
Graduate Theses, Dissertations, and Problem Reports 

2013 

Evaluation of Rope Shovel Operators in Surface Coal Mining Using Evaluation of Rope Shovel Operators in Surface Coal Mining Using 

a Multi-Attribute Decision-Making Model a Multi-Attribute Decision-Making Model 

Ivana M. Vukotic 
West Virginia University 

Follow this and additional works at: https://researchrepository.wvu.edu/etd 

Recommended Citation Recommended Citation 
Vukotic, Ivana M., "Evaluation of Rope Shovel Operators in Surface Coal Mining Using a Multi-Attribute 
Decision-Making Model" (2013). Graduate Theses, Dissertations, and Problem Reports. 176. 
https://researchrepository.wvu.edu/etd/176 

This Thesis is protected by copyright and/or related rights. It has been brought to you by the The Research 
Repository @ WVU with permission from the rights-holder(s). You are free to use this Thesis in any way that is 
permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain 
permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license 
in the record and/ or on the work itself. This Thesis has been accepted for inclusion in WVU Graduate Theses, 
Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. 
For more information, please contact researchrepository@mail.wvu.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Research Repository @ WVU (West Virginia University)

https://core.ac.uk/display/230475292?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/
https://researchrepository.wvu.edu/etd
https://researchrepository.wvu.edu/etd?utm_source=researchrepository.wvu.edu%2Fetd%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://researchrepository.wvu.edu/etd/176?utm_source=researchrepository.wvu.edu%2Fetd%2F176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:researchrepository@mail.wvu.edu


 
 

Evaluation of Rope Shovel Operators in Surface Coal Mining Using a  
Multi-Attribute Decision-Making Model 

 
 
 
 

Ivana M. Vukotic 
 
 
 
 
 

Thesis submitted to the 
Benjamin M. Statler College of Engineering and Mineral Resources 

at West Virginia University 
in partial fulfillment of the requirements 

for the degree of 
 
 
 

Master of Science 
in 

Mining Engineering 
 
 
 

Vladislav Kecojevic, Ph.D., Chair 
Christopher J. Bise, Ph.D. 

Brijes Mishra, Ph.D. 
 

 
Department of Mining Engineering 

 
 
 

Morgantown, West Virginia 
2013 

 
 
 
 
 
 

Keywords: rope shovel; operator evaluation; production rate; energy consumption; AHP; 
PROMETHEE II. 

 
Copyright 2013 Ivana M. Vukotic 

 



 
 

ABSTRACT 
 
 

Evaluation of Rope Shovel Operators in Surface Coal Mining 
Using a Multi-Attribute Decision-Making Model 

 
Ivana M. Vukotic 

 
 

 
Rope shovels are used to dig and load material in surface mines. One of the main factors that 
influence the productivity and energy consumption of rope shovels is the performance of the 
operator. Existing methods of evaluating operator performance do not consider the 
relationship between production rate and energy consumption. This thesis presents a method 
for evaluating rope shovel operators using the Multi-Attribute Decision-Making (MADM) 
model. Data used in this research were collected from an operating surface coal mine in the 
southern United States. The MADM model used in this research consists of attributes, their 
weights of importance, and alternatives. Shovel operators are considered the alternatives in 
the MADM model. The energy consumption model was developed with multiple regression 
analysis, and its variables are included in the MADM model as attributes. Formulation of the 
production rate model is already known, and thus determining the attributes that have a 
significant influence is straightforward. Preferences with respect to min/max of the defined 
attributes were obtained with multi-objective optimization. Multi-objective optimization was 
performed with the overall goal of minimizing energy consumption and maximizing 
production rate. Weights of importance of the attributes were determined by using the 
Analytical Hierarchy Process (AHP). The overall evaluation of operators was performed by 
using one of the MADM models, PROMETHEE II. The research presented here may be 
used by mining professionals to help evaluate the performance of rope shovel operators in 
surface mining. 
 

 



iii 
 

Evaluation of Rope Shovel Operators in Surface Coal Mining 
Using Multi-Attribute Decision-Making Model 

 
 

Ivana M. Vukotic 
 

Thesis submitted to the 
Benjamin M. Statler College of Engineering and Mineral Resources 

at West Virginia University 
in partial fulfillment of the requirements 

for the degree of 
 

Master of Science 
in 

Mining Engineering 
 

Department of Mining Engineering 
 

APPROVAL OF THE EXAMINING COMMITTEE 

 

 
 

Vladislav Kecojevic, Ph.D., Chair 
 
 
 

 
 

 
 
 
 
 

 
 

 
 
 
 

                                                                            
 
 

 

 

 

Christopher J. Bise, Ph.D.  

 

 

                     Date  
 

 

Brijes Mishra, Ph.D. 



iv 
 

TABLE OF CONTENTS 
 

ABSTRACT .................................................................................................................................. II 

LIST OF TABLES ...................................................................................................................... VI 

LIST OF FIGURES .................................................................................................................. VII 

ACKNOWLEDGEMENT ....................................................................................................... VIII 

 

CHAPTER 1  Introduction .......................................................................................................... 1 

1.1 Background ........................................................................................................................... 1 

1.2 Problem statement ................................................................................................................. 4 

1.3 Scope of the work .................................................................................................................. 6 

 

CHAPTER 2  Literature Review ................................................................................................. 8 

 

CHAPTER 3  Methodology........................................................................................................ 13 

3.1 Introduction ......................................................................................................................... 13 

3.2 Data ..................................................................................................................................... 15 

3.3 Development of the energy consumption and production rate model ................................ 17 

3.3.1 Multiple linear regression model .................................................................................. 17 

3.4 Optimization of the models ................................................................................................. 25 

3.5    Multi-Criteria Decision Making methods ........................................................................ 31 

3.5.1 Basic characteristics of MADM models ....................................................................... 34 

3.5.2 Determining the weights of the criteria with Analytic Hierarchy Process ................... 35 

3.5.3 Basic principles of PROMETHEE II method............................................................... 40 

 

CHAPTER 4  Results and Discussion ....................................................................................... 46 

4.1 Mine description .................................................................................................................. 46 

4.2 Statistical analysis of the measured parameters .................................................................. 48 

4.2.1 Cycle time ..................................................................................................................... 48 

4.2.2 Fill time......................................................................................................................... 52 



v 
 

4.2.3 Bucket payload ............................................................................................................. 54 

4.2.4 Energy to load a bucket ................................................................................................ 56 

4.3 Multiple regression model of energy consumption ............................................................. 60 

4.3.1 Correlation among the variables ................................................................................... 60 

4.3.2 Best subsets and Stepwise regression analysis ............................................................. 60 

4.3.3 Energy consumption model .......................................................................................... 61 

4.3.4 Validation of the model ................................................................................................ 63 

4.4 MADM model ..................................................................................................................... 65 

4.4.1 Obtaining the weights of the criteria in the MADM model with AHP ........................ 65 

4.4.2 PROMETHEE II Analysis............................................................................................ 69 

 

CHAPTER 5  Summary, Conclusions and Recommendations for Future Research ........... 77 

5.1 Summary ............................................................................................................................. 77 

5.2 Conclusions ......................................................................................................................... 79 

5.3 Recommendations for further research ............................................................................... 82 

 

REFERENCES .. ......................................................................................................................... 84 

 

 

 

 

 

 

 

 

 

 



vi 
 

LIST OF TABLES 

 

Table 3.1 Testing of significance of regression with analysis of variance ................................... 20 

Table 3.2 Values of random consistency index for different size matrices .................................. 38 

Table 3.3 Preference scale for scoring the criteria in AHP........................................................... 39 

Table 3.4 Comparison matrix of the criteria in the model ............................................................ 39 

Table 4.1 Mean and standard deviation of cycle time for each operator ...................................... 50 

Table 4.2  Mean and standard deviation of fill time for each operator ......................................... 53 

Table 4.3 Mean and standard deviation of payload for each operator .......................................... 55 

Table 4.4 Mean and standard deviation of energy to load a bucket for each operator ................. 57 

Table 4.5 Correlation between fill time, cycle time, volume of material in the bucket, and 

number of working hours .............................................................................................................. 60 

Table 4.6 Results of the best subset regression............................................................................. 61 

Table 4.7 Stepwise statistical analysis .......................................................................................... 61 

Table 4.8 Results of the multiple regression of energy consumption ........................................... 62 

Table 4.9 Analysis of variance table for energy consumption model ........................................... 62 

Table 4.10 Parameters for the regression and the validation model ............................................. 64 

Table 4.11 Comparison matrix of the criteria in the model .......................................................... 66 

Table 4.12 Initial data for MADM model ..................................................................................... 68 

Table 4.13 Input data for PROMETHEE II .................................................................................. 69 

Table 4.14 Comparisons of Operator A with other operators ....................................................... 70 

Table 4.15 Comparisons of Operator B with other operators ....................................................... 71 

Table 4.16 Comparisons of Operator C with other operators ....................................................... 72 

Table 4.17 Comparisons of Operator D with other operators ....................................................... 72 

Table 4.18 Paired matrix of alternative comparisons ................................................................... 73 

Table 4.19 Final ranking of operators ........................................................................................... 75 

Table 4.20 Overview of mean production and energy consumption for shovel operators ........... 76 

 

 

 



vii 
 

LIST OF FIGURES 

 

Figure 1.1 Rope shovel haul truck .................................................................................................. 1 

Figure 1.2 Energy consumption-related elements in mining .......................................................... 2 

Figure 3.1 Outline of the methodology ......................................................................................... 14 

Figure 3.2 Graphical representation of general multi-objective optimization .............................. 26 

Figure 3.3 Flowchart of the NSGA II algorithm........................................................................... 29 

Figure 3.4 The scheme of the AHP ............................................................................................... 36 

Figure 4.1 Typical cross section of the mine ................................................................................ 47 

Figure 4.2 Graphical analysis of the raw cycle time data ............................................................. 49 

Figure 4.3 Cycle times for each operator ...................................................................................... 50 

Figure 4.4 Relationship between mean production rate, mean fill factor, and mean cycle time for 

the individual operators................................................................................................................. 51 

Figure 4.5 Graphical representation of the fill time data .............................................................. 52 

Figure 4.6 Fill time for each operator ........................................................................................... 54 

Figure 4.7 Histogram and boxplot of the payload ........................................................................ 54 

Figure 4.8 Payload for each operator ............................................................................................ 55 

Figure 4.9 Histogram and boxplot of the raw energy data ........................................................... 56 

Figure 4.10 Energy to load a bucket for each operator ................................................................. 58 

Figure 4.11 Energy to load a bucket vs. fill time for each operator ............................................. 58 

Figure 4.12 Relationship between mean fill factor, mean production rate and mean energy....... 59 

Figure 4.13 Weights of the criteria for the MADM model ........................................................... 66 

Figure 4.14 Final ranking of operators with the flow values ........................................................ 74 

 

 

 



viii 
 

Acknowledgement 

 

I would like to thank my advisor, Dr. Vladislav Kecojevic, for his guidance, support, and 

encouragement to strive toward higher goals. Without his suggestions and high standards for 

research, I would not have been able to complete this thesis. Also, I’m grateful for the 

opportunity I’ve had to expand my knowledge as a graduate student. 

I would like to thank my committee members, Dr. Christopher J. Bise and Dr. Brijes Mishra, 

for their valuable time spent for reviewing my thesis. 

I would like to thank the coal mining industry for providing data for this research, and for 

financial assistance. 

I would like to thank all my colleagues and friends in the mining engineering department for 

their friendship and help. 

Finally, I would like to thank my parents and my sister, Milan Vukotic, Persida Vukotic, and 

Tijana Vukotic, who provided me with unconditional support and guidance throughout my 

graduate studies. 

 

 

 

 

 

 

 



1 
 

Chapter 1 

 

Introduction 

 

 

1.1 Background 

Rope shovels are used in large surface mining operations for the digging and loading of 

material (Figure 1.1). They are built with bucket sizes up to 100 yd3. 

 

Figure 1.1 Rope shovel and haul truck 

Shovel productivity is highly influenced by the skill and working practices of operators. 

According to Caterpillar (2010), one of the major factors for obtaining maximum 

productivity is a well-trained operator. Several research studies have shown that mine 

operating conditions and operators practices significantly affect energy consumption 

(Bernold 2007; Awuah-Offei and Frimpong 2010; Widzyk-Capehard and Lever 2004; 

Awuah-Offei and Summers 2010). Figure 1.2 illustrates elements that influence energy 
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consumption in mining operations. It can be seen that the operator’s experience and habits 

have a significant effect on energy consumption of the equipment. According to a mining 

energy bandwidth study (DOE 2007), investing in mining research and development, in 

addition to achieving best practices, could reduce energy consumption by approximately 69 

billion kWh per year.  

 

Figure 1.2 Energy consumption related elements in mining 

(Awuah-Offei and Summers 2010) 

Improvements in technology have increased efficiency in this field. These improvements 

include automation of rope shovel operation or, in some cases, technologies that provide 

operators with feedback on machine performance. This feedback is available through 

various monitoring systems that measure different shovel operational parameters. Collected 

information from these monitoring systems provides valuable insight about shovel 

performance to the operator. Thus, through constant monitoring of operator and shovel 

performance, mining professionals can analyze and find solutions for problematic parts of 

the overall cycle of the shovel. However, according to Lumley (2005), investing in 
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technological improvements to the equipment is just a part of the overall improvement 

process. 

There is a lack of quantitative models that evaluate operator performance. Particularly, 

there is a lack of models that consider the relationship between production of the shovel and 

energy consumption. The evaluation of operators is usually performed by observing 

different equipment-related tasks, and making intuitive judgments about how the operator 

performs. Also, operators are usually not tested and evaluated on personal characteristics 

such as reliability, team spirit, and job dedication (Lumley 2005). Likewise, companies 

determine how they are going to train operators and set evaluation parameters for the 

performance of the trainees.  

In order to develop a model for the evaluation of operators, it is necessary to define the 

criteria to use to perform this assessment. Assessment should be based on parameters that 

are relevant to the production and energy consumption of the shovel. Some of the 

parameters will be more influential than the others. Thus, parameters identified as more 

important for production and energy consumption should be more emphasized in the 

evaluation process.  

Since operator performance significantly affects performance of the shovel, it is 

important to analyze parts of the cycle that can be improved. The evaluation of shovel 

operators will help mining professionals develop strategies for improving productivity and 

energy efficiency, and for reducing the operating costs of shovels.  
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1.2 Problem statement 

According to Oborne (1993), when two components, man and machine, interact, a 

“…closed loop, error-correcting, information-transmitting system is developed, such that 

deviations from desired state are displayed by the system, interpreted by the operator, and 

corrected using controls.” Oborne (1993) points out that operator and machine depend on 

each other for harmonious and continued operation.  

However, the individual is the one who controls the operation of the working system, and 

adjusts the machine toward his or hers own will and habits. According to Widzyk-Capehart 

and Lever (2004), the human factor is still the central part in the utilization of shovels. 

Peterson et al. (2001) state that people are becoming more and not less relevant to effective 

mining operations. 

The most influential factors related to the overall working cycle of the shovel that impact 

its productivity are cycle time and fillability of the bucket. Also, average cycle time, swing 

angle, load, and bank condition depend on the operator’s efficiency (P&H 2003). High 

values of cycle time can indicate potential problems in the cycle. According to Fiscor 

(2007), better operator training and a consistent clean-up process around the loading area 

and face could save 20 minutes of cycle time per day.  

The basic rope shovel motions involve hoist, crowd, swing, and propel. The shovel 

operating cycle consists of digging, swinging, dumping, returning, and positioning. Even 

though these parts of the operation are operationally independent, the skill and coordination 

of an operator is required for a smooth cycle.  

The digging phase involves crowd motion of the bucket into the bank, hoist motion to fill 

the bucket, and drawing from the bank (P&H Mine Pro Services 2001). When the bucket is 
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hoisted to the bank, crowd and retract motion are used to control the depth of the bucket 

penetration. Penetration that is too shallow will lead to longer hoist travel distance needed to 

fill the bucket, which will increase the fill time of the cycle and decrease the fill factor. 

However, applying excessive crowd motion will make the hoist motion slower. The whole 

cycle time increases up to 50%, or even more, when the bucket is stalled in the bank (P&H 

Mine Pro Services 2001). Therefore, for an optimal and effective digging phase, it is 

mandatory for an operator to achieve balance between the hoist and crowd motion of the 

shovel. In addition, unbalanced crowd and hoist forces lead to jacking of the boom, which 

can cause serious damage to the shovel.  

The swinging phase begins when the bucket is full of material, and in this phase, the 

operator controls the movement of the bucket though a defined swing path and dump height 

toward the haul truck. Since the swing represents the largest part of the overall cycle time, it 

should be kept to a minimum for maximum efficiency. An experienced operator can achieve 

smooth and continuous acceleration, maximum speed, and deceleration. Motion that is not 

smooth can result in the increase of time and spillage, which can further damage the body of 

the truck. 

In addition, the operator influences the propel function, or positioning of the shovel in 

order to get the highest number of fill buckets before moving again. Locating the shovel too 

far from the bank can decrease available digging power. Also, inappropriate shovel location 

leads to an increase in cycle time. Maximum efficiency of the shovel is achieved when it is 

positioned close to the toe of the bank. According to P&H Mine Pro Services (2001), by 

saving two minutes per operating hour on propelling, a 30-cubic-yard shovel could load one 

additional 170-ton truck per hour. 
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The variation in the performance of operators could be the consequence of a poor 

management approach. Lumley (2005) states that in order to influence productivity, 

management has to understand workers, the job they do, and how they perceive that job.  

 Besides the lack of models for evaluating the productivity of operator performance, there 

is also a lack of research related to the relationship between shovel operator performance 

and the elements of cycle time, production rate, and energy consumption. 

 

1.3 Scope of the work 

The objective of this research is to develop a methodology to evaluate rope shovel 

operators with the goal of maximizing production rate and minimizing energy consumption.  

Decision-making models are used to achieve this objective. The solution of the decision-

making problem is the selection from “the best” to “the weakest” operator where certain 

criteria are used for measuring quality of operator’s performance.  

In order to solve the decision-making problem, the research goals are to: 

 Find the appropriate multi-criteria decision model that deals with an already 

known, finite number of operators (alternatives). A multi-attribute decision-

making model has been found to be suitable; 

 Find the appropriate multi-attribute decision-making model that would 

provide ranking of operators from “the best” to “the weakest” in 

performance; 

 Develop a model in order to determine which of the available measured 

parameters influence energy consumption; 
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 Use parameters that influence energy consumption and production rate as 

criteria for measuring the quality of operator performance. In addition, 

determine weights of criteria;  

 Find the preferences for parameters for achieving minimum energy 

consumption as well as maximum production rate; 

 Construct a logical and easy-to-use model that would provide the evaluation 

of operators based on previously defined preferences. 

The brief outline of the thesis can be presented as follows: (i) Chapter 1 includes a short 

introduction to the influence of the operator on the performance of the rope shovel, and an 

overview of the scope of the work; (ii) Chapter 2 includes a review of literature relating to 

already existing models and methodologies for the evaluation of operator performance; (iii) 

Chapter 3 includes the methodology used for ranking of operators based on their 

performance; (iv) Chapter 4 includes results and discussion on the applied outranking 

methodology; and  (v) Chapter 5 includes conclusions and further recommendations related 

to the topic. 
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Chapter 2 

 

Literature Review 

 

Sage (1984) indicates that a skilled performer is one who produces a fast and accurate 

output with a high consistency. However, according to Bernold (2007), this approach, which 

is based on behavioral observation, has two main shortcomings. One of them is that 

performance is not clearly related to skill, as other aspects—such as fatigue, motivation, 

boredom, temperature, and noise—can also affect performance. The second shortcoming is 

that this approach is qualitative in nature. Bernold (2007) suggests that motor skills of the 

operator are an essential component for everyday operations. Also, Robbins (2003) states 

that the aim is to understand how people differ in abilities and use that information to 

improve their performance.  

Well-trained operator contributes to increased productivity. Today, automated equipment 

involves electronically sophisticated commands and accessories that ease the operation 

tremendously. Therefore, introducing controls that require minimal effort has changed the 

training requirements for operators. Also, work experience is positively correlated with skill. 

According to Harrel & Daim (2010), motivation is particularly important for good 

performance; in fact, unmotivated employee contributes to decreased productivity and 

quality. Likewise, according to Peterson et al. (2001), good attitudes are important for high 

productivity. 
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Operators become skilled in operating heavy equipment by actual practice or by using 

simulators made for coached training. Operators are usually evaluated by being observed in 

the performance of equipment-related tasks (Hard Hat Training 1990; Vista Training Inc. 

2002; CareerTech 2008). Evaluations are performed by observation of operators engaging in 

duties such as: equipment inspection prior to operation, excavating operations, safety 

practices, grading, and leveling etc. Also, operators usually have to pass not only practical 

exams but written exams as well. The evaluator’s judgment is based on how often the task is 

performed and how critical it is when it is irregularly performed. Both of these criteria are 

qualitative in nature and dependent on subjective judgment by the evaluator.  

There are various simulators that are used for training operators. These simulators, for 

example, expose operators to a virtual rope shovel working in the common mining site with 

simulated mine trucks, dozers, and other pieces of equipment (Simlog 2012; Vista 2012; 

Dover Simulations 2012; Fifth Dimension Technologies 2011; Cybermine 2010). Training 

of operators is performed through simulation modules. Through each simulation module, 

productivity and quality of work are measured. Also, while using simulators, operators learn 

from their mistakes, as the simulators identify the least effective parts of their performance.  

Weiss and Shanteau (2003) point out that using measurement instruments eliminates 

inconsistencies related to fatigue and bias associated with human operation. One of such 

examples would be using radar/ultrasound system as a position control system that would 

bring the bucket into the right position (Fiscor 2007).  

Also, various systems have been developed that provide feedback about different rope 

shovel measured parameters. One of the most advanced shovel monitoring systems is 
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Tritronics ShovelPro Shovel Monitor, developed by Thunderbird Mining Systems (2012) 

and used worldwide. This real-time monitoring system measures different shovel parameters 

such as bucket payload, coordinates of each bucket engaged, disengaged, dump point, and 

truck payload. The system gives the operator feedback about delays, positioning, and 

digging time, along with total production information (cycles, tons) in chronological order 

shift-wise. Accuweight by Drivers & Control Services, Inc. (2003) is a similar system that 

measures shovel parameters; the operator gets immediate feedback from the interface system 

in order to increase shovel performance and productivity. In addition, for monitoring shovel 

teeth, the Canadian company Motion Metrics International Corp. (2012) developed 

ToothMetrics and WearMetrics. ToothMetrics uses an advanced image processing system 

along with the artificial intelligence algorithms to monitor shovel teeth continually, and 

prompts the operator when a shovel tooth or adapter is missing. WearMetrics provides the 

operator with constant information about shovel tooth wear by showing current length as a 

percentage of original length.  

Bernold (2007) used a backhoe simulator for analyzing the motor skills of operators. At 

the beginning of the control cycle, the operator must decide what are further trajectories 

based on qualitative and quantitative feedback from the machine. The evaluation of the 

operator was conducted by analyzing his/her performance in regular operations while 

sensors were collecting data. Comparison of operators regarding their digging performance 

was performed with analysis of the digging forces, which were then used for calculating 

energy consumption. The operator’s performance was estimated with respect to total energy 

per digging cycle, total path distance per digging cycle, and average velocity of the bucket.  
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Another example of simulating operations of a rope shovel was carried out by Awuah-

Offei and Frimpong (2010). The task was carried out with the purpose of finding hoist rope 

and crowd arm speeds for optimal performance of the shovel. The simulator used algorithms 

for calculation of work done and resistive forces. Awuah-Offei and Frimpong (2010) 

pointed out that hoist rope and crowd arm speeds present fundamental actions for assessing 

of operator practices.  

Patnayak (2006) used the average hoist and crowd power consumption of different 

teams of operators as a parameter for assessing the effect of operator practice on the 

performance of the shovel. According to Widzyk-Capehart and Lever (2004), operator 

digging technique has the direct influence on the stalling of the hoist during dig and slacking 

of the hoist ropes. Besides operator techniques, the performance was examined by analyzing 

productivity, operator cycle time, and techniques that operators practiced during the digging 

part of the cycle with respect to hoist/crowd utilization. Widzyk-Capehart and Lever (2004) 

pointed out that individual styles of operators have a significant impact on shovel 

productivity. Also, operator influence and behavior was examined while operating the rope 

shovel through a real-time feedback system. 

The association between production rate and energy consumption association has been 

applied to the evaluation of dragline operators. Komljenovic et al. (2009) developed a 

methodology for evaluating dragline operators based on the relationship between production 

rate and energy consumption. This relationship is expressed as operator performance 

indicator. Operator performance indicator is defined as the ratio of hourly dragline 

production rate and hourly energy consumption. Operators are classified using confidence 

intervals of the operator performance indicator. 
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The Analytical Hierarchy Process (AHP) was introduced by Saaty (1980) for modeling 

decision-making problems, which are subjective in nature and depend on multiple attributes 

in a hierarchical system. This process is simple and easy to understand, particularly where 

qualitative parameters have to be involved in the decision-making process. AHP is used in a 

wide variety of fields, including economics, corporate planning, quality management, etc. 

(Tzeng and Huang 2011). In surface mining, AHP is also a widely used model for 

equipment selection problems (Komljenovic and Kecojevic 2006; Bascetin, 2003; Yavuz 

2007). Also, it has been applied to environmental studies (Bascetin 2006), mine design 

selection (Kluge and Malan 2011), and mine safety (Song and Hu 2009).  

Some applications of AHP related to operator evaluation have included: Using fuzzy 

AHP, among other methods, to evaluate operator performance, based on qualitative and 

quantitative data, in order to make better decisions for operator allocations (Sen and Cınar, 

2009); and selection of the best GSM operator for call center, human factor influence on 

overall equipment efficiency (Madhavan Pillai et al. 2011). One case in surface mining 

involved an assessment of dragline operator performance using AHP model (Bogunovic 

2008).  

The preference ranking organization method for enrichment of evaluations 

(PROMETHEE) is a model that is classified into the outranking family of Multi-Attribute 

Decision-Making  models. The method was developed in the beginning of the 1980s and is 

widely used in different fields, including transportation, business, education, and healthcare. 

In mining engineering, this method was applied in the selection of the best underground ore 

transport system, and mineral prospectivity. However, not much data are available on using 

this method for ranking equipment operators. 
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Chapter 3 

 

Methodology 

 

3.1 Introduction 

In order to achieve the objective of this research, a multi-attribute decision making model 

(MADM) was used. Since the MADM models consist of attributes (criteria), their weights of 

importance (if necessary), and alternatives, different techniques were employed in 

developing this methodology. The first step was to derive energy consumption and 

production rate models. The energy consumption model was derived using a multiple 

regression tool. Production rate has an established method of formulation, based on the 

volume of material in the bucket and number of cycles. After defining the models, multi-

objective optimization was performed using an evolutionary algorithm. Optimization was 

performed with respect to the minimization of energy consumption and maximization of the 

rate of production, using measured data on four rope shovel operators. In the next phase, the 

significant variables and their values obtained from the previous analyses were used for 

establishing the criteria for the MADM. The alternatives of the MADM were the rope shovel 

operators, while weights of the criteria were obtained from the AHP. Finally, the overall 

ranking of rope shovel operators was performed using one of the MADM models from the 

outranking family – PROMETHEE II. A detailed explanation of the methodology is 

explained in the following chapter. An outline of the methodology is presented in Figure 3.1. 
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Figure 3.1 Outline of the methodology 
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performance 
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3.2 Data 

Data used in this research were provided by a surface coal mine located in the southern 

part of United States. The shovel in this mine has an integrated AccuWeight real-time 

information monitoring system (Accuweight 2003), from which data were retrieved. The 

system contains sets of programmable logic controllers (PLCs) that monitor shovel 

parameters such as cycle time, fill time, payload, energy to load a bucket, etc. This system 

simultaneously samples 20-50 times per second and stores in database average values of 20 

parameters per shovel cycle. Data flow involves cycle detection, payload weight, and input 

in a database (Accuweigh 2003). Measuring and recording events for a new cycle begins at 

the moment when the material in the bucket is dumped. Shovel parameters analyzed in this 

research are: cycle time, fill time, payload, and energy to load a bucket. Volume of the 

material in the bucket as well as fill factor are parameters that are calculated. 

Cycle time is the time that the shovel needs to finish one loading pass. Cycle time starts 

when the bucket enters the muck-pile and starts digging. Cycle time consists of fill time, 

swing time, dump time, return time, and position time. This parameter highly influences 

productivity of the shovel. Fill time represents the digging phase of the cycle, and it refers to 

the time that the shovel spends loading the bucket.  

Bucket payload is the true weight of the material in the bucket for each digging cycle. 

This parameter is characterized by the product of the volume of the material in the bucket 

(yd3) and loose material density (t/yd3). Fill factor represents the ratio of the true loose 

material in the bucket and the rated bucket volume of the shovel. Like cycle time, this 

parameter greatly influences productivity of the shovel. Fill factor is used for defining 

material diggability.  
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Energy that the shovel uses during the operation is related to the digging phase of the 

cycle time. Energy to load a bucket is recorded in a unit-less number format, which must be 

adjusted for providing energy consumption measured in kWh. For that purpose, conversion 

coefficients exist for different equipment and different applications.  

 
Graphs of relationship between certain variables, provided as a part of statistical analysis 

in Chapter 4, have values that are transformed because of the different ranges of the 

variables. Thus, the variables are made dimensionless, which means that the values are 

brought down to the interval [0-1]. The method used for this transformation is vector 

normalization, where every value is divided with the norm. The norm represents a square 

root of the sum of the squares of the elements. 
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3.3 Development of the energy consumption and production rate model 

Based on the defined goal, the desirable evaluation of operators should be focused on the 

minimization of energy consumption as well as maximization of production rate. Therefore, 

both functions are defined first, where the function for calculating production rate is already 

known. In order to develop the function of energy consumption, relationships and significant 

variables were defined by statistical tests. The procedure used for developing this model was 

multiple regression modeling. Measured variables are used as independent ones (regressors) 

and included in the model development. These variables are: fill time (sec), cycle time (sec), 

volume of the material in the bucket (yd3), and number of working hours (h). 

 

3.3.1 Multiple linear regression model 

Regression analysis is a statistical technique that is beneficial for examining the 

relationships between two or more variables, which is often the case in many engineering 

and science problems. Regression models can be used either for experimental or 

observational data. The general linear regression model is mathematically expressed with 

the following equation (Kutner et al. 2004): 

 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝒊𝟏 + 𝜷𝟐𝑿𝒊𝟐 + ⋯+ 𝜷𝒑−𝟏𝑿𝒊,𝒑−𝟏 + 𝝐𝒊                                                          (3.1)  

and 

𝑬(𝒀) =  𝜷𝟎 + 𝜷𝟏𝑿𝟏 + 𝜷𝟐𝑿𝟐 + ⋯+ 𝜷𝒑−𝟏𝑿𝒑−𝟏                                                                (3.2) 

𝑓𝑜𝑟 𝑋𝑖0 ≡ 1, 𝑎𝑛𝑑 𝐸(𝜖𝑖) = 0 
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where:  

                  𝜷𝟎,𝜷𝟏, … ,𝜷𝒑−𝟏 are regression parameters,  

Xi1,… Xi,p-1 are variables (regressors) in the model,  

εi is normal error term, which has to be independent and normally distributed with        

mean zero and variance σ2, for appropriate adequacy of the model,  

E(Y) is the expected value of the response variable Y. 

 Some models represent curvilinear and complex response functions, but they are still 

cases of general linear regression models. Linearity can be obtained by suitable 

transformation of the Y, Xi variables or both. The model of energy consumption is this 

model, where transformation of the response variable Y was performed (square root 

transformation). 

Therefore, the general regression model with normal error terms shows that the 

observations Yi are independent normal variables, with mean E (Yi) and constant variance 

σ2. A statistical model for linear regression corresponds to the population regression line and 

a description of the variation of Y about the line (Moore and McCabe 2006). 

The linearity of the model means that it is linear in its parameters, and does not refer to 

the shape of surface that is created. For the estimation of parameters, the method of least 

squares is used. Estimation of the variance of the error term σ2 is a significant step in the 

linear regression, which the analysis of variance provides. 
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For estimation of model adequacy in multiple linear regression problems, some hypotheses 

tests are useful. The suitable hypotheses are (Montgomery and Runger 2003): 

𝑯𝟎 =  𝜷𝟏 = 𝜷𝟐 = ⋯𝜷𝒌 = 𝟎                                                                                         (3.3) 

𝑯𝟏:𝜷𝒋 ≠ 𝟎 𝒇𝒐𝒓 𝒂𝒕 𝒍𝒆𝒂𝒔𝒕 𝒐𝒏𝒆 𝒋  

       where:  

Ho represents the null hypothesis,  

H1 represents the alternative hypothesis.  

Rejection of the null hypothesis indicates that at least one of the regressor variables x1, 

x2, … , xk benefits significantly to the model. Total sum of squares (SST) is the summation 

of the sum of squares considering regression (SSR) and sum of squares considering error 

(SSE). Test statistic for the null hypothesis defined with equation 3.3, is defined as following 

(Montgomery and Runger 2003): 

       𝑭𝟎 =  𝑺𝑺𝑹/𝒑
𝑺𝑺𝑬/(𝒏−𝒑−𝟏)

=  𝑴𝑺𝑹
𝑴𝑺𝑬

                                                                                       (3.4) 

where: 

Fo represents test statistic, 

p represents the number of regressor variables in the model, 

n represents the number of data used for analysis,  

MSR represents the mean square model, and 
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MSE represents mean square error. 

The procedure is summarized in the analysis of variance (Table 3.1). These computations 

were performed with the Minitab statistical software. 

Tests of the hypothesis on the individual regression coefficients contribute in 

determination of the potential value of every regressor variable in the model. Thus, the 

effectiveness of the model can be better if one or more regressor variables are included in 

the model, or can be better if one or more regressor variables are deleted from the model. 

Table 3.1 Analysis of variance (Montgomery and Runger 2003) 

 

The same rules are valid for reject/failure to reject the null hypothesis as for the already 

defined hypothesis testing. The test statistic for individual regressors is t-statistic, and it is 

provided in the regression output in statistical software. Another test that can be used for the 

same purpose is partial F-statistic, which plays a major role in model building (examination 

of the best subset of regressor variables for the model). 

The p-values for individual variables assess the statistical significance of a particular 

regressor. For the confidence interval of 95%, the p value should be less than 5% (0.005) in 

order to consider a particular variable significant.  

Source of    variation Sum of Squares Degrees of Freedom Mean Square Test statistic 𝑭𝟎 

Regression SSR k 𝑀𝑆𝑅 𝑀𝑆𝑅/𝑀𝑆𝐸 

Error or residual SSE n-k-1 𝑀𝑆𝐸  

Total SST n-1   
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Coefficients of the multiple determination R2 or adjusted R2 are usually used as global 

statistics to evaluate the fit of the model. They can be mathematically expressed with the 

following equations: 

𝑹𝟐 =  𝑺𝑺𝑹
𝑺𝑺𝑻

,        𝑹𝒂𝒅𝒋𝟐 = 𝟏 − 𝑺𝑺𝑬/(𝒏−𝒑)
𝑺𝑺𝑻/(𝒏−𝟏)

                                                                   (3.5) 

However, R2 can be somewhat problematic because it is always increasing with the 

addition of the variable in the model. On the other hand, Radj
2  will have higher value only if 

the newly added variable reduces the error mean square. It is a particularly useful parameter 

in limiting the analyst for adding variables that are not useful in explaining variability of 

data.  

The first step that should be undertaken in model building is the correlation test between 

the independent variables. The correlation coefficient measures the linear relationship 

between variables and has the value range from minus one to one. The value of minus one 

shows the perfect negative correlation, while the value of plus one shows the perfect positive 

correlation. In order to get the correlation among variables, Minitab software was used. 

Next, one of the most important problems in regression analysis involves selecting the set 

of independent (regressor) variables to be used in the model.  

The best subset analysis and stepwise regression analysis were used for determination of 

significant independent variables for development of the energy consumption model. 

The selection of the “best” subset of the independent variables involves examining 

available variables in order to obtain the regression model. Thus, to make a model easy to 

use, as well as less costly, one’s goal is to choose a few regressor variables as possible. For a 
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K regressors x1, x2,…,xk and a single response variable y there are 2K total equations that 

should be analyzed. There are several criteria that can be used for evaluating and comparing 

those different possible regression models: 

 𝐑𝐚𝐝𝐣
𝟐  - One of the most commonly used is the value of the adjusted coefficient of 

determination 𝑅𝑎𝑑𝑗2 . As previously explained, the model that maximizes this 

parameter, also minimizes the mean square error and, therefore, it is considered to be 

a suitable candidate for the best regression model.  

 Cp - Another criterion that is used for evaluation of regression models is Cp statistic, 

which defines the total mean square error for the regression model. Therefore, the 

model that has minimum Cp statistic is considered to be the best regression model. 

 PRESS statistic – This statistic can also be used for evaluating different regressor  

models. This parameter gives a measure of how well the model will perform when 

predicting new data, or data that were not used for fitting the regression model.  

Consequently, the best subset analysis was performed on all regressors that were 

available, and parameters Radj
2  and Cp were used for evaluation of the most suitable model, 

which will be presented later in the thesis. 

Besides the all possible regressor selection method, the stepwise regression technique 

was performed. This widely employed technique uses iterations to make a series of 

regression models by adding or removing variables at every step (Montgomery and Runger 

2003). As previously mentioned, the criterion for adding or removing variables is usually a 

partial F-test. The process of the stepwise selection method begins with making one variable 

model, with the regressor that has the highest correlation with the response variable Y. In 
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terms of statistics used for this analysis, this regressor will have the highest value of partial F 

statistic. Generally, at every step, the set of remaining regressors is examined, and the one 

with the largest partial F statistic is inserted into the model.  

A different approach for selecting the best subset of variables is particularly useful in 

order to check if the same models result. However, it is suggested that if there are not a lot 

of candidate regressor variables, the recommended selection technique will be the best 

subset selection (Montgomery and Runger 2003). Also, this technique is not affected by 

dependencies between regressor variables. 

In order to check if multicollinearity exits, the variance inflation factors (VIF) were 

calculated for the variables in the model. Multicollinearity represents dependency among the 

regressor variables, which has a serious effect on coefficients of the regression as well as 

appropriateness of the derived model. It is expressed with the Variance Inflation Factor 

(VIF), which has the following equation (Montgomery and Runger 2003): 

𝑉𝑰𝑭 =  𝟏
(𝟏−𝑹𝒋

𝟐)
          𝒋 = 𝟏,𝟐, … ,𝒌                                                                                  (3.6) 

where: 

Rj
2 is the coefficient of multiple determination that is the result of regressing xj on 

the other kj regressors. 

Some authors suggest that if the multicollinearity is less than 10, it is not a problem. Others 

state that this value should not be more than 4 or 5 (Montgomery and Runger 2003). 
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Applying all previously mentioned statistical procedures, the regression model for the 

energy consumption was developed and it is described in Chapter 4. Likewise, the model is 

required in the optimization part, and it is presented in that part of the thesis too. 

As previously mentioned, the model of production rate is required for further analysis. 

Basically, it is the product of the volume of material in the bucket and number of cycles. It is 

usually expressed in terms of yd3/h. The mathematical formulation of production rate can be 

defined as follows: 

𝒀 = 𝑽𝑩 𝒙 𝟑𝟔𝟎𝟎
𝑪𝑻

                                                                                                               (3.7) 

where:  

Y represents production rate (yd3/h),  

VB represents the volume of the material in the bucket (yd3),  

 CT represents cycle time (sec). 

Therefore, considering just maximization of production rate, the value of the volume of 

material in the bucket should be maximized, and the value of the cycle time should be 

minimized. However, building the model of energy consumption and also optimization of 

these two functions should be performed.  
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3.4 Optimization of the models 

Multi-objective optimization refers to a process of simultaneous optimization of two or 

more usually conflicting objectives with or without bounds and constrains. The term 

optimize (minimize or maximize) means to obtain a solution that provides the values of all 

objective functions, and that satisfies the decision maker. It is a widely used method in many 

different fields. Multi-objective optimization techniques provide a preferred solution or set 

of efficient solutions. Thus, in general, the optimum solution for multi-objective 

optimization is called a Pareto optimal solution, or several solutions called an optimal Pareto 

set (Figure 3.2). Since Multi-objective optimization, as a method, finds one or more 

optimum solutions of variables in objective functions, it is often used to assist the decision 

maker, and it is frequently an important component of the decision-making system. A 

generalized form of multi-objective optimization can be mathematically defined as (Diwekar 

2008; Venkataraman 2003): 

        𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 (𝒐𝒓 𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆) 𝒁� = (𝒁𝟏,𝒁𝟐, … ,𝒁𝒌)                                              (3.8) 

𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐                                              𝒉(𝒙) = 𝟎  

                                                                 𝒈(𝒙) ≤ 𝟎 

𝒙𝒊𝒍 ≤ 𝒙𝒊 ≤ 𝒙𝒊𝒖, 𝒊 = 𝟏,𝟐, … ,𝒏 

where �̅� represents the set of objective functions, xi are the decision variables, ℎ(𝑥) set of 

equality constrains, 𝑔(𝑥) set of inequality constraints, and 𝑥𝑖𝑙 ≤ 𝑥𝑖 ≤ 𝑥𝑖𝑢 , 𝑖 = 1,2, … ,𝑛 

represent side constraints. Both objective functions and equality and inequality constraints 

are mathematical functions that depend on decision variables. Side constraints represent a 

significant part of the solution mechanism because they express the range of design 
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variables. Every design variable must have bounds, which are lower-limit and upper-limit 

numerical values. 

 

Figure 3.2 Graphical representation of general Multi-objective optimization problem 

(Zitzler et al. 2004) 

Considering the goal of this research, optimization of two functions was performed. 

Multi-objective optimization was performed in order to determine optimal values of 

measured parameters on a given rope shovel. The optimal values of these parameters will 

provide information about which of the variables should be minimized or maximized, which 

is a requirement for further analysis. These variables will be attributes in the MADM model. 

The information about minimization or maximization of criteria, which will be later defined, 

is a mandatory part of the set-up for the MADM model. 

Two optimization functions in this model are:  

 energy consumption per hour in unit-less number, 

 production rate (yd3/h) 
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As previously explained, the function of energy consumption is developed with 

regression analysis, with the variables in the model: fill time (sec), cycle time (sec), volume 

of the material in the bucket (yd3), and number of working hours (h). Production rate 

depends on two measured variables: volume of the material in the bucket (yd3) and number 

of cycles. This optimization does not have any constrain functions, but only the side 

constrains (bounds). The bounds of optimization are taken as minimum and maximum 

values of data for those variables. 

Therefore, the set-up for this optimization problem can be presented as follows: 

                                    𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆 𝒁𝟏(𝒙) =  𝒁𝟏(𝒙𝟏,𝒙𝟐,𝒙𝟑,𝒙𝟒)

=  (𝟏𝟎𝟎𝟕.𝟑𝟓 + 𝟓𝟔.𝟐𝟐 ∗ 𝒙𝟏 − 𝟏𝟕.𝟔𝟖 ∗ 𝒙𝟐 + 𝟕.𝟒𝟔 ∗ 𝒙𝟑 − 𝟖.𝟖𝟏 ∗ 𝒙𝟒)𝟐    

𝑴𝒂𝒙𝒊𝒎𝒊𝒛𝒆 𝒁𝟐(𝒙) = 𝒁𝟐( 𝒙𝟑,𝒙𝟐) =  𝒙𝟑 ∗ �
𝟑𝟔𝟎𝟎
𝒙𝟐

 � 

Bounds      𝟕.𝟓𝟕 ≤ 𝒙𝟏 ≤ 𝟏𝟐.𝟕𝟕,𝟐𝟕.𝟕𝟐 ≤ 𝒙𝟐 ≤ 𝟒𝟑.𝟗𝟕 ,𝟏𝟒 ≤ 𝒙𝟑 ≤ 𝟔𝟎,𝟎.𝟓 ≤ 𝒙𝟒 ≤ 𝟓.𝟒; 

where 𝑍1(𝑥) represents energy consumption, 𝑍2(𝑥) represents production rate (yd3/h), x1 is 

fill time, x2 is cycle time, x3 is volume of the material in the bucket, and x4 is number of 

working hours.  

The process of multi-objective optimization was performed with the evolutionary 

algorithm. Evolutionary algorithms are popular concepts for solving multi-objective 

optimization scenarios. These algorithms are search algorithms that emulate the process of 

evolution in order to find the best solution. Though the basic concept of them is simple, they 

have proven to be robust, general, and effective search mechanisms (Back et al. 1997). 
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These algorithms have features that are highly desirable for solving problems that include 

multiple conflicting objectives and large, notably complex search spaces.  

One of the evolutionary (genetic) algorithms that represents a standard approach to 

solving multi-objective optimization is Non-dominated Sorting Genetic Algorithm-II 

(NSGA-II), which is used in this research. NSGA-II starts with the initialization of the 

population, with respect to a range of the problem and constrains (if any). This population is 

then sorted and characterized by non-domination into each front. For sorting the population 

of size N for a given level of non-domination, the comparison of every solution with every 

other solution must be performed, to see if it is dominated. This process gives all individuals 

in the first non-dominated front. Next, the first non-dominated front is followed by the 

second front, which is dominated only by the first front, and so on, following the same 

procedure. Every individual in every front has rank (fitness) value, or it is characterized by 

its front. Thus, the individual from the first front has a rank value of 1, from the second front 

a rank value of 2, etc. Also, every individual has crowding distance, which is assigned by 

front. 

Estimation of crowding distance is essentially an estimation of density of solutions 

enclosing a particular point in the population. This distance is estimated by averaging the 

distance of two points on either side of the particular point in the population along each of 

the objectives. If crowding distance is a large number, the population will have better 

diversity. In regards to crowding distance, as well as rank of the individual, the parents are 

selected from the population. The selected population creates offsprings from crossover and 

mutation operators. The next generation is formed by the combination of the parent and 
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offspring population, and it is further sorted according to non-domination. The graphical 

representation of the NSGA-II is shown in the Figure 3.3. 

 

Figure 3.3 Flowchart of the NSGA II algorithm (Balaji and Kamaraj 2012) 
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Optimization is performed with the GANetXL add-in for Microsoft Excel. The variables 

defined as genes in the software wizard are fill time, cycle time, volume of material in the 

bucket, and number of working hours. All of the genes are real numbers whose values are 

within the range of their minimum and their maximum value (upper bond and lower bond). 

Objectives are production rate (yd3/h), which is set to be maximized, and energy 

consumption, which is set to be minimized. 

The choice of crossover can impact the effectiveness of the genetic algorithm. Crossover 

happens by joining the chromosome at a particular point(s) on every chromosome, and then 

rearranging one part of chromosome A with the opposite part of chromosome B. For this 

particular optimization, simple multi-point crossover was chosen, because according to the 

authors of the software, it leads to a better distribution of genes across the offspring. 

For the given setting and the bounds, multi-objective optimization provided the following 

results: minimum value of fill time, minimum value of cycle time, maximum value of 

volume of material in the bucket, and maximum value of number of working hours. This 

information was further used for the setting up the MADM model. 
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3.5 Multi-Criteria Decision-Making methods  

In problems where there are more than one criterion that represent performance of the 

alternative, Multi-Criteria Decision-Making (MCDM) is considered. Thus, this method is 

used to support the decision maker where multiple criteria are used for solving the problem. 

Usually, there is not an optimal solution for these problems, and the preferences of the 

decision maker characterize the difference between solutions.  

Based on whether the solutions and alternatives are explicit or implicit in nature, MCDM 

are divided in two major groups of methods: Multi-Objective Decision-Making and MADM. 

MADM consider problems that have finite number of alternatives that are explicitly known 

from the beginning of the solution process. Every alternative is characterized with its 

performance in multiple criteria. In Multi-Objective Decision-Making a finite number of 

explicit constrains (functions) characterize an infinite number of alternatives (Vassilev et al. 

2005). 

For the ranking of operators from “the best” to “the weakest,” MADM is a more 

appropriate method because of the following characteristics: 

 explicit attributes, 

 finite number of alternatives (discrete), 

 selection and evaluation of the solutions that are already known. 

Decision-making processes have several steps in the process of solving the particular 

problem (Tzeng and Huang 2011):  

 problem identification,  

 set-up of preferences,  
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 evaluation of alternatives, and  

 determination of the best alternative.  

Despite the problem that needs to be resolved (pre-determined goal), problem 

identification is related to definition of desirable criteria (attributes) as well as the number of 

alternatives that will be compared in regard to those given criteria. Furthermore, based on 

preferences of the decision maker to reach a pre-determined goal, the criteria should be 

minimized or maximized. Finally, with analysis of data with suitable techniques, selection of 

the appropriate model is performed in order to help the decision maker to evaluate, outrank, 

or improve possible alternatives. 

The flow of solving a decision-making problem related to this research has the following 

steps: 

 classification of rope shovel operators based on given attributes (problem 

identification); 

 minimize energy consumption and maximize production rate, with respect to the 

measured parameters: cycle time, fill time, volume of the material in the bucket 

(setting up of the preferences); 

 alternatives – Operator A, Operator B, Operator C and Operator D -  evaluation 

based on the given preferences and weights; 

 determination of the best operator, as well as ranking of other operators. 

The mathematical model for solving MADM problems is formulated as following 

(Nikolic and Borovic 1996): 
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𝐌𝐚𝐱 𝐨𝐫 𝐌𝐢𝐧 {𝐟𝟏(𝐱), 𝐟𝟐(𝐱), … , 𝐟𝐧(𝐱),𝐧 ≥ 𝟐}, 𝐱 ∈ 𝐀 (𝐚𝟏, 𝐚𝟐, … ,𝐚𝐦)                        (3.9) 

where: 

fn(x) represents criteria (attributes),                    

n represents the number of criteria (attributes), 

ai represents the alternatives in the model,  

A represents set of all alternatives, 

m represents the number of alternatives.                                 

    Values of all given criteria fn(x) are known, for every given alternative 

       𝐟𝐢𝐣 =  𝐟𝐣(𝐚𝐢)    ∀ (𝐢, 𝐣); 𝐢 =  𝟏,𝟐… ,𝐦; 𝐣 = 𝟏,𝟐, … ,𝐧.                                                  (3.10) 

 

It is common to present an MADM model as an appropriate decision matrix, where every 

row represents one alternative, and every column one criterion (attribute). The element of 

the matrix fij represents performance of the alternative ai considering the criterion fj. For n 

criteria and m alternatives, the form of the matrix is shown in the equation (3.12). Values wi 

represent weights of given criteria defined by a decision maker or in some other way, with 

the rule that their summation must be equal to one. Minimization criteria can be translated to 

the maximization criteria multiplying with -1. 

                                                      

                                                       𝒎𝒂𝒙     𝒎𝒂𝒙     𝒎𝒂𝒙  

                𝒇𝟏         𝒇𝟐        𝒇𝒏                                                                                                           

               𝒘𝟏        𝒘𝟐      𝒘𝒏 

              
𝒂𝟏
𝒂𝟐
𝒂𝒎

�
𝒇𝟏𝟏 𝒇𝟏𝟐 𝒇𝟏𝒏
𝒇𝟐𝟏 𝒇𝟐𝟐 𝒇𝟐𝒏
𝒇𝒙𝒎𝟏 𝒇𝒎𝟐 𝒇𝒇𝒏

�                                                         (3.11) 
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3.5.1 Basic characteristics of MADM models 

Basic characteristics of the MADM model can be formulated as follows: 

 alternative (action) is dominant on other alternatives if  fj(as) ≥ fj(ak)   ∀ j =

1,2, … , n; and ∀k = 1,2, … , m; s ≠ k. In other words, alternative as is better than 

others in at least one attribute, and it is not worse in any attribute from all other 

alternatives;  

 If there is a dominant alternative (action), then there is the perfect (optimal) 

solution which is that alternative. In that case, there is no need for the MADM 

model to choose the best alternative. However, problems of this type do not 

generally have a dominant alternative; in fact, even if there is a perfect solution, in 

order to rank and sort the other alternatives, further analysis must be conducted. 

Also, there may be a situation in which one of actions is dominant only on one of 

few of the other actions, but not on each of them; 

 alternative aq is non-dominated if there is not any other alternative av for which it 

is true: 

𝑓𝑗(𝑎𝑣) ≥  𝑓𝑗�𝑎𝑞�∀ 𝑗 = 1, 2, … ,𝑛;∀ 𝑣 = 1,2, … ,𝑚; 𝑣 ≠ 𝑞 

𝑎𝑛𝑑 𝑓𝑗(𝑎𝑣) >  𝑓𝑗�𝑎𝑞�,𝑓𝑜𝑟 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑗 

 

 alternatives at and av are equivalent if they have the same values for all attributes 

𝑓𝑗(𝑎𝑡) = 𝑓𝑗(𝑎𝑣),∀𝑗 = 1,2, … ,𝑛; 

 alternative ar is dominated if at least one of the other alternatives is better than ar. 
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For all MADM models, regardless of the method that is used, other important features 

also include quantification of qualitative attributes (not present in this research), 

modification of attributes of the same criteria, linearization and normalization of attributes, 

and definition of weights of criteria. In the case of qualitative data, transformations are 

mandatory, while in the case of the different nature of the data, they are recommended.  

 

3.5.2 Determining the weights of the criteria with AHP  

AHP is one of the most used and known additive weighting method applied in solving 

MADM problems for dealing with multiple criteria simultaneously. This method 

considers total aggregation between criteria and involves a linear additive model 

(Kasperczyk and Knickel 2004). It was proposed as a part of this research to set up 

weights for the criteria used in the MADM model.  

All decision problems are resolved as hierarchical systems. First, these systems 

indicate defining the goal for the specific problem. Next, the goal is represented by 

several criteria, which can be further deconstructed into other sub-criteria. Therefore, the 

major steps of AHP can be defined as follows (Figure 3.4): 

 Deconstruction of the goal (problem) into a hierarchy of interrelated elements, 

thus constructing a hierarchical system. The simplest form of this structure has a 

top level-goal, intermediate level-criteria, and lowest level-options. This 

arrangement gives an overview of the complexity of the relations and shows the 

decision maker whether the elements in the each level are of the same size for  

correct comparison (Saaty 1990); 
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 Construction of a reciprocal matrix by comparing the weights between the 

attributes of the model. The degree of relative priority of one criterion to another 

is calculated by assigning weights to each of them from 1 to 9, where 1 indicates 

that both criteria are equally important, and 9 indicates extreme importance of one 

criterion over another. A reciprocal value is given to the other criterion in the pair. 

Furthermore, the ratings are normalized and averaged with the goal of obtaining 

an average weight for each criterion in the model; 

 Aggregation of the weights of the elements that provide the best alternative in the 

model. After all elements and priorities are determined in the model, the ones that 

are less important for the overall goal can be removed from the model.  

 

Figure 3.4 The scheme of the AHP (Tzeng and Huang 2011) 

Mathematically expressed, having the set of attributes A=a1, a2,…,an and appropriate 

weights w1, w2,…,wn allow a decision maker to perform pairwise comparisons, which are 

represented by the following matrix (Tzeng and Huang 2011): 
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𝑨 = �
𝒂𝟏𝟏 𝒂𝟏𝒋 𝒂𝟏𝒏
𝒂𝒊𝟏 𝒂𝒊𝒋 𝒂𝒊𝒏
𝒂𝒏𝟏 𝒂𝒏𝒋 𝒂𝒏𝒏

�              𝒂𝒊𝒋= 𝟏𝒂𝒋𝒊
,                                                                                (3.12) 

Next, the weight matrix W appears as:               

               w1    wj    wn                                                      

𝑾 =
𝒘𝟏
𝒘𝒊
𝒘𝒏

⎣
⎢
⎢
⎢
⎡
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𝒘𝒏

𝒘𝒏
𝒘𝟏

𝒘𝒏
𝒘𝒋

𝒘𝒏
𝒘𝒏⎦
⎥
⎥
⎥
⎤

,                                                                                                        (3.13) 

and finally multiplying W with w gives: 

                     w1    wj    wn                                                      

 𝑾𝒙 𝒘 =
𝒘𝟏
𝒘𝒊
𝒘𝒏

⎣
⎢
⎢
⎢
⎡
𝒘𝟏
𝒘𝟏

𝒘𝟏
𝒘𝒋

𝒘𝟏
𝒘𝒏

𝒘𝒊
𝒘𝟏

𝒘𝒊
𝒘𝒋

𝒘𝒊
𝒘𝒏

𝒘𝒏
𝒘𝟏

𝒘𝒏
𝒘𝒋

𝒘𝒏
𝒘𝒏⎦
⎥
⎥
⎥
⎤

�
𝒘𝟏
𝒘𝒋
𝒘𝒏

� = 𝒏 �
𝒘𝟏
𝒘𝒋
𝒘𝒏

�                                                               (3.14) 

which represents the final scores for the given alternatives. In this research, this final step 

was not performed.  

Furthermore, in order to establish the consistency of the subjective judgment and 

consistency of comparative weights, the consistency index (C.I) and the consistency ratio 

(C.R.) should be calculated. Mathematical expressions for these two indices are 

expressed as: 

𝑪. 𝑰. =  (𝝀𝒎𝒂𝒙−𝒏)
(𝒏−𝟏)               𝑪.𝑹. =  𝑪.𝑰

𝑹.𝑰
                                                                               (3.15) 
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where: 

 𝛌𝐦𝐚𝐱 shows the largest eigenvalue,  

n is the number of attributes, and  

R.I. is the random consistency index. 

The R.I is made from randomly generated reciprocal matrices. Its values are shown in 

Table 3.2 for different size of the matrices. According to Saaty (1990), the consistency ratio 

should not exceed 0.1(10%) for a valid result. 

Table 3.2 Values of random consistency index for different size matrices 
 

 

 

 

As already explained, the application of AHP starts with pairwise comparisons among 

criteria and creates a matrix from which the decision maker calculates the eigenvector, 

and finally the weight of each criterion.  

For evaluation of operators and their ranking, the criteria measured were rope shovel 

parameters relevant for changing of optimization functions. The main steps that were 

involved in the application of AHP method in this research are: 

Step 1: Building a square matrix that would contain the same criteria in rows as well 

as in columns. In this particular case, a 3 x 3 matrix was created. 

    Step 2: Using a preference scale, the decision maker performs pairwise comparisons  

among criteria, looking at the overall goal as a reference. The preference scale is shown in 

the table 3.3. 

No. of 
elements 3 4 5 6 7 8 9 10 

R.I. 0.52 0.89 1.11 1.25 1.35 1.40 1.45 1.49 
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Table 3.3 Preference scale for scoring the criteria in AHP (Mulier 2011) 
 

 

 

 

 

 

 

The AHP matrix used in this research is presented in Table 3.4. Obviously, the same criteria 

compared among themselves have the same importance, so the preference score of 1 is the 

diagonal of the comparison matrix. For instance, fill time is assessed to be more important 

than the cycle time regarding the goal; thus, conversion of that preference judgment would 

be value of 3 from the preference score table. Accordingly, cycle time gets a reciprocal 

value of 1/3 in comparison with fill time. The rest of comparisons were performed in the 

same manner. 

Table 3.4 Comparison matrix of the criteria in the model 

 

 

 

 

Preference judgment Ranking 

Both of criteria are equally important 1 

One criterion is more important than the other 3 

One criterion is strongly more important that 
the other 

5 

One criterion is very strongly more important 
that the other 

7 

One criterion is extremely more important that 
the other 

9 

Intermediate values 2-4-6-8 

Comparison 
Matrix 

CT 
(sec) 

FT (sec) VB (yd3) 

CT (sec) 1 1/3 1/5 

FT (sec) 3 1 ½ 

VB (yd3) 5 2 1 
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The particular values in the matrix were selected by prior analyzing of the data, and by 

looking at the importance of variables in the regression model. Volume of the material in the 

bucket is the most important parameter for both of the models. Therefore, it gets the highest 

score compared to the other criteria in the model. The other parameter that is also important 

for the goal is fill time, so it also has a high score compared to the other criteria. The least 

significant is the criterion number of working hours, which score is the lowest comparing to 

all other criteria. This criterion is omitted from the model since all operators are leveled on 

an hourly basis. 

Step 3: Summation of all elements in each of the columns, and then dividing elements of 

every column with the value that represents the sum of that column. Summation of the 

numbers calculated in the latter way must be equal to 1. If that number is different, the 

calculation is not valid.  

Step 4: Summation of all elements in each row should be calculated, and then the mean 

value of every row should be determined. Those mean values represent normalized 

eigenvectors. In this way, the values of the importance of each criterion are determined.  

 

3.5.3 Basic principles of PROMETHEE II method 

Depending on the nature of the problem that has to be solved, there are three basic 

approaches to MADM solutions (Nikolic and Borovic 1996): 

 ranking of all alternatives from “the best” to “the weakest”, 

 selection of one – “the best” alternative, and 

 selection of multiple alternatives. 
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Considering the goal of this research, ranking of alternatives from “the best” to “the 

weakest” is an appropriate approach to solving the problem. In order to accomplish this 

goal, outranking MADM methods are suitable. Outranking methods compare alternatives 

based on their preference relations.  

There are several different types of outranking methods (ELECTRE, PROMETHEE etc.). 

For this research, the PROMETHEE method was used because it is easy to construct and 

easy for decision makers to use. There are several types of PROMETHEE methods; each of 

them has a particular purpose. For the need of this research, PROMETHEE II was used 

because it provides complete ranking of alternatives.  

Consider a MADM problem defined with equation 3.9. At first, pairwise comparisons of 

alternative a and alternative b should be performed, and if the result is such that 𝑓𝑗(𝑎) ≥

𝑓𝑗(𝑏), for j=1 to n; then a dominates b.  The basic concept of this family of methods has 

three aspects:  

 Generalization of the criteria, which involves introduction of the preference function. 

The preference function is formulated in the following way (Brans and Mareschal, 

1990): 

𝑷�𝒂𝒊,𝒂𝒋� =  �
𝟎,    𝒊𝒇 𝒇(𝒂𝒊) ≤ 𝒇�𝒂𝒋�

𝑷 �𝒇(𝒂𝒊) − 𝒇�𝒂𝒋�� , 𝒊𝒇 𝒇(𝒂𝒊) > 𝑓�𝒂𝒋� 
�,    

                           𝟎 ≤ 𝑷�𝒂𝒊,𝒂𝒋� ≤ 𝟏,                                                                                           (3.16) 

         

where the difference between two alternatives is calculated as d�ai, aj� =  f(ai) − f�aj�, 

with the leveling of the measurement units. The authors of this method proposed six 
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types of preference functions, which should cover the most of the cases that appear in the 

practice. Basically, the decision maker selects suitable preference function for each 

criterion and defines additional parameters depending on the type of function. These 

parameters are different thresholds defined by the decision maker, with which one could 

give strong or weak dominance of one alternative to another. The preference function of 

Type I-Usual Criterion was used in this research because the indifference between two 

alternatives is encountered only when (ai) = f�aj� . This means that if these two values 

are different, the decision maker gives the strict preference to the action that has the 

greater value; 

 When the preference function is determined for every criterion, all comparisons 

between alternatives are performed for all criteria in the model. The multi-criteria 

preference index is defined, to globally compare every pair of alternatives. 

Mathematical definition of the preference index is defined by (Brans and Mareschal, 

1990): 

 

  𝝅�𝒂𝒊,𝒂𝒋� =  𝟏
𝒏
∑ 𝒇𝒋�𝒂𝒊,𝒂𝒋�𝒏
𝒋=𝟏                                                                         (3.17a) 

 

   𝝅(𝒂,𝒃) =  ∑ 𝒘𝒋𝒇𝒋�𝒂𝒊,𝒂𝒋�𝒏
𝒋=𝟏                                                                                  (3.17b) 

 

where the equation (3.17a) is used when all criteria are equal, and the equation 

(3.17b) counts criteria weights, which can be determined by AHP. Values range for 

preference index is from zero to one. 
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 Evaluation of the alternatives of the set A is performed by using the outranking 

relation, through preference flows. The positive preference flow ф+(a) shows how a 

certain alternative is outranking all the other alternatives while negative performance 

flow ф-(a) shows how a certain alternative is outranked by all the other alternatives. 

Finally, the net flow ф(a) represents the difference between positive and negative 

flow, and it is used for determination of the total ranking of alternatives. In 

PROMETHEE methods, the higher the positive flow and lower the negative flow, 

the better the alternative. Mathematical formulation of flows as well as final 

outranking is defined with the equations 3.18 (Brans and Mareschal, 1990). 

 

                   𝝓+(𝒂) = ∑ 𝝅�𝒂𝒊,𝒂𝒋�𝒂𝒋𝝐𝑨 ,                                                                         (3.18a) 

                          𝝓−(𝒂) = ∑ 𝝅�𝒂𝒋,𝒂𝒊�𝒂𝒋𝝐𝑨                                                                         (3.18b) 

                         𝝓(𝒂) = 𝝓+(𝒂) −  𝝓−(𝒂),                                                                       (3.18c) 

       where: 

                 ф+(a) represents the positive flow,  

                           ф-(a) represents negative flow, and 

                     ф(a) represents net flow. 

