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ABSTRACT

The performance of a propulsion system during a given mission is not
a fixed constant; it is a statistical variable. Statistical variation of
the performance results from the fact that it is a function of quantities
which exhibit varying degrees of uncertainty such as helium regulator out-
let pressures, propellant temperatures and spacécraft weights, If the
stutistical variations of these variables are known, the variation in pro-
pulsion system performance can be determined. The report presents a pro-
cedure to develop dispersions for propulsion performance parameters. The
approach is intended to be general so that it can be applied to all primary
Apollo propulsion subsystems. By beginning with this general formulation,
it is hoped that particular problems in determining the variations of certain
independent propulsion parameters for individual subsystems (if they do not
immediately fit the presented approach) may be solved. The report also
presents a method of optimum propellant management., The discussions in
this report are directed toward determining the dispersions in the indepen-
dent variables. Although it will be stated that the independent variable
dispersions will be input to a Monte-Carlo technique to determine the
dependent variable dispersions, the results of the report are not restricted
to the Monte-Carlo method. They are also equally applicable to other
methods, such as '""Root Sum Square", for determining the dependent variable

dispersions.
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SECTION I, PROPULSION SYSTEMS DTSPERSION ANALYSIS

Introduction. When constructing Apollo propulsion preflight predictions, it

is desirable to report propulsion system performance dispersions as well as
nominal performance predictions. This is important so that the probtability
associated with the attainment of a particular mission objective can be
determined. As an example, if a particular vehicle velocity requirement i1
established based on predicted propulsion system performance and payload
requirements, the variability in propulsion performance may not indicate a
sufficiently high probability that the predicted performance will be attained
nor that the mission objectives can be achieved. The usual procedure is to
allocate an additional amount of propellant (reserves) hased on the probability
that vehicle performance including that of the propulsion system will be less
than predicted. If a vehicle performs as predicted, the reserves will not

be consumed, and the additional propellant weight represents a decrease in
payload capability. By decreasing the variability of performance, payload
capability may be increased. A portion of a systems variability is inherent

to the hardware of the system and cannot be improved without design changes;
however, a substantial amount of the variability represents a lack of confi-
dence in ones capability to predict a system's performance. Thus improved
analysis techniques (both system modeling and dispersion analyses) may often
afford greater payload potential by decreasing propellant reseive require-
ments. Another consideration of great importance is the possibility of de-
fining variabilities that are too small; thus, insufficlent propellant reserves
may be allocated to meet the mission objectives with the actual variations

of propulsion performance. The above reasons underline the necessity of
defining systems variabilities as accurately as possible. Since the '"Monte-
Carlo" technique incorporated in the Propulsion Trajectory Analysin Program
(PATS) will be used in determjaing the variability of the propulsion parameters
such as engine thrust and specific impulse (i.e., the independent parameters),
obtaining reliable results will depend on adequate descriptions of the var-
iability in the propulsion system independent parameters, such as ullage
pressures, temperatures, and system hydraulic resistances. Various approaches
have been used in the industry, and in an effort to standardize tbe method of
obtaining the variability of the independent parameters for Apollo propulsion

systems, the approach presented in this report is recommended.




The principle advantages of using the Monte-Carlo technique are: 1) a
large percentage of the burden of tedious mathematics is "lifted from the
shoulders" of the user, and 2) omnce the types of (frequency) distributions of
the input parameters are defined, the user need not be concerned with the
mechanics of how these distributions must be combined to insure reliable
results. At present, PATS 1s capable of handlirg two types of distri-
butions (noxmal and uniform). However, if it 1s.determined that other
distributions need to be considered, the program could be modified. It
should be noted that the distribution of all dependent parameters should
be checked to determine their individual distributions. '

Discussion. For each independent parametexr, X, input into PATS (Reference 8)

the parameters mean,'i; and standard deviation, o, must be defined. Each
parameter is thus defined by the following relationship:

X=Xto (1)

where: X = The random value of the independent parameter to be
used in the simulation.

X = The mean value of the parameter, X.

o = The standard deviation of X about the mean X.

Although'i and ¢ are th¢ only parameters required for use in PATS, equa-
tion (1) 1s actually incomplete without a "confidence statement." A confi-
dence statement reflects the degree of certainty one has that the values of
X and ¢ are correct. The concept of confidence will be more clearly defined

below.

The importance of the standard deviation, o, is that it is an indicator
of the variability of a given parameter, X, about its mean value, X. If the
frequency distribution of the parameter is known, then the standard deviation
can be used to approximate the number of times a given value of X will be
observed if sampled many tdimes. If the parameter under consideration is
"normally" distributed, then approximately 68.277 of the total observations
(samples) will have a value within the band determined by X * o, 95.45% will
have a value between X # 20, and 99.73% will be bounded by'i + 37. The normal
(Gaussian) distribution refers to a frequency distribution of X which is
characterized by a symmetrical bell-shaped curve. Most propulsion input

parameters that will be considered can, in general, be assumed to be normally
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distributed. The distribution of each parameter, however, should be checked
to verify this assumption. If distributions are found to be other than normal
or uniform, then an appropriate modif ication to PATS is indicated. Certain
output parameters such as a vehicle velocity gain and propellant outage (i.e.,
the useable amount of one propellant remaining in the propulsion system after
the other is totally consumed) are known to be non-normally distributed.

Thus, the usual concept of a standard deviation (e.g., X * 10 contains 68.3%)
is not applicable, and the value for that function must be selected from the
probability distribution function generated by the program.

It is important to realize the distinction between the sample standard
deviation, S, calculated from a sample of measurements drawn from a popula-
tion and the true standard deviation, ¢, of the population. The sample
standard deviation, S, can be calculated from a sample of measurements (Xj)
by the following equation:

1L
(x - 3{')2 2 -
=i\
§ = =1 (2a)
o
where
>
=42, (2b)

with the sample size represented by N. If N were equal to that of the total
population, then S in equation (2a) would be numerically equal to ¢. However,
1f N 1s less than that of the population, then S is only the "best estimate'
of 0. In practice, one cannot sample all possible walues of X. This is
particularly true of parameters derived from rocke. engine tests data where

the sample size would be small. Equation (1) must then te rewritten as
follows:

X=X+ 8 (3)

Fortunately, statistical theory provides mathematical procedures to adjust
the value of S to insure the inclusion of the true standard deviatiom, o,
(at a certain level of confidence) based on the sample size, N. These

procedures have been incorporