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e	 ABSTRACT

The performance of a propulsion system during a given mission is not

a fixed constant; it is a statistical variable. Statistical variation of

the performance results from the fact that it is a function of quantities

which exhibit varying degrees of uncertainty such as helium regulator out-

let pressures, propellant temperatures and spacecraft weights. If the

statistical variations of these variables are known, the variation in pro-

pulsion system performance can be determined. The report presents a pro-

cedure to develop dispersions for propulsion performance parameters. The

approach is intended to be general so that it can be applied to all primary

Apollo propulsion subsystems. By beginning with this general formulation,

it is hoped that particular problems in determining the variations of certain

independent propulsion parameters for individual subsystems (if they do not

immediately fit the presented approach) may be solved. The report also

presents a method of optimum propellant management. The discussions in

this report are directed toward determining the dispersions in the indepen-

dent variables. Although it will be stated that the independent variable

dispersions will be input to a Monte-Carlo technique to determine the

dependent variable dispersions, the results of the report are not restricted

to the Monte-Carlo method. They are also equally applicable to other

methods, such as "Root Sum Square", for determining the dependent variable

dispersions.
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SECTION I. PROPULSION SYSTEMS DTSPRRSION ANALYSIS

V

Introduction. Wheu constructing Apollo propulsion preflight predictions, it

is desirable to report propulsion system performance dispersions as well as

nominal performance predictions. This is important so that the probability

associated with the attainment of a particular mission objective can be

determined. As an example, if a particular vehicle velocity requirement is

established based on predicted propulsion system performance and payload

requirements, the variability in propulsion performance may not indicate a

sufficiently high probability that the predicted performance will be attained

nor that the mission objectives can be achieved. The usual procedure is to

allocate an additional amount of propellant (reserves) based on the probability

that vehicle performance including that of the propulsion system will be less

than predicted. If a vehicle performs as predicted, the reserves will not

be consumed, and the additional propellant weight represents a decrease in

payload capability. By decreasing the variability of performance, payload

capability may be increased. A portion of a systems variability is inherent

to the hardware of the system and cannot be improved without design changes;

however, a substantial amount of the variability represents a lack of confi-

dence in ones capability to predict a system's performance. Thus improved

analysis techniques (both system modeling and dispersion analyses) may often

afford greater payload potential by decreasing propellant resez've require-

ments. Another consideration of great importance is the possibility of de-

fining variabilities that are too small; thus, insufficient propellant reserves

may be allocated to meet the mission objectives with the actual variations

of propulsion performance. The above reasons underline the necessity of

defining systems variabilities as accurately as possible. Since the "Monte-

Carlo" technique incorporated in the Propulsion Trajectory knalysi q Program

(PATS) will be used in determ:j,aing the variability of the propulsion parameters

such as engine thrust and specific impulse (i.e., the independent parameters),

obtaining reliable results will depend on adequate descriptions of the var-

iability in the propulsion system independent parameters, such as ullage

pressures, temperatures, and system hydraulic resistances. Various approaches

have been used in the industry, and in an effort to standardize the method of

obtaining the variability of the independent parameters for Apollo propulsion

systems, the approach presented in this report is recommended.



The principle advantages of using the Monte-Carlo technique are: 1) a

large percentage of the burden of tedious mathematics is "lifted from the

shoulders" of the user, and 2) once the types of (frequency) distributions of
the input parameters are defined, the user need not be concerned with the
mechanics of how these distributions must be combined to insure reliable

results. At present, PATS is capable of handling two types of distri-

{	 butions (normal and uniform). However, if it is-determined that other
distributions need to be considered, the program could be modified. It

should be noted that the distribution of all dependent parameters should

be checked to determine their individual distributions.

Discussion. For each independent parameter, X, input into PATS (Reference 8)

the parameters mean, X, and standard deviation, a, must be defined. Each

parameter is thus defined by the following relationship:

XXid	 (1)

where: X - The random value of the independent parameter to be
used in the simulation.

X - The mean value of the parameter, X.

a - The standard deviation of X about the mean X.

Although X and a are thi only parameters required for use in PATS, equa-

tion (1) is actually incomplete without a "confidence statement." A confi-

dence statement reflects the degree of certainty one has that the values of

X and a are correct. The concept of confidence will be more clearly defined

below.

The importance of the standard deviation, a, is that it is an indicator

of the! variability of a given parameter, X, about its mean value, X. If the

frequency distribution of the parameter is known, then the standard deviation

can be used to approximate the number of times a given value of X will be
observed if sampled many times. If the parameter under consideration is

"normally" distributed, then approximately 68.27% of the total observations

(samples) will have a value within the band determined by X + a, 95.45% will

have a value between X ± 2a, and 99.73% will be bounded by X ± 37. The normal

(Gaussian) distribution refers to a frequency distribution of X which is

characterized by a symmetrical bell-shaped curve. Most propulsion input

parameters that will be considered can, in general, be assumed to be normally

2
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distributed. The d;i.stributioa of each parameter, however, should be checked

to verity this assumption. If distributions are found to be other than normal

or uniform, then an appropriate modification to PATS is indicated. Certain

output parameters such as a vehicle: velocity gain and propellant outage (i. e.,

the useable amount of one propellant remaining in the propulsion system after

the other is totally consumed) are known to be non-normally distributed.

Thus, the usual concept of a standard deviation (e.g., X i. la contains 68.3%)

is not applicable, and the value for that function must be selected from the

probability distribution function generated by the program.

It is important to realize the distinction between the sample standard

deviation, S, calculated from a sample of measurements drawn from a popula-

tion and the true standard deviation, a t of the population. The sample

standard deviation, S, can be calculated from a sample of measurements (X^)

by the following equation:

1

Xj _X2 2
is l

S	 N _ I	 (2a)

where

tj
A 	 N-- ,	 (2b)

with the sample size represented by N. if N were equal to that of the total

population, then S in equation (2a) would be numerically equal to a. However,

if N is :Less than that of the population, then S is only the "best estimate'

of o. In practice, one cannot sample all possible values of X. This is

particularly true of parameters derived from rocke ► engine tests data where
the sample size would be small. Equation (l) must then be rewritten as

follows:

	

X = X i S
	

(3)

Fortunately, statistical theory provides mathematical procedures to adjust

the value of S to insure the inclusion of the true standard deviation, a,

(at a certain level of confidence) based on the sample size, N. These

procedures have been incorporated in the following general equation and,

7
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#	 tssus, define the best estimate of the standard deviation:

tS
Z

s2 Wrr) - c INST 
+ (SMODEL^ ` ("HE)" i	 (4)

where: Srr = The true run-to-run sample standard deviation (in-
strumentation error removed) of the engine parameter.

k = The tolerance factor used to increase the uncertainty
limits to achieve the desired probability and confi-
dence.

t  = The "Student t" factor used to compensate for uncer-
tainties in the true mean, based on the sample size
and desired population.

S INST w The 
sample standard deviation of the random instru-

mentation error associated with the data sample.

N . The number of samples or data points used to calculate
the mean value, X.

SMDDHb . The standard deviation of the propulsion model error
in terms of equations or numerical. technique.

SHE . The sample standard deviation of the parameter's
true engine-to--engine dispersion.

In equation (4), the first tex^u accounts for the true run-to-run variability
Z

of the engine parameter; the second term accounts for the parameter uncertainty

due to the instrumentation used to measure the parameter; the third term is

to account for uncertainties in the characterizations used to model the parameter

while the fourth term accounts for parameter variability from engine -to-engine.

The complete equation (4) describes the total uncertainty of an engine parameter

given the observed performance from ground tests (sigma "log-to-launch"). If

the SHE term is zero, the uncertainty applies to a specific engine rather

than the engine class. Whether all of the terms in equation (4) will be

applicable to a given parameter will depend on the particular propulsion

s;y;,t cm (i.e., SPS, DPS, or APS) being analyzed and the type of study (i.e.,

for a particular engine system or a general case study).

To illustrate the development of mean and dispersion values, assume

that a particular engine has had n acceptance test runs and that it is one

of a family of M engines.

When a rocket engine is fired a number of times, the engine performance

from test-to-test will contain some variation even though the test conditicns

may appear to be identical each time. This dispersion, commonly known as

the engine "run-to-run" variation, contains the true run-to-run variability

4
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of the engine plus instrumentation non-repeatability. if more than one

engine of a family is being considered, there will be an additional dis-

persion in performance due to small hardware differences. This dispersion

is known as "engine-to-engine" variation.

The Sample Run-to-Run Mean, X. During each engine test, the values of

certain parameters (e.g., interface pressure, propellant flow rate) are

measured many times. The parameter values are averaged over several two

to three second spans (time slices) selected from the test. The effect of

this averaging is to generally eliminate the effects of noise in the measured

values. Assume that the total, number of time slices for a given test is

represented by m. Let the average values for each time slice be represented

by Xj , where J=1 to m. Then the mean value of the parameter for the particular

engine, k, under consideration, is represented by:

`n ` ^`X

	

- 
i	 m	

i	

(5)n

The averaged parameter, X j , could represent a quantity directly measured

during the test, such as propellant temperature, or it could represent a

calculated parameter such as hydraulic line resistance.

If a general engine study is being conducted, then the average value

of the parameter is defined as:

M

_ ;;Xk
X	

M

The Sample True Run-To-Run Standard Deviation, Srr. In order to obtain

a representative value for Srr, a large number of samples or test runs is

desirable. However, since each engine experiences only a few runs before a

flight, the following approach was adopted. It is assumed that although

each particular engine of a family may display different mean values for

the particular parameter under consideration, the run--to-run variability of

each engine is the same for all engines. The apparent run-to-run dispersion,

developed from the measured test parameters, devtatiis from the true run-to-

run dispersion which we actually seek since the test measurements inherently

_.	 5

WS

	

`7,j q 	 9	 ^	 o-^°	 4	 i 7

R, t	 a	 e
..	 „.	 ., ...., ;^. ^., h ..	 ....	 ^j ►. .rct	 _	 ^`	 _	 t'E _. y_m.ie.. 	 .ef. a'^^ ^^e,!",ak'}^,L,. `	 a,	 iE.<o-_.. .u.G`, u....s.

(5a)



contain instrumentation error. The sample dispersion of the true run-to-run

variability may thus be represented by the following relationship:

(kSrr) 2	(kI Sr
*
 r) 2 - (k2SINST)2

where: Srr = The apparent run-to-run dispersion

SINST ' The random instrumentation uncertainty

k  = Tolerance factor, insuring compatible confidence and
population.

Although it is expected that the apparent run-to-run dispersion, k 1Srr, will

be greater than the random instrumentation error, k2SINST in actual practice

the reverse situation may occur. If such a situation arises, it is common

to define: Srr = kSrr 1= 0 (i.e., the engine performance is extremely repeat-

able).

For each engine of the family, a mean for a parameter may be determined

from the n engine tests as shown above. The variability of the parameter

about this mean can be determined as follows:

n txA `m

DX =	
m	 _ _L..

p	 n	 m p

p= 1...n

or

AXp = Xp - - m—

	

	 (6)

P

then

1A XP/ 2
(kSrr) 2 = k2 pN _ 1	 - SINST'	 (7)

N = En:IM)

where N represents the total number of engine runs performed on all, engines

of the family. The first term to the right of the equal sign is the square

of the apparent run-to-run dispersion, k1Srr.