 

Complete order (PII, III) is measured by the net flow (Brans and Mareschal 1990): 
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𝒂𝒊𝑷𝑰𝑰𝒂𝒋�𝒂𝒊 𝒐𝒖𝒕𝒓𝒂𝒏𝒌𝒔 𝒂𝒋�, 𝒊𝒇𝒇 𝝓(𝒂𝒊) > 𝜙�𝒂𝒋�                                                     (3.19a) 

𝒂𝒊𝑰𝑰𝑰𝒂𝒋�𝒂𝒊 𝒊𝒔 𝒊𝒏𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒕 𝒂𝒋�, 𝒊𝒇𝒇 𝝓(𝒂𝒊) = 𝝓�𝒂𝒋�,                                           (3.19b) 

 

For the ranking and evaluation of operators, the criteria are the same as those used in 

setting up the AHP model. The weights of each criterion were integrated in the set-up of the 

PROMETHEE II model. This outranking MADM model has following steps in solving the 

problem (Mulier 2011): 

Step 1: Construction of the decision matrix, which will have alternatives in rows, and 

attributes in columns. The dimension of the decision matrix is 4 x 3. Alternatives in this 

model are: Operator A, Operator B, Operator C, and Operator D. The criteria (attributes) in 

the MADM model, as already mentioned, are fill time (sec), cycle time (sec), and volume of 

the material in the bucket (yd3). 

Step 2: Specification of the weight of each criteria, which in this case, as already 

explained, were obtained with AHP. 

Step 3: Specification of the preference with regard to maximization or minimization of 

the attribute. 

Step 4: Selection of the preference function that is the most suitable with the particular 

data. The preference function selected for this research is Type 1: Usual Criterion. This type 

of function does not need any addition parameters to be defined. If some other type of 

function is selected, the additional preference thresholds should be determined. 

Step 5: Comparing the first two alternatives with respect to the first criterion in the 

matrix. Basically, all pairwise comparisons were done among all alternatives considering all 
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criteria, and appropriate scores were established. Scores depend of type of the preference 

function, and values of thresholds, if any.  

Step 6: The scores were then multiplied with the weight assigned to that attribute. Values 

relevant to the particular pair of alternatives obtained in the previous step were then added 

row-wise and column-wise (negative and positive flow). 

Step 7: Determining the square matrix of preference indices, with alternatives in rows 

and alternatives in columns. The score for the same alternatives in this matrix is zero; scores 

for different alternatives are the values obtained in Step 6. 

Step 8: Calculation of net flow for each alternative. The alternative that has the highest 

net flow is clearly “the best,” and the other values of flow allow the ranking of rest of 

alternatives, by decreasing value. 

Step 9: If some other type of function than Type 1 is selected, the sensitivity analysis 

should be performed though variation of thresholds. 

Since manual calculation of all steps can be fairly complicated and prone to mistakes, the 

software PROMETHEE-GAIA should be used for derivation of the final ranking of 

alternatives. Since there are not a lot of criteria and alternatives in this research, the overall 

ranking was performed by manual calculations as well as with the software. 
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Chapter 4 

Results and Discussion 

 

4.1 Mine description 

Data used in this research were provided by a surface coal mine located in the southern 

United States. The mine is operated by the largest lignite producer in the United States. The 

company produces more than 33 million tons of lignite on an annual basis, with mining 

operations in multiple states.  

This particular mine operates in an area of 5,809 acres, with over 200 million tons of 

minable lignite. It delivers approximately 3.5 million tons of coal per year, and 

approximately 42 million cubic yards of overburden.  

The lignite was formed in a geologically complex environment (delta or fluvial 

conditions), in which various series of flooding and stream channel migration developed. 

Also, this mine has high annual precipitation with more than 5 feet of rainfall. The mine 

consists of six minable lignite seams (out of eleven seams), with the average thickness 

varying from two to six feet. The three shallowest seams do not meet the quality 

requirement, and thus they are not extracted. The two deepest seams are not mined because 

of geotechnical and economic constraints. The coal has a mean heating value of 5,120 

(BTU/lb). The other quality characteristics of the coal include 43.02% of moisture, 14.40% 

of ash, and 0.67% of sulfur. Figure 4.1 represents a typical cross section of the mine. 
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Figure 4.1 Typical cross section of the mine 

The mine has approximately 184 employees, operating in two shifts. The equipment 

operators work in crews. Shovel-truck operations are organized on two eight-hour shifts 

while dragline operations are performed by two twelve-hour shifts. Shovel-truck crew 

operations are controlled by one supervisor while none of them is associated with the 

dragline operations.  

The mine uses a truck and shovel fleet composed of a P&H 2800 XPB (40 yd3 bucket) 

rope shovel and Caterpillar 789 dump trucks (payload of 180 t). The rope shovel digs the top 

material, along with the first two coal seams, up to the top coal seam that is minable. 

Usually, the shovel removes up to 50 feet of overburden in this stage before reaching the 

coal. Caterpillar 789 trucks transport overburden to spoil dump areas. Caterpillar D10 dozers 

disperse the material and bring the surface to the designed topography.  

A fleet of four Caterpillar D11 dozers reveals the second, third, and fourth lignite seam, 

pushing interburden into the former pit. Extraction of the last two feet of interburden is 

performed by a rubber tire dozer or a Surface Miner (SM). A Marion 8200 dragline with an 

82 yd3 bucket reveals the fifth and sixth lignite seam. The dragline moves up to 70 ft of 

dozer-pushed and interburden material.  
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A Wirtgen 4200 Surface Miner is used for mining coal seams. Also, as secondary loading 

equipment, a 19 yd3 bucket Komatsu PC2000 excavator is used. Lignite is loaded into 137 

tons payload Caterpillar 785 trucks. Ultimately, the coal is crushed and conveyed into two 

20,000 tons separate silos. The coal is separated by quality and placed in each of two silos.  

Before mining, along with conventional material handling methods, rainfall and 

underground water must be controlled. Ground stability control is obtained by placing  

pumps and other underground dewatering systems. In addition, in pre-mining operations, 

temporary sumps and collection ditches are constructed. 

 

 

4.2 Statistical analysis of the measured parameters 

4.2.1 Cycle time  

As previously mentioned, cycle time represents the essential parameter for estimating 

loading performance. Basic statistics of overall cycle time, as well as separate cycle times 

for each operator, for the given data, was performed.  

Among different possible ways to graphically represent the data, histogram and boxplot 

were selected for examining the raw cycle time data (Figure 4.2). A histogram of the raw 

cycle time data shows that the distribution of the variable is skewed to the right with a single 

peak (unimodal distribution), and the center of the distribution is around 40 sec (midpoint of 

the data). The spread of the data ranges from 27.72 sec to 87.27 sec. The tail part of the 

distribution that shows fairly high values can be seen in the histogram. Likewise, the boxplot 
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shows those high values as outliers in the data. Those values can indicate faulty data and 

were removed from further analysis. The boxplot graph indicates that the median of the raw 

data for cycle time is about 36.63 sec, with 25% of the observations falling at or below 

33.28 sec, and 75% of the data falling at or below 42.84 sec. 

However, the minimum and maximum values of this particular data do not describe the 

spread of the majority of the data; the data between 25% and 75% are a more resistant 

measure of the spread, which can be seen in the boxplot graph. Therefore, the assumption is 

that the majority of the data is in the range of these values.  
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Figure 4.2 Graphical representation of raw cycle time 

After the removal of outliers from the data, the corresponding means and standard 

deviations of cycle time for each operator are shown in Table 4.1. The boxplot of cycle 

times for individual operators is presented in Figure 4.3. 
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Table 4.1 Mean and standard deviation of cycle time for each operator 

   

 

 

 

 

The overall mean value for cycle time is 35.69 sec with standard deviation of 3.69 sec. 

Operator B has the lowest mean cycle time (34.71 sec) with standard deviation of 3.54 sec. 

Operator A has the largest mean cycle time (36.27 sec) with standard deviation of 3.69 sec. 

The smallest standard deviation is characterized by Operator D with mean cycle time of 

34.82 sec. The largest standard deviation is characterized by Operator C. This operator has 

the statistical dispersion equal to the difference between 75% and 25% of the observations 

of 5.48 sec. It can be noticed that operators slightly differ in the mean values of cycle time, 

as well as in consistency from cycle to cycle.  
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Figure 4.3 Mean cycle time for each operator 

Operator Mean µ (sec) Standard Deviation σ (sec) 

A 36.27 3.68 

B 34.71 3.54 

C 36.17 3.76 

D 34.82 2.83 

Overall 35.69 3.69 
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Since cycle time is one of the most influential parameters for production rate, along with 

fill factor, Figure 4.4 shows the dependency of these three parameters. Values for production 

rates and fill factors for each operator represent mean values of those parameters. Operator 

D has the highest value of mean production rate, highest value of mean fill factor for the 

second lowest value of mean cycle time. Operator B, who has the lowest mean cycle time, 

has the second best value of mean production rate, as well as for mean fill factor. Operator A 

has the highest mean cycle time, the lowest mean production rate, and the lowest mean fill 

factor, followed by the Operator C. It can be concluded, that considering production rate, 

Operators D and B have the most preferred performance, followed by Operator C, and the 

weakest performance was observed for Operator A. 

 

Figure 4.4 Relationship between mean production rate, mean fill factor and mean 

cycle time for individual operators 
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4.2.2 Fill time  

As already discussed, fill time is the time that the shovel spends in its digging phase 

during the overall cycle time. Basic statistics of overall fill time, and also separate fill times 

for each operator, for the given data, was performed. Figure 4.5 shows the histogram and 

boxplot for the fill-time data obtained for the given shovel. 

Histogram of the fill-time data shows that the distribution of the variable is almost 

symmetric with a single peak. The center of the distribution is around 10 sec. The spread of 

the data is large, from 3.23 sec to 24.41 sec. Outliers can be seen in Figure 4.5; as in the case 

of cycle time, these are assumed to be faulty data, and were removed from the further 

analysis. 
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Figure 4.5 Graphical representation of raw fill time 

The boxplot indicates the median value of 10.2 sec, with 25% of the observations that fall 

at or below 9.27 sec, and 75% of the data that fall at or below 11.45 sec. As in the case with 

cycle time, the latter range is considered as the range of the majority of data. 
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  After the removal of outliers from the data, the corresponding means and standard 

deviations of fill time were determined, and these are shown in the Table 4.2. The boxplot of 

fill times for individual operators is shown in Figure 4.6.   

The overall mean value for fill time is 10.33 sec with standard deviation of 1.60 sec. 

Operator B has the lowest mean fill time (10.02 sec) with standard deviation of 1.54 sec. 

Operator D has the highest mean fill time (10.67 sec) and the lowest standard deviation of 

1.28 sec. Operator A has the highest standard deviation (1.73 sec). This operator has the 

statistical dispersion equal to the difference between 75% and 25% of the observations of 

1.395 sec.  

Although there are differences in the mean values of the mean fill time as well as in 

standard deviations, their values are very small, and it can be concluded that operators are 

somewhat consistent in their performance. 

Table 4.2 Mean and standard deviation of fill time for each operator 

 

 

 

 

 

Operator Mean µ (sec) Standard Deviation σ (sec) 

A 10.84 1.73 

B 10.02 1.54 

C 10.31 1.59 

D 10.67 1.28 

Overall 10.33 1.60 
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Figure 4.6 Mean fill time for each operator 

 

4.2.3 Bucket payload 

Statistical analysis of the payload was performed for each operator as well as for the 

overall variable. Figure 4.7 represents the histogram and boxplot of payload data. 

907560453015

70

60

50

40

30

20

10

0

payload (t)

Fr
eq

ue
nc

y

Histogram of payload (t)

 

100

90

80

70

60

50

40

30

20

10

pa
yl

oa
d 

(t
)

Boxplot of payload

 

Figure 4.7 Histogram and boxplot of raw payload data 

The histogram of payload data indicates that the distribution is more-less skewed to the 

left to almost symmetric with a single peak, and the center of the distribution is around 62 
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tons. The spread of the data is from 15.22 tons to 95.84 tons. As can be seen in the Figure 

4.7, there are not any outliers in data. The boxplot shows a median of 66 tons, with 25% of 

the data falling at or below 50.58 tons, and 75% of the data falling at or below 74.85 tons. 

Mean values, as well as the standard deviation of the measured payload, are presented in 

Table 4.3. The boxplot of mean payload value for every operator is shown in Figure 4.8. 

 

Table 4.3 Mean and standard deviation of payload for each operator 
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Figure 4.8 Mean payloads for each operator 

Operator Mean µ (t) Standard Deviation σ (t) 

A 61.36 18.24 

B 62.88 15.61 

C 61.94 17.07 

D 66.18 14.25 

Overall 62.36 16.68 
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The overall mean value for the payload is 62.36 t with standard deviation of 16.68 t. 

Operator D has the highest mean value of the payload (66.18 t) with the lowest standard 

deviation. Operator A has the lowest mean payload (61.36 t) with the highest standard 

deviation compared to all other operators (18.24 t). This operator has the statistical 

dispersion equal to the difference between 75% and 25% of the observations of 31.81 t. 

Considering consistency of operator performance, it is clear from the data that operators 

differ among themselves. Volume of material in the bucket (yd3) is the parameter that is 

used in further calculations.  

