vehicle systems design analysis. Techniques discussed are task ordering, quality leverage, concurrent engineering, Pareto's principle, robustness, quality function deployment, criteria, and others. These cost oriented techniques are as applicable to aerospace systems design analysis as to any large commercial system

    The application of optimal control technqiues to advanced manned missions, volume 1

    Get PDF
    Two problems are presented in the area of optimal control and its application to the design of attitude control systems for advanced complex aerospace vehicles. The problems discussed are specification of performance criteria in terms of structural load minimization and/or maximum orbital payload injection requirements of the controlled vehicle; and formulation and solution of the optimization problem such that practical control systems are obtained

    Shuttle Ku-band and S-band communications implementations study

    Get PDF
    The interfaces between the Ku-band system and the TDRSS, between the S-band system and the TDRSS, GSTDN and SGLS networks, and between the S-band payload communication equipment and the other Orbiter avionic equipment were investigated. The principal activities reported are: (1) performance analysis of the payload narrowband bent-pipe through the Ku-band communication system; (2) performance evaluation of the TDRSS user constraints placed on the S-band and Ku-band communication systems; (3) assessment of the shuttle-unique S-band TDRSS ground station false lock susceptibility; (4) development of procedure to make S-band antenna measurements during orbital flight; (5) development of procedure to make RFI measurements during orbital flight to assess the performance degradation to the TDRSS S-band communication link; and (6) analysis of the payload interface integration problem areas

    Propulsion systems dispersion analysis and optimum propellant management

    Get PDF
    Propulsion systems dispersion analysis and propellant optimization method for Apollo subsystem

    Dynamic stability of space vehicles. Volume 8 - Atmospheric disturbances that affect flight control analysis

    Get PDF
    Space vehicle and control system dynamic response to atmospheric disturbance

    Evaluation of Rope Shovel Operators in Surface Coal Mining Using a Multi-Attribute Decision-Making Model

    Get PDF
    Rope shovels are used to dig and load material in surface mines. One of the main factors that influence the productivity and energy consumption of rope shovels is the performance of the operator. Existing methods of evaluating operator performance do not consider the relationship between production rate and energy consumption. This thesis presents a method for evaluating rope shovel operators using the Multi-Attribute Decision-Making (MADM) model. Data used in this research were collected from an operating surface coal mine in the southern United States. The MADM model used in this research consists of attributes, their weights of importance, and alternatives. Shovel operators are considered the alternatives in the MADM model. The energy consumption model was developed with multiple regression analysis, and its variables are included in the MADM model as attributes. Formulation of the production rate model is already known, and thus determining the attributes that have a significant influence is straightforward. Preferences with respect to min/max of the defined attributes were obtained with multi-objective optimization. Multi-objective optimization was performed with the overall goal of minimizing energy consumption and maximizing production rate. Weights of importance of the attributes were determined by using the Analytical Hierarchy Process (AHP). The overall evaluation of operators was performed by using one of the MADM models, PROMETHEE II. The research presented here may be used by mining professionals to help evaluate the performance of rope shovel operators in surface mining

    Electric propulsion for near-Earth space missions

    Get PDF
    A set of missions was postulated that was considered to be representative of those likely to be desirable/feasible over the next three decades. The characteristics of these missions, and their payloads, that most impact the choice/design of the requisite propulsion system were determined. A system-level model of the near-Earth transportation process was constructed, which incorporated these mission/system characteristics, as well as the fundamental parameters describing the technology/performance of an ion bombardment based electric propulsion system. The model was used for sensitivity studies to determine the interactions between the technology descriptors and program costs, and to establish the most cost-effective directions for technology advancement. The most important factor was seen to be the costs associated with the duration of the mission, and this in turn makes the development of advanced electric propulsion systems having moderate to high efficiencies ( 50 percent) at intermediate ranges of specific impulse (approximately 1000 seconds) very desirable

    Tesseract: Supersonic business transport

    Get PDF
    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft
    corecore