6
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The Tolerance Factor, k. It is desirable to predict the behavior of a

parameter in such a way that at least a given percentage of future samples

can be expected to lie within a computed interval with a specified degree

of certainty. The values that specify the computed interval are called toler-

ance limits and can be generally represented by X * ks. The tolerance factor

k accounts for the sampling errors in X and s as well as for the percent pop-

ulation in the interval, P, and the confidence desired. The degree of cer-

tainty (confidence) is given by the confidence coefficient, y. Suppose

that X i ks is selected to include 68.27% (one standard deviation) of the

population at a confidence level (y) of 95%. Then, if many sets of random

samples are taken from the population, the interval X ± ks will contain at

least 68.27% of the population in 95% of the sets chosen. The factor k may

be obtained by the following:

k = ru	 (8)

where r and u are presented in Tables 1 and 2 respectively. The statistical

background and justification for the k factor may be found in References 1

and 2. The derivation of the factors r and u are found in Reference 1.

Tables 1 and 2 were reproduced from this reference. The factor r is a

function of the sample size, N, used to determine X. k, and the proportion of

the population, P, desired. The factor-u is a function of degrees of freedom,

f, associated with Srr and the desired degree of confidence, y. The number

of degrees of freedom is defined as the number of independent observations

in the sample (i.e., sample size) minus the number of statistical quantities

(i.e., X, standard deviation, etc.) which must be estimated from sample

observations. Since only the sample standard deviation is being computed,

f becomes the sample size used to calculate Srr minus one. The k factor as

used above is only applicable for normal or nearly normal distributions.

However, it has already been noted that all input parameters (to which the

tolerance factor will be applied) are assumed to be normal. It is thus

expected that this constraint will have little effect on the approach.

Instrumentation Error, SINST. In general, instrumentation error may

be considered as random in nature. The characteristic of random error is 	 k

that if enough run-to-run data samples from a measurement are taken, then

Awl	 the effects of random error on the mean of all samples will approach zero

(i.e., random error has a zero mean). The existence of random error results

Ir
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in an uncertainty in the mean value (X) of a measured parameter that was
V
,. derived from a small number of data samples. 	 In equation (4) this uncer-

tainty is taken into account by dividing the random instrumentation error

standard deviation by the square root of the number of observations. 	 Thus,

as the number of observations or samples increases, the effect of random

instrumentation uncertainty on the knowledge of the true mean decreases.

If the standard deviation of the random instrumentation error, SINST' 
is

' a sample value rather than a population (or true) standard deviation, then

it is necessary to include the "Student t" factor, t c , to estimate, with

the desired confidence, the interval which contains the true parameter mean.

The statistical background for the "Student t" factor may be found in

References 2 to 4	 Table 3 from Reference 3 presents values of t 	 as a

function of degrees of freedom and confidence coefficients where the sub-

script c is given by 2 + 2, where P is the fractional population desired.

The degrees of freedom are determined by the number of samples (used to

determine the .random instrumentation standard deviation term) minus one.

If a good estimate of the standard deviation of the random instrumentation

error is available, then t c will approach a value which simply reflects the

desired population in terms of the number of standard deviations.

The tolerance factor, k, when used with the term for instrumentation

error is determined in the same manner as is the tolerance factor for the

apparent run-to-run dispersion, Srr. 	 The components of k (r and u) are	 i

related to the number of samples and degrees of freedom used in obtaining

SINST while the population desired and confidence level are defined by

the user.	 Under normal circumstances, it is anticipated that the standard

deviation of the instrumentation error, as supplied by the engine manufac-

turer, will be of a sufficient confidence level and population so that no

adjustment using the tolerance factor will be necessary.

Modeling Error, 
SMODEL'	

When the engine is operating at conditions

removed from the nominal or outside of the acceptance test conditions, it

may be desirable to assign a value to 
SMODEV	

In general, the value of

S
MODEL 

may be arbitrarily assigned by the user.	 This is necessary since

one is actually extrapolating along the model equation into a region that

may not have been substantiated by test data.	 To illustrate a possible

for	 is developederror source, suppose that an equation 	 some given parameter

8
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from many test firings. Suppose that all tests were conducted with propellant

temperatures of approximately 70 °F. In using regression techniques, the

equation representing this parameter would not contain propellant temperature

as a variable. If it is known from other engines of a similar type that the

parameter is effected by propellant temperature, then one would be justified

in establishing an appropriate value for SMODEL• The above discussion of

modeling error is related only to the effects ofindependent parameters upon

dependent parameters. The need may also arise to apply an uncertainty to the

dependent (output) parameters if errors due to computer convergence criterion'

or numerical integration techniques are to be accounted for.

Engine-to-Engine Sample Standard Deviation, S EE . When a particular

engine is to be used in a study, then SEE = 0 in equation (4). However, if

it is necessary to make a general propulsion study (i.e., what is the uncer-

tainty associated with the performance if any engine is selected at random),

then a term such as S EE is needed. In this case:

_
k2	 (xi - x12

2 2 =	 i \	 - 	 S	
2

k S
EE	 N - 1	 (k2  TNST)	 (9)

where: Xi = The parameter mean for each engine.

X = The average of the parameter means for all engines.

N = The number of engines considered.

SINST The random instrumentation error.

ki = The tolerance factor as described above.

Equation (4) will then estimate the dispersion, S. required to insure that

X ± S will contain 68.27% of the population of all engines at some prescribed

level of confidence. This equation should be applied to each parameter needed

as input for a PATS simulation.