4.2.4 Energy to load a bucket  

The overall parameter of energy to load a bucket, as well as for separate operators, was 

statistically analyzed. Figure 4.9 represents the histogram and boxplot of energy to load a 

bucket in unit-less numbers.  

The histogram of energy-to-load-a-bucket data shows that the distribution of the variable 

is roughly symmetric; the center of energy distribution is approximately 14,916 (median 

15,525). 
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Figure 4.9 Histogram and boxplot of raw energy data 
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Twenty-five percent of the observations fall at or below 12,287, and 75% of the data fall at 

or below 17,294. Mean values and standard deviations of the data are shown in Table 4.4, 

and the boxplot of energy to load a bucket for each operator is presented in Figure 4.10. 

The overall mean value for energy to load a bucket is 14,916.11 with standard deviation 

of 3,139.10. Operator B has the lowest mean energy to load a bucket (14,262.49) with the 

lowest standard deviation of 2,964.39. Operator D has the highest mean value of energy to 

load a bucket, while Operator C has the largest standard deviation of 3,177.44. It can be seen 

that operators differ in their mean values for this parameter while they are more or less 

consistent in performance. 

Table 4.4 Mean and standard deviation of energy to load a bucket for each operator 

 

 

 

 

 

Operator Mean µ (unit-less) Standard Deviation σ 
(unit-less) 

A 16,013.67 2,997.93 

B 14,262.49 2,964.39 

C 14,788.35 3,177.44 

D 16,344.00 2,991.38 

Overall 14,916.11 3,139.10 
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Figure 4.10 Energy to load a bucket for each operator 

 

The relationship between energy to load a bucket and fill time is presented in Figure 4.11. 

 

Figure 4.11 Energy to load a bucket and fill time for every operator 
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From Figure 4.11 it can be seen that Operator B and Operator C have less energy 

consumed per fill time while Operator A and D, particularly Operator D, have higher energy 

consumed per fill time. 

The relationship among mean production rate, mean fill factor, and mean energy to load a 

bucket for individual operators is shown in the Figure 4.12. Operator D has the highest value 

of mean production rate, highest value of mean fill factor and highest mean value of energy 

to load a bucket. On contrary, Operator A has the second highest value of mean energy to 

load a bucket for the lowest mean fill factor and lowest mean production rate. Operator B 

has the lowest mean energy to load a bucket, with the second best mean production rate and 

mean fill factor. Considering the ratio between mean production rate, mean energy to load a 

bucket, and mean fill factor, Operator B seems to have the best performance while Operator 

A has the weakest. 

 

Figure 4.12 Relationship between mean fill factor, mean production rate, and mean 

energy to load a bucket for each operator 

0.42

0.44

0.46

0.48

0.5

0.52

0.54

A B C D

M
ea

n 
en

er
gy

 to
 lo

ad
 a

 b
uc

ke
t, 

m
ea

n 
pr

od
uc

tio
n 

ra
te

, a
nd

 m
ea

n 
fi

ll 
fa

ct
or

 (n
or

m
al

iz
ed

 v
al

ue
s)

 

Operator 
Mean energy to load a bucket Mean production rate Mean fill factor



60 
 

4.3 Multiple regression model of energy consumption 

4.3.1 Correlation among the variables 

The correlation coefficients between the parameters of the given shovel (cycle time, fill 

time, volume of the material in the bucket, and number of working hours) are shown in 

Table 4.5. As can be seen from Table 4.5, high correlations between the variables are not 

observed, except for fairly high correlation between the pair of cycle time and fill time. 

 

Table 4.5 Correlations between fill time, cycle time, 

volume of the material in the bucket, and number of working hours. 

 

 

 

 

 

 

4.3.2 Best subsets and Stepwise regression analysis 

Table 6 shows the results of best subset regression. It can be seen that all four variables 

participate in the explanation of energy consumption variation. Table 4.7 represents the 

results of the final model of stepwise regression analysis. The method gave the same 

preferred model selection as best subset method. One can also see in the output that the 

variable volume of the material in the bucket has the highest correlation with the energy 

consumption response and explains the highest portion of variability in it. 

  

Correlations FT CT VB 

CT 0.511   

VB 0.377 0.136  

WH -0.093 0.086 -0.02 
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Table 4.6 Results of the best subset regression 

 

 

 

 

 

 

Table 4.7 Stepwise statistical analysis 

 

 

 

 

4.3.3 Energy consumption model 

Results of the multiple regression model of energy consumption are shown in Table 4.8 

and Table 4.9.  

The regression equation has the following form: 

𝒀 = (𝟏𝟎𝟎𝟕.𝟑𝟓 + 𝟓𝟔.𝟐𝟐𝑭𝑻 − 𝟏𝟕.𝟔𝟖𝑪𝑻 + 𝟕.𝟒𝟔𝑽𝑩 − 𝟖.𝟖𝟏𝑾𝑯)𝟐                          (4.1) 

 

 

 

 

Variables R2 R2 (adj) Cp FT CT VB WH 

1 56 55.9 755   X  

1 37.5 37.4 1223.5 X    

2 68.8 68.6 434.1 X  X  

2 59 58.8 680.5  X X  

3 85.3 85.2 15.7 X X X  

3 70.6 70.3 390.4 X  X X 

4 85.8 85.7 5.0 X X X X 

Variables VB FT CT WH 

R2 56.02 68.75 85.34 85.84 

R2 (adj) 55.89 68.58 85.22 84.68 

Cp 755 434.1 15.7 5 
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Table 4.8 Results of the multiple regression model of energy consumption 

 

Term Coef SE Coef T P 
 

VIF 

Constant 
 

1007.35 47.7052 21.1161 0.000  

FT 
 

56.22 3.9984 14.0612 0.000 1.55 

CT 
 

-17.68 1.4463 -12.2242 0.000 1.35 

VB 
 

7.46 0.4214 17.7115 0.000 1.12 

WH 
 

-8.81 3.3420 -2.6359 0.000 1.06 

Summary 
of Model 

 

R2= 86.80% R2 (adj) = 86.36% R2 (pred) = 85.55% PRESS = 238459 
 

 

 
 
 

Table 4.9 Analysis of variance table for energy consumption model 
 
 

Source DF SS MS F P Variables Seq SS 

Regression 4 1432779 358195 197.253 0.000 FT 523436 

Error 120 217910 1816   CT 324098 

Total 124 1650690    VB 572629 

      WH 12617 

 

It can be seen from Table 4.8 that hypothesis test of the individual regression coefficients 

(with t statistic) yields p values that are all less than 0.005, which indicates that all of the 

variables are statistically significant in the model. Also, one of the important tests is to check 

the values of the VIF. The maximum value of VIF for the model is 1.55 and indicates that 

multicollinearity is not an issue in this case. The coefficient of determination R2 shows that 
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86.80% of the variation of the energy consumption is explained with the variables in the 

model.  

Table 4.9 represents the analysis of variance table for the energy consumption model. 

Analysis of variance indicates that F statistics are very large, and the MSE is small, which 

further means that the regression line explains the most of variability of the response 

variable. Comparison of PRESS statistics with SSE is a way of informal judging of 

sensitivity of the model fit. Value for sum squares of error (error adj. SS in the Table 4.9) is 

close to the value of the PRESS statistic (Table 4.8), which indicates that over fitting is not 

the issue in this model. Over fitted models would give small residuals for observations 

(SSE) in the model, but large residuals for the observations that are predicted (PRESS).  

 

4.3.4 Validation of the model 

There are a variety of methods that can be used to check the validity of the developed 

model. Those can be:  

 comparison of the prediction of models and coefficients with the theory; 

 new data collection for checking model predictions; 

 data splitting or cross-validation where part of the data is used for estimation of 

the model parameters, and the rest of data are used for determining the prediction 

accuracy of the model.  

Some of the methods, including the split sample validation method which was used in this 

research, have been used more widely than the others. 
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The data were divided into two separate samples, with one sample representing data for 

two operators, and the other sample representing data for the other two operators. Next, one 

of the samples was used to building the model, and the other sample was used for validation 

of the model. The best subset regression, as well as the stepwise regression analysis, showed 

the same subset of the regressor variables for explanation of the energy consumption 

variability. The parameters of the estimated model, as well as the validation model, are 

shown in Table 4.10. 

 
Table 4.10 Parameters for the regression and the validation model 

 

 

 

 

 

 

Mathematical formulation for the validation model is represented with Equation 4.2. 

             𝐘 = (𝟗𝟒𝟔.𝟖𝟓 + 𝟔𝟓.𝟐𝟒𝐅𝐓 − 𝟏𝟔.𝟖𝟑𝐂𝐓 + 𝟔.𝟒𝟑𝐕𝐁 − 𝟕.𝟖𝟔𝐖𝐇)𝟐                             (4.2) 

It is expected that differences in parameters for these two models exist. However, the 

following criteria were used for verification of the validation model: 

Parameters Validation Model Estimation Model 

β0 946.85 1007.35 

βVB 6.43 7.46 

βFT 65.25 56.22 

βCT -16.83 -17.68 

βWR -7.85 -8.81 

MSE 1857 1.816 

R2 87.82% 86.81% 

R2adj 87.61% 86.36% 
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 The overall relationship of the dependent variable and the regressors must be 

statistically significant for the estimation and the validation models. In this case, the 

best subset and the stepwise analysis yielded the same results for both models; 

 The value of R2 for both models can be different within the range of ± 5%.  As can 

be seen from Table 4.10, the difference between these two values is approximately 

1%. 

 

 

 

4.4 MADM model 

4.4.1 Obtaining the weights of the criteria in the MADM model with AHP 

The first two steps in building the AHP model were discussed in Chapter 3. As explained, 

the third step of the matrix is constructed of the normalized values for the weights that are 

given in the previous step. Therefore, the normalized comparison matrix for the given 

MADM model is shown in Table 4.11. 

After the summation of the row elements and obtaining of the normalized vector, the 

weights of the each criterion are given in Figure 4.13.  
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Table 4.11 Comparison matrix of the criteria in the model 

 

 

 

 

Criteria and weights in the Figure 4.13 are: 

 Criterion 1 – volume of the material in the bucket (yd3), with the weight of 58%; 

 Criterion 2 – fill time (sec) with the weight of 31%; and 

 Criterion 3 – cycle time (sec) with the weight of 11%. 

 

 

Figure 4.13 Weights of the criteria for the MADM model 
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Comparison Matrix CT (sec) FT (sec) VB (yd3) 

CT (sec) 0.11 0.10 0.12 

FT (sec) 0.33 0.30 0.29 

VB (yd3) 0.56 0.60 0.59 
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The criterion of volume of material in the bucket is the most important criterion in the 

model, followed by fill time and cycle time.  

To check the consistency of the AHP model, consistency index and consistency ration 

were calculated. In order to calculate consistency index, the largest eigenvalue (λmax) should 

be obtained. The calculation is performed as follows: 

�
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Calculation of CI by Equation 3.15 as defined in Chapter 3 gives the value of 0.002. 

Finally, calculation of the consistency ratio, with the latter value of CI and RI related to size 

of matrix with three elements (0.52), leads to the value of 0.0038. This value shows that the 

CR is less than 1% (0.38%). According to Saaty (1990), consistency is satisfactory if the CR 

is less than 10%. Therefore, consistency doesn’t need to be improved in this case. 

After obtaining the weights for the criteria, the final MADM model table was created, 

and it is shown in Table 4.12. The values of the criteria are quantitative values, obtained as 

the mean values from the measured data of each criterion for each operator. Also, the 

minimization and maximization of each criterion are indicated, and thus optimal values of 

each of them are shown.  
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It can be seen from Table 4.12 that Operator B had the best performance in fill time and 

cycle time while Operator D was the most favorable in relation to volume of material in the 

bucket. Operator A is dominated by all of the other operators. Further analysis is required in 

order to find the best operator, as well as the rank of each operator.  

 

Table 4.12 Initial data for MADM model 

 

 

 

 

 

MADM 
Criteria 

fill time (sec) cycle time (sec) vol. of the material in the bucket (yd3) 

Alternatives Min Min Max 

Operator A 10.84 36.27 38.35 

Operator B 10.02 34.71 39.30 

Operator C 10.31 36.17 38.71 

Operator D 10.67 34.82 41.36 

Optimal Values 10.02 34.71 41.36 

Criteria Weights 

(%) 
31 11 58 
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4.4.2 PROMETHEE II Analysis 

The adjustable decision table for the input data in the PROMETHEE II approach is 

shown in Table 4.13. 

 

Table 4.13 Input data for PROMETHEE II 
 

Action Max Min Min 

Criteria VB (yd3) FT (sec) CT (sec) 

Weights 0.58 0.31 0.11 

Type of preference 
function Usual Usual Usual 

Form of preference 
function 

   

Thresholds - - - 

Alternatives    

Operator A 38.35 10.84 36.27 

Operator B 39.30 10.02 34.71 

Operator C 38.71 10.31 36.17 

Operator D 41.36 10.67 34.82 
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The form of the preference function dictates the values for the comparison of criteria. If the 

criterion is dominated, the value is zero; if it dominates, a value of one is assigned. By 

multiplying those values by the criterion weight, the preference index is obtained for 

particular comparison and criterion. 