Example Problem. The total run-to-run and engine-to-engine variability

of the oxidizer system resistance for the DPS engine will be determined

(i.e., one standard deviation at 95% confidence will be calculated). This

will be the resistance that corresponds to the pressure drop as measured

'	 from engine interface to injector face while the engine is operating at

the fixed throttle position. The resistance is defined by:

R = AP • p • 144	 (10)
.2
w

9



AX1 	 3915.05 - 3913.2 = 1.85

AX 	 = 3915.05 - 3916.9 = -1.85

4X3 = 3800.6 - 3802.2 = -1.6

AX 	 = 3800.6 - 3799.0 - 1.6

AX 	 = 3922.8 - 3918.6 = 4.2

AX 	 = 3922.8 - 3926.9 = -4.1

Before; equation (7) can be used to determine Srr the instrumentation

error (S INST) must be defined. Since resistance is not measured directly,

there is no direct instrumentation error.	 However, there is an uncertainty

in the observed variability of R due to the instrumentation error in measuring

AP, p, and w.	 This variability is defined by the following equation

(Reference: 5)

S 2	 = (8R	
S	

2
)

+ ( 8R . S. 2 +	 S2	 11
(LR

(	 )INST	 \ 8p	 p \ aw	 w/ 	 8AP	 AP 1

where Sp , SW , and SAP are standard deviations of the variabilities of the sub-

scripted parameters and are obtained from engine manufacturer instrumentation

error analysis.	 From Reference 6, assuming 95% confidence for this example:

S	 = 0.00067 p
P

10

a

This particular parameter is not measured directly, but is calculated from

the measured pressure drop (AP), oxidizer density (p) and oxidizer flowrate

(w); thus, its accuracy is a function of the variability of the measured

parameters. Data from DPS engines 1026, 1037, and 1030, each with two

acceptance tests, each test with several time slices, were analyzed. These

calculated resistances are tabulated in Table 4 and are referred to as

Cases A, B, and C, respectively. As previously t mentioned, it is assumed that

run-to-run variations for each engine are the same; thus the data from several

engines may c^lntribute to the run-to-run statistic. 'Mean values for each

engine are:

XA = 3913.2 2 3976.9 = 3915.05

3802.2 + 3799.0 = 3800.6

	

XB	 2

X = 3918.6 + 3926.9 = 3922.8

	

C	 2

Using equation (6) one obtains

' 	 t	 •.	 a^	 _	 _ '^e 1!	 ^t'.^,f63Yi.. ^ f!"t\..aY. .	 r t ^'t .mil tl3.^S^-^d4.k:	 ^	 ^	 - .MI•'^I^.s'.iY^s



(14)

r

S. = 0.04033 w
it	 S = 0.00173 PP

From equation (10), the following quantities may be determined:

A2(144) w 
pw

.DA p2 (144) _ ©P
w

DR = -2pAP (144) = 
-2R

8w	 W3	 w

Then equation (11) becomes:

S 
2	

S. 2	
SA 2

STNST	
R A + -

2R w + RAP )

From Reference 6, the following equation may be written:

S 2	 GAPS	 2 + D
-	

2

	

AP = (9pl pl	 DP2 p2

or

2	 Sp 2 +
	

Sp 2
(SAP)	 DAP- Z	 DAP 2

	

AP	 DPI AP	 DP2 AP

where

AP=Pl-P2

where: P1 = oxidizer interface pressure, psia

P2 = chamber pressure, psia.

(12)

(13)

W.

Then,

DAP 
1

DP 

and

S	
2	

Sp 2
	 2

P12
PAP	

+(SP)

AP

11

DAP -1
DP 

(15)

rt



It was given above that:

Sp 
1 

= .00173 P1

and

Sp 2 = .00173 P2

then,

	

SAF 
2	 .00173P1 

2	 .00173P2 2

	

AP	 AP	
+ AP

	

2	 ^ 	 2

SAP(.00173)2 /pl^

2
 + P1 - AP

	AP	 AP	 AP

	

2	 2

	

SAP	 (.00173)2 2 Pl - 2 p̂" + 1	AP	 AP

	

AP
P

At the FTP throttle position, P
1 

z 220and P2
 
z 110, AP--110 and AP = 2.

Therefore,-

t	 2

	

SAP 	 = (.00173)2(5)AP

and substituting in equation (12)

S INST ^ R
2 (.00067) 2 + 4R2 ( . 00083) 2 + 5R2(:00173)2

SINST	
x18.11 • 10-6)R2

SINST = 4.26 • 10-3R

For an average resistance R of 3880,

' 2
SINST = 16.51 Se5

ft

The apparent run-to-run dispersion has been defined as:

N 	 2

(AXP/

(Srr) 2
	

pN - 1i
12

t
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2

For this example, then,

4
(Sxr)2 : (1,85)2 +g_1.85)2_+ (1 06) 2 

+ - (-1.6) 2 + 4.2 2 + -4.2
6-1

2
= 9.45 sec .

ft 
It is now necessary to determine the tolerance factor, lc. For

p	 N - 2 'number of points used to establish mean value, 7k)

f - 5 (degrees of freedom associated with Srr)

Y - .95 (confidence levee,)

P - 68.27% (proportion of population considered)

from Tables 1 and 2, the values of u and r of 2.0893 and 1.2778 respectively

are obtained. Then,

k = (2.0893)(1.2778) = 2.6697

Equation (7) may now be applied:

(kSrr) 2 = (2.6697) 2 (9.45) - ( 16 .51)2	 67.4 - 272.5

As indicated as being possible, the variability due to random instrumentatio.'a

uncertainties is greater than the apparent run-to-run variability. Inherent,
however, in each value of R is the Inability to determine the resistance more

accurately than any one of the independent parameters (P, p, or w) can be

determined. Thus, we must set the true run-to-run variability to zero.

The final quantity needed is 
SMODEL 

which should be given by those

responsible for the engine model. Assume that

SMODEL ` •097%

Equation (4) may now be used to determine the value of the standard

deviation to be used in conjunction with a specific engine's Monte-Carlo
analysis. For this case, Srr and S EE are equal to zero.

For

N = 2 (number of points used to determine mean, Xk)
P = 68.27% (proportion of population considered)

Assuming that 
SINST

is a good estimate of the true standard deviation,

the "Student
'

t" factor (t
Cl.
) is equal to a value of 1.0.

13
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.48)2 + (3800.6 - 3879.48) 2 +
3 - 1

1
2

- 3879.48) 2 2

0
example.

Using equation (4), one then obtains

. 	 2 2 1	 2S = 0.0 + 	 vr
	

+ ( 00097 3880) 2 . 12.27 ^5
ft

If a Monte-Carlo analysis is to be performed for a particular engine,

engine 1026, as an example, the mean value of resistance (XA) and the

associated standard deviation (S) to be used are 3915.05 and 12.27, respectively

If a study is to be completed for the class of three engines, the mean value

of resistance is

_ X
A + X3*+ 

XC	 3915.05 + 3800.6 + 3922.8 „ 
3879.4833

N	 3

The parameter kSEE must then be calculated for use in equation (9). Vor

Y - .95 (confidence level)

n . 3 (sample size)
P - 68.27% (proportion of population considered

f = n - 1 = 3 - 1 = 2 (degrees of freedom)

Tables l and 2 yield values of r and u of 1.3412 and 4.4154 respectively;

thus, by equation (8) one gets

k = 1.3412 • 4.4154 - 5.922

As with run-to-run dispersions, the true engine-to-engine dispersion

must be estimated from the observed engine-to-engine dispersion and random

instrumentation error. Thus, using dquation (9)s

(kSEE) 
2 

=
[5.922 (3915.05 - 38

- (16.51)2

= [(5.92)(68.42)] 2 - (16.51)2

(404. 71,) 2

The magnitude of kSEE reflects the very small sample size used in this

14
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Substituting into equation (4) the yields:

1
S	 0.2.27) * (404.71) 2 12 a 404.90

j
Thus for a class study, the meann value of resistance (X) and the

standard deviation (S) are 3879.58 and 404.90 respectively.

r
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SECTION II. OPTIMUM PROP ELLANT MANAGEMENT--BIASING AND RESERVES

Introduction. Section I was concerned with the probable variability of

propulsion performance, Section II will define the means of minimizing

the impact of such variability on the vehicle velocity (AV) capability.

Discussion. 	 ideal velocity equation (1) approximates the relationship

between the propulsion system's performaace and the attainable velocity of

the Apollo vehicles to an accuracy sufficient to illustrate the value of

optimum propellant biasing and flight performance reserves;

V  0 1sp9 cIn(MR) - gtb + Vi
	

(1)

where

V  = maximum attainable cutoff velocity

Vi w velocity at ignition

I
sp 

w average specific impulse over the duty cycle

Initial Vehicle Mass Mi
MR . vehicle mass ratio	 Final Vehicle Mass 	

H 

gc = weight to mass conversion factor

g w average gravitational attraction during the duty cycle

t  - engine burn time during the duty cycle

Temporarily ignoring the acceleration term (gt b ) in equation (1), rearranging

and substituting, one gets

M.
AV = V - V	 Z g In

f	 sp a Mf	 (2)

Since there is some lack of confidence associated with predicted performance,

it becomes necessary to carry reserve propellants in orders guarantee the

attainment of a particular AV. Of course, the carrying of such reserves

represents a vehicle-performance loss since they are traded off with payload.

Since the reserves are proportional to the variability of predicted propulsion

performance, it becomes obvious that appreciable payload gains may be made by

Ireducing systems variabilities and improving confidence in flight prediction

capabilities. Confidence (tolerance bands) in predicted values can be improved
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only by improved analysis, techniques, testing, and instrumentation; however,

the impact of the system variability may be reduced by optimum propellant

biasing and reserves,

Ideally, the vehicle cutoff velocity (V f ) would be attained at the same

time both usable propellants are simulatneously consumed. Since most vehicles

and environmental influences cannot be predicted with 100% confidence, the

probability of attaining that terminal velocity (with the nominal propellant

loading) will be considerably less than 1. However, from the proper statistical

analyses of all performance affecting influences, the probability of occurrence

of potential terminal velocities can be determined; that is the cutoff velocity

will be in the band Vf - av
f
 to V

f
 + ^v

f
 with Vf usually having the highest

probability of occurrence. The upper and lower bands were established with

different probability terms (C and 4) since the distribution is riot usually

Gaussian. The better than predicted performance is of trivial importance for

the Apollo spacecrafts since cutoff is initiated at V  by the guidance system

and not by propellant depletion. Since the lower velocity value is passible,

it is necessary to carry reserve propellants to guarantee the attainment of

Vf . Typical influences on terminal velocity are uncertainties associated

with the following items:

1. Final mass (due to propellant outage)

2. Average specific impulse

3. Thrust

4. Guidance system

5. Trajectory

6. Stage weight (structure, miscellaneous items, payload)

7. Initial propellant weight and MR

The individual variabilities of terminal velocity due to items 2 through 7 are

usually nearly normally distributed. However, because mixture ratio (by weight)

is other than unity, normally distributed variations in it result in non-normal

distributions in propellant outage. Furthermore, any propellant outage results in

a velocity loss as compared to the no outage case. The outage affect is by far the

predominate influence on the non-normal distribution of V f , although the log term

of equation (2) shows that the effect of any weight term is non-nonmal. Likewise,

one would not expect thrust variations, because of the coupled gravity affect, to