Analysis of the input data starts with pair-wise comparisons. Regarding the first criterion, 

the volume of material in the bucket (which calls for maximization), each operator was 

compared to each other. For the first criterion, comparing Operator A with Operator B, 

Operator A did not dominate; thus, a score of “0” was placed in the A/B cell. The 

comparisons of the Operator A with the other Operators are shown in Table 4.14. 

Table 4.14 Comparisons of Operator A with other operators 

 

 

 

 

Likewise, the value of volume of the material in the bucket is not preferable when compared 

to Operator C and Operator D, and therefore, the same score of “0” is in appropriate cells. 

Next, the values of fill times (which calls for minimization), are compared between Operator 

A and the rest of operators. It can be seen that Operator A has the least preferable value of 

fill time; therefore it is scored “0.” The same situation arises with cycle time. Finally, the 

sum of all the scores, sum of positive flow for Operator A, is zero. It can be seen, even in 

this phase, that Operator A is dominated in all criteria by other Operators. 

Comparisons Max VB Min FT Min CT 

Operator A – Operator B 0 0 0 

Operator A – Operator C 0 0 0 

Operator A – Operator D 0 0 0 
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Table 4.15 illustrates preference indices of Operator B compared with the other operators.  

Operator B dominates Operator A in all criteria. 

Table 4.15 Comparisons of Operator B with other operators 

 

 

 

 

Comparing Operator B with Operator C yields the same results as comparing Operating 

B with Operator A.  

However, in comparing Operator B with Operator D for volume of material in the bucket 

indicates, Operator D dominates Operator B, and therefore the score in the column B/D for 

that particular criterion is 0. In all other criteria when compared with Operator D, Operator 

B dominates. Finally, values of all scores for Operator B are summed by rows, resulting in 

values that are equal to 1; 1 and 0.42. 

Comparison of Operator C with all other operators are shown in Table 4.16. Comparison 

of Operator D with all others is illustrated in Table 4.17. The row-wise scores for Operator 

C are 1; 0; 0.31, while the row-wise scores for Operator D are 1; 0.58; 0.69. 

  

Comparisons Max VB Min FT Min CT 

Operator B – Operator A 0.58 0.31 0.11 

Operator B – Operator C 0.58 0.31 0.11 

Operator B – Operator D 0 0.31 0.11 
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Table 4.16 Comparisons of Operator C with other operators 

 

 

 

 

Table 4.17 Comparisons of Operator D with other operators 

 

 

 

 

If some other type of preference function is selected, the values for the comparison scores 

are calculated differently for each of them, and calculation can be found in any literature 

source related to PROMETHEE method. Since only the usual type of function was selected 

for this research, methods of solving other types of preference functions are not discussed in 

this research.   

The final paired matrix for operator comparison—which yields positive flows, negative 

flows, and overall flow of each alternative—is shown in Table 4.18. As discussed in Chapter 

3, the values of the final flow will give the overall ranking of operators.  

 

 

Comparisons Max VB Min FT Min CT 

Operator C – Operator A 0.58 0.31 0.11 

Operator C – Operator B 0 0 0 

Operator C – Operator D 0 0.31 0 

Comparisons Max VB Min FT Min CT 

Operator D– Operator A 0.58 0.31 0.11 

Operator D – Operator B 0.58 0 0 

Operator D – Operator C 0.58 0 0.11 
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Table 4.18 Paired matrix of alternative comparisons 

 

The overall ranking of operators is shown in Figure 4.14, which is the output of the 

PROMETHEE–GAIA software. It is represented by the overall flow values. It can be seen 

from Figure 4.14 that Operator B (overall flow 0.6133) and Operator D (overall flow 

0.5133) have close overall flow values, and thus similar performances. On the other hand, 

Operator A (overall flow -1) has the weakest performance, far below all other operators in 

the flow chart. This output of performance for the latter operator was strongly indicated by 

the statistical analysis of the data. Likewise, the best performance of Operator B was 

strongly indicated as well, besides the lower mean volume of the material in the bucket, 

where Operator D achieved better performance.  

In the future evaluation of operators, it is suggested that the user consult results of the 

partial ranking with the PROMETHEE I method, which gives comparisons on the positive 

and negative flows separately. This is because, even though the output of the PROMETHEE 

II method is not difficult to explain, it provides less information since the differences 

between positive and negative flows are no longer apparent. Nevertheless, from partial 

Operator A B C D Sum of positive flow Net flow 

A - 0 0 0 0 -1 

B 1 - 1 0.42 0.807 0.613 

C 1 0 - 0.31 0.437 -0.126 

D 1 0.58 0.69 - 0.757 0.513 

Sum of 

negative flow 

1 0.193 0.563 0.243   
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ranking, a decision maker can see which of the actions are different to compare, and 

concentrate on them. The output of the PROMETHEE I method is also available with the 

PROMETHE-GAIA software. Since in this case, the relationship between operators gave the 

same results in PROMETHEE I partial ranking, it wasn’t shown in this text. 

 

Figure 4.14 Final outranking of operators with flow values 

The final ranking of operators is shown in Table 4.19. The operator who demonstrated 

the best performance, as defined by maximum production and minimum energy 

consumption—through the analysis of measured volume of material in the bucket, fill time, 

and cycle time—was Operator B, followed in descending order by Operator D, Operator C, 

and Operator A. 
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Table 4.19 Final ranking of operators 

Rank Operator 

I B 

II D 

III C 

IV A 

 

The variation of operators in various parts of the cycle is evident. Operators who are 

better in performance could be combined in the same crews with ones who are weaker in 

performance. However, more data would provide more information about variation between 

operators.  

The parameter that is the most variable is payload of the material. Consequently, 

operators significantly differ in mean values of production in yd3/h. Table 20 shows an 

overview of mean production and energy consumption for shovel operators. The difference 

between the most productive operator (Operator D) and the least productive one (Operator 

A) on average is approximately 11% in productivity. In addition, the difference between the 

most energy efficient and least energy efficient operator (Operator B and Operator D) is 

approximately 12%.  
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Table 20: Overview of mean production and energy consumption of shovel operators 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Operator Mean production (yd3/h) Mean energy consumption (unit-less) 

A 3809.64                          1,589,607.74 

B 4103.03                          1,483,074.90 

C 3870.87                          1,473,502.03 

D 4293.33            1,689,355.27 
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Chapter 5 

Summary, Conclusions, and 

Recommendations for Future Research 

 

5.1 Summary 

Since operator practices influence the productivity and energy consumption of rope 

shovels, the main objective of this research was to develop a model that would help mining 

professionals evaluate operator performance.  

In order to develop a model that would provide operator evaluations, the MADM was 

applied. Set-up of the model requires definition of alternatives, criteria, preference of 

criteria, and weights (if necessary). Also, the MADM model - PROMETHEE II was selected 

as appropriate, considering it provides an overall ranking of the alternatives. 

The first step was to determine these MADM decision matrix fields: alternatives, criteria, 

and weights of criteria. Alternatives were defined as the different operators; different 

techniques were employed in defining criteria and weights. The model for evaluating 

operators was performed with the overall goal of minimizing energy consumption and 

maximizing production rate. The measured parameters taken into consideration were: fill 

time, cycle time, volume of material in the bucket, and number of working hours. 

In order to define which criteria are important and how important they are for the overall 

goal, mathematical formulation of production rate and energy consumption was required. 
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Mathematical formulation of production rate was already known, and the formula for 

calculating energy consumption was developed with multiple regression analysis. In this 

phase, the criteria to be used in the MADM model were determined. The values of the 

criteria are quantitative values, obtained as the mean values from the measured data of each 

criterion for each operator. 

After the models that are relevant for the overall goal were determined, multi-objective 

optimization was performed in order to prepare the data for further analysis. Multi-objective 

optimization was performed with the NSGA-II evolutionary algorithm, which is used as a 

standard approach for solving multi-objective optimization. The variables defined as genes 

in the software wizard were fill time, cycle time, volume of material in the bucket and 

number of working hours, with upper and lower bounds defined as their minimum and 

maximum data values. The only purpose of the optimization was to determine if the 

measured parameters in both models gravitated toward maximum or minimum values, with 

respect to minimization of energy consumption and maximization of production rate. Hence, 

in this phase, min/max preferences of the MADM criteria were determined.  

For setting up the suitable weights for the criteria in the MADM model, AHP was used. 

The values in the AHP matrix were selected by prior analysis of the data, and by looking at 

the importance of the particular variables in models.  

When all necessary parts of the MADM model were determined, the matrix of criteria, 

attributes, and weights was formed. Another requirement for using PROMETHEE II is to 

select the preference function for all criteria. In this research, type I preference function was 

used to compare pairs of alternatives, which gives the strict preference to the alternative that 
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has the greater value. All comparisons between alternatives were performed for all criteria in 

the model.  Evaluation of the alternatives by using the outranking relations was performed 

through their preference flows. The positive preference flow shows how a certain alternative 

is outranking all other alternatives while negative performance flow shows how a certain 

alternative is outranked by all other alternatives. Finally, the net flow ф(a) represents the 

difference between positive and negative flow, and is used for determination of the total 

ranking of the alternatives.  

 

5.2 Conclusions 

Operators and their principal role in performance of the shovel are not frequently 

considered. A model that analyzes shovel operator performance in different parts of the 

cycle, with respect to production rate and energy efficiency, was developed in this research. 

Using this model to gain insight about operator performance, mining professionals can 

develop methodologies for improving operator productivity. Likewise, they can use this 

information to develop training for operators who are weaker in performance. 

Statistical analysis provided valuable insight about the differences in operator 

performance in considering different parts of the cycle. The following conclusions can be 

made: 

 Operators slightly vary in mean values of cycle time. Standard deviations are high 

for each of them, and thus, operators vary in consistency from cycle to cycle.  

 Differences in mean fill time of operators and standard deviations are small, and 

therefore operators are consistent in their performance; 
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 Data for other parts of the cycle time were not available, and thus further 

inferences about which part of the cycle would be potentially problematic can’t be 

made; 

 Operators vary in mean values of payload. Standard deviations in payload 

between operators are somewhat large, and therefore, it can be concluded that 

operators vary in consistency in this area; 

 Operators vary in mean values of energy to load a bucket. Standard deviations for 

each of them are not large, and therefore they are more or less consistent in their 

performance; 

The main focus for developing this evaluation model was on finding the most important 

measured parameters on production rate and energy consumption of the shovel. Considering 

both of the models with the defined requirements, it can be concluded that: 

 The most important parameter for evaluating the performance of operators is 

volume of the material in the bucket. This parameter is positively correlated with 

both production rate and energy consumption; 

 The second most important parameter for given preferences is fill time. 

 

After analysis of the data, the following conclusions are made about the performance 

of operators: 

 Operator A and Operator C have weaker performance considering measured 

parameters. Operator A has the weakest performance and is the least consistent 

operator overall. This evaluation of performance was even obvious in the phase of 
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the statistical analysis of data, and it was confirmed with the PROMETHEE-II 

ranking.  

 Operator B and Operator D have the better performance considering measured 

parameters, and they are fairly similar in performance. Operator B has better 

performance in almost all analyzed parameters with the given preferences, except 

mean production rate. On the other hand, Operator D has the highest mean 

production rate, but also the highest mean energy consumption. This operator is 

the most consistent in performance out of all other operators. With just statistical 

analysis of the data, the clear separation in performance of these two operators 

could not be performed. PROMETHEE-II identified the operator who is the best 

in performance for the given preferences, which is Operator B. 

 

The advantages of using PROMETHEE II method can be summarized as follows: 

 Easy-to-understand, rational model; 

 Straightforward comparison of pairs of alternatives in the model;  

 Flexible, allows addition of other criteria for evaluation of operators – not only 

quantitatively in nature, but also qualitatively; 

 

The disadvantages of the PROMETHEE II method can be summarized as follows: 

 Subjectivity is involved when selecting criteria weights; 

 Subjectivity is involved in selecting a preference function, and if selected, 

function requires determination of thresholds; there is subjectivity involved in 

choice of them. 
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5.3 Recommendations for further research 

Evaluation of operators in this research was based only on certain parameters that were 

available for analysis. Collection of more parameters would enhance the accuracy of the 

evaluation and give better insight into the performance of the shovel. Also, with more data 

and parameters, mining professionals could use evaluation results to develop training for 

operators who are weaker in performance. 

The additional work of evaluating operator performance could involve evaluation based 

on changes in the material properties. Also, the extent of the variation between operators 

could be analyzed on the basis of day vs. night shift, varying weather conditions, etc. 

Additional experimentation could involve analyzing how different operators’ digging styles 

affect the performance of the shovel. Calculations related to the cost per ton of material 

would provide additional criteria that could be included in the MADM model. In addition, 

setting performance targets could lead to a more challenging environment for operators, and 

thus lift the level of motivation to perform better. 

Collecting data on day vs. night shift would allow additional analysis to determine the 

variation between different shifts, as well between operators in the particular shift. In that 

way, if the variation was significant, operators who are better in performance could be 

combined in the same shift with operators who are weaker in performance.  

PROMETHEE-II is a method that can be used in any evaluation, and it is powerful since 

it supports different types of data (qualitative and quantitative). However, the setup of the 

model in this research can be used for evaluation of operators just for this particular shovel, 

because of the specific preferences. If it can be concluded, with future experimentation and 
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research, that the same preferences for minimizing energy consumption and maximizing 

production rate can be applied, then this model could be used for other rope shovels, too.  
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