4	 yield normal variations on Vf.
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Uncorrelative Independent Parameters. For optimal propellant management

f	 calculations, the typical procedure is to assume that the lasted influences act
independently of one another; then their equivalent velocity variations are

statistically combined to obtain 6v  and 4v f . Since outage is a very strong
influence on V  its minimization can appreciably increase the final velocity at
the desired probability and confidence. Before developing the optimum fuel bias
equation to minintize outage, the following definitions are made:

p = average vehicle mixture ratio over the duty cycle

au - one standard deviation in mixture ratio variability (includes)
propulsion system, propellant loading, and unusable propellant
variability)

k = tolerance factor for desired probability and confidence

WC = propellant nominally consumed during the duty cycle

WOT = propellant outage; that value of usable propellant that would be
consumed if an apportioned amount of the other propellant were
available for combustion.

o M subscript oxidizer

f = subscript fuel

p = subscript sum of oxidizer and fuel

If the nominal propellant Loads are such that simultaneous depletion takes

place at the same time 
V  

is attained, the maximum oxidizer and fuel outage that

will exist for a '"aussian variability in u and an open loop propellant utilization

system is determined by equations (3) and (4) (Reference 9).

ka WC
WOT	 u

	

o = (u+ l)	
(3)

ka WCUWOT f	
a= (u + k u ) (u + 1)	 (4)

If outage is plotted versus mixturc, ratio variability, it is found to consist

of two legs that are approximately linear but which have different slopes, as

illustrated in Figure l-,a by the 4olid line. Since the system mixture ratio is

greater than one, negative variations in p cause maximum (oxidizer) outages.

Such variations would result in an outage frequency distribution similar to the
solid line of Figure 1-b. From Figures 1-a and 1-b, it is apparent that outage

is not normally distributed even if U is	 If ttie fuel bias (WB) is defined as
that amount of fuel that causes the maximum oxidizer and fuel outage to be equal,

x	one easily obtains equations (5) and (6) for oxidizer and fuel outage respectively,

and equation (7) for the optimum fuel bias.
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ka WC

WO^To W (Û r = µ c - kap WB	 {S )

ka WC
WOT	

U

ka WC U l + ka

WB

	

	 (7)
U c + 1- ka p U+ kap U+ 1

where 
Uc 

is the mixture ratio at cutoff.	 '

The dotted line of Figure 1-a illustrates the typical variation of outage

W.th fuel bias included) for anticipated variations in U while the dotted line

of Figure 1-b typifies the resulting change for the propellant outage frequency

distribution. Although the fuel bias causes a o f decrease for the nominal case

and increases the probability of fuel outage, the total outage probability will be

minimized; particularly the occurrence of extreme values of outage that affect AV

the greatest. By minimizing propellant outage, the bias appreciably reduces the

propellant reserve requirements. In fact, it is easily shown that at the desired

probability and confidence of accomplishing a mission,

Baised Propellant Reserve + Bias c Unbiased Propellant Reserve;

thus, propellant reserve requirements can be appreciably reduced, with the

significance of the reduction proportional to the average vehicle mixture

ratio and total propellant load.

Correlative Independent Parameters. In the preceding section the parameters

that affect vehicle maximum velocity gain variability were considered to act indepen-

dently of one another, when in fact, certain of those parameters may be highly

correlated. Thus, the method of combining - their influences (root sum square,

for example) may result in either pessimistic or optimistic answers, depending

on the actual correlation. As an example, the correlation of mixture ratio•(U),

specific impulse (Isp ), and outage (WOT) will be considered. As noted in the

preceding section, anticipated velocity v,eriations due to outage are propor-

tional to the uncertainty associated with predicted mixture ratio; :likewise,

there are velocity uncertainties due to the uncertainty associated with pre-

dieted specific impulse. Portions of these respective uncertainties are truly

independent of one another: that due to instrumentation error, run-to-run
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A

variability, etc. However, portions of the total uncertainties may be highly

correlated, e.g. I sp which is strongly influenced by p. Possible variations

l y_	 in mixture ratio due to the uncertainties in propellant temperatures, pressures,

etc., result in corresponding variations in specific impulse. The effects of these
variations are fixed and predictable. Figure 2 (a and b) are plots of correlative

outage and specific impulse as functions of mixture ratio, for a hypothetical

engine. Figure 2c represents the.corresponding maximum velocity variations due

to both influences, while the solid line of Figure 2d shows the resultant maximum

velocity variations. This composite maximum velocity distribution may be considered

independently of all other velocity distributions (if there are no other correlative

parameters) and combined (RSS) with them, and with the distributions due to the

random variations in mixture ratio and specific impulse. For the engine considered,

ignoring the correlation of p and 
xsp 

would result in a propellant reserve greater

than actually required; however, if the slope of the 1,,;-p relationship were

positive, the reserve would be inadequate. Figrre 2 also shows that the total

variability of terminal velocity may be minimized by carrying an oxidizer bias

which, by reducing the possible fuel outage, would result in the distribution

illustrated in Figure 2d by the dotted line. Thus, Lhe reserve requirement can be

further reduced. Ideally, both the independent and correlative variations would

be utilized to determine the optimum combination of bias and reserves. Prime

parameters that are usually partially correlative are mixture ratio, specific

impulse, thrust, the guidance system effects, and the trajectory. Since optimum

biasing and reserve determination for correlative variables do not lend themselves

to simple closed form solutions, iterative techniques are usually employed in

conjunction with complete system models.

i,
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TABLE 1*

Values of "r" for Tolerance Factors with Population Fraction, P, and Sample Size, N.

N	 P	 .50 .75 .90	 .95	 .99 .999
1	 1.0505 1.609 2.2844	 2.6463	 3.3266
2	 0.8557 1.4333 2.0078	 2.3624	 3.0368

4.0303
3.7 83

3	 0.7929 1.3412 1.8979	 2.2457	 2.9128 3.6708
4	 0.7622 1.2940 1-.8388	 2.1815	 2.8422 3.5965
5	 0.7442 1.2654 1.8019	 2.1408	 2.7063 3.5472
6	 0.7322 1.2463 1.7768	 2.1127	 2.7640 3.5119
7	 0.7237 1.2326 1.7587	 2.0922	 2.7399 3.4853
8	 0.7175 1.2224 1.7448	 2.0765	 2.7211 2.4644
9	 0.7127 1.2144 1.7340	 2.0641	 2.7066 3.4476

10	 0.7088 1.2080 1.7253	 2.0541	 2.6945 3.4338

11	 0.7056 1.2027 1.7182	 2.0459	 2.6845 3.4223
12	 0.7030 1.1984 1.7122	 2.0390	 2.6760 3.4125
13	 0.7008 1.1947 1.7071	 2.0331	 2.6688 3.4040
14	 0.6989 1.1915 1.7f27	 2.0280	 2.6625 3.3967
15	 0.6973 1.1887 1.6990	 2.0236	 2.6571 3.3902

16	 0.6958 1.1863 1.6956	 2.0197	 2.6523 3.3845
17	 0.6945 1.1842 1.6926	 2.0163	 2.6480 3.3794
18	 0.6934 1.1823 1.6901	 2.0132	 2.6441 3.3748

r	
19	 0.6924 1.1807 1.6877	 2.0105	 2.6407 3.3707
20	 0.6915 1.1792 1.6855	 2.0080	 2.6376 3.3670

21	 0.6907 1.1778 1.6837	 2.0058	 2.6348 3.3636
22	 0.6900 1.1765 1.6819	 2.0037	 2.6322 3.3605
23	 0.6893 1.1754 1.6803	 2.0018	 2.6298 3.3576
24	 0.6887 1.1743 1.6783	 2.0001	 2.6276 3.3550 1
25	 0.6881 1.1734 1.6775	 1.9985	 3.6256 3.3526

26	 0.6875 1.1725 1.6762	 1.9971	 2.6238 3.3503
27	 0.6870 1.1717 1.6750	 1.9957	 2.6221 3.3482
28	 0.6866 1.1709 1.6740	 1.9945	 2.6205 3.3462
29	 0.6862 1.1702 1.6730	 1.9933	 2.6190 3.3444
30	 0.6858 1.1695 1.6721	 1.9922	 2.6176 3.3427

40	 0.6830 1.1647 1.6653	 1.9842	 2.6074 3.3301
50	 0.6813 1.1618 1.6612	 1.9794	 2.6012 3.3225
60	 0.6801 1.1600 1.6585	 1.9762	 2.5970 3.3173
70	 0.6793 1.1586 1.6566	 1.9739	 2.5940 3.3135
80	 0.6787 1.1575 1.6551	 1.9722	 2.5917 3.3107
90	 0.6782 1.1568 1.6540	 1.9708	 2.5900 3.3085

100	 0.6779 1.1561 1.6531	 1.9697	 2.5886 3.3067
CO	 0.6745 1.1504 1.6449	 1.9600	 2.5758 3.2905

*A. Weissburg and G.	 L.	 Beatty, "Tables of Tolerance-Limit Factors for Normal
Distributions," Technometrics, Vol.	 2, No. 4, November 1960.
N = Number of measurements used to obtain X 	 (the sample estimate of the

population mean).



TABLE 2*

tr

	 Values of "u" for Tolerance Factors With Confidence y and f degrees of freedom

Y
f .50 .90 .95 .99

1 1.482 7.9579 15.9472 79.7863
2 1.201 3.0808 4.4154 9.9749
3 1.126 2.2658 2.9200 5.1113
4 1.092 1.9393 2.3724 3.6692
5 1.072 1.7621 2.0893 3.0034
6 1.059 1.6499 1.9154 2.6230
7 1.050 1.5719 1.7972 2.3769
8 1.044 1.5141 1.7110 2.2043
9 1.039 1.4694 1.6452 2.0762

10 1.035 1.4337 1.5931 1.9771
11 1.031 1.4043 1.5506 1.8980
12 1.029 1.3797 1.5153 1.8332
13 1.026 1.3587 1.4854 1.7792
14 1.024 1.3406 1.4597 1.7332
15 1.023 1.3248 1.4373 1.6936
16 1.021 1.3108 1.4176 1.6592
17 1.020 1.2983 1.4001 1.6288
18 1.019 1.2871 1.3845 1.6019
19 1.018 1.2770 1.3704 1.5778
20 1.017 1.2678 1.3576 1.5560
21 1.016 1.2594 1.3460 1.5363
22 1.015 1.2517 1.3353 1.5184
23 1.015 1.2446 1.3255 1.5020
24 1.014 1.2380 1.3165 1.4868
25 1.014 1.2319 1.3081 1.4729
26 1.013 1.2262 1.3002 1.4600
27 1.013 1.2209 1.2929 1.4479
28 1.012 1.2159 1.2861 1.4867
29 1.012 1.2112 1.2797 1.4263
30 1.011 1.2068 1.2737 1.4164
40 1.008 1.1734 1.2284 1.3434
50 1.007 1.1518 1.1993 1.2973
60 1.006 1.1364 1.1787 1.2651
70 1.005 1.1248 1.1631 1.2411
80 1.004 1.1156 1.1510 1.2224
90 1.004 1.1082 1.1410 1.2072

100 1.003 1.1019 1.1328 1.1947
CO 1.000 1.0000 1.0000 1.0000

*A. Weissburg and G. L. Beatty, "Tables of Tolerance Limit Factors for
Normal Distributions," Technometrics, Vol. 2, No. 4, November 1960.

f = Number of degrees of freedom associated with s (sample estimate of
H	 population standard deviation).

y = Confidence coefficient associated with limits.
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TABLE 3't

P ►3RCENTILE VALUES (tP)
for

STUDENTS t DISTRIBUTION
with f degrees NF freedom

(shaded or o P)

t f
100offims

t, 995 t,99 t, 97$ t,95 t.90 t,80 t,75 t.70 E.$0 t,55

1 63.66 31.82 12,71 6.31 3.08 1.376 11000

--

,727 .325 .158
2 9.92 6.96 4,30 2.92 1.89 1,061 ,816 .617 .289 ,142
3 5.84 4.54 3,18 2.35 1.64 .978 .765 .584 ,277 .137
4 4.60 3.75 2,78 2.13 1.53 .941 .741 .569 .271 .134

5 4.03 3.36 2.57 2.02 1.48 .920 ,727 .559 .267 ,132
6 3.71 3.14 2.45 1,94 1.44 .906 .718 .553 .265 .131
7 3.50 3,00 2,36 1.90 1.42 .896 ,711 ,549 .263 ,130
8 3.36 2'.90 2.31 1.86 1.40 .889 .706 .546 ,262 .130
9 3.25 2.82 2.26 1.83 1.38 .883 .703 .543 .261 .129

10 3.17 2.76 2,23 1.81 1.37 ,879 .700 .542 ,260 1129
11 3.11 2.72 2,20 1.80 1.36 .876 .697 .540 ,260 1129
12 3.06 2,68 2.18 1.78 1.36 .873 .695 .539 .259 .128
13 3.01 2.65 2.16 1.77 1.35 .870 .694 .538 ,259 .128
14 2.98 2,62 2.14 1.76 1.34 .868 .692 .537 .258 .128

15 2.95 2,60 2,13 1.75 1.34 .866 ,691 ,536 .258 .128
16 2.92 2.58 2.12 1.75 1.34 .865 .690 .535 .258 .128
17 2.90 2,57 2.11 1.74 2.33 .863 .689 .534 .257 .128
18 2.88 2.55 2.10 1,73 1.33 .862 .68it ,534 •257 .127
19 2.86 2,54 2,09 1.73 1.33 .861 .688 ,533 .257 .127

20 2.84 2.53 2.09 1.72 1.32 .860 .687 .533 .257 .127
21 2.83 2.52 2.08 1.72 1.32 .859 .686 .532 .257 .127
22 2.82 2.51 2,07 1.72 1.32 .858 .686 .532 .256 .127
23 2,81 2.50 2.07 1.71 1,32 .858 .685 .532 .256 .127
24 2.80 2.49 2.06 1.71 1.32 .857 6.85 .531 ,256 .127

25 2.79 2,48 2.06 1.71 1.32 .856 .684 .531 .256 .127
26 2.78 2.48 2.06 1,71 1.32 .856 .684 .531 .256 ,127
27 2.77 2.47 2.05 1.70 1.31 .855 ,684 .531 .256 .127
28 2.76 2.47 2.05 1.70 1.31 .8.005 .683 .530 .256 .127
29 2,76 2.46 2.04 1.70 1,31 .854 .683 .530 .256 .127

30 2.75 2.46 2.04 1.70 1.31 .854 .683 .530 .256 .127
40 2,70 2.42 2.02 1.68 1.30 .851 .681 .529 .255 .126
60 2.66 2.39 2,00 1.67 1.30 .848 .679 .527 .254 .126

120 2.62 2.36 1.98 1.66 1.29 .845 .677 .526 .254 .126
v 2.58 2.33 1.96 1.645 1.28 .842 .674 .524 .253 .126

*,Murray R. Speigel, Theory and Problems of Statistics, Schaum Publishing Company, New York, 1961.
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TABLE 4

DPS ENGINE, OXIDIZER RESISTANCE AT FTP

G

Calculated Oxidizer

DPS Line Resistance,

Engine
Acceptance

Time sect Average Line
Serial Test

Number
Slice R0, 5 Resistance, R,

Number ft For Test
(Engine Interface
To Thrust Chamber)

10261 HATS 176 20 3916.89

HATS 177 7 3913.22
3913.2

10372 HATS 190 6 3755.84
8 3819.42

12 3810.89
16 3812.91
18 3825.62
21 3788.52

3802.2

HATS 191 7 3729.05
3799.0

10303 HATS 219 7 3912.54
9 3921.97

11 3915.25
13 3918.50
15 3921.67
17 3919.27
21 3920.79

3918.6
HATS 221 7 3916.53

9 3921.59
11 3926.66
13 3932.03
15 3928.03
17 3928.85
19 3934.89
21 3927.50

3926.9

1TRW Report No. 01827-6076-T000, "TRW LM Descent	 agine SIN 1026 Acceptance
Test Performance Report," dated 22 May 1967.

2TRW Report No. 01827-6098-T000, "TRW LM Descent Engine SIN 1037 Acceptance
Test Performance Report," dated 29 July 1967.

3TRW Report Mo. 01827-6122-T000, "TRW LM Descent Engine SIN 1030 Acceptance

Test Performance Report," dated 11 December 1967.
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Typical Propellant Outage Dist ributions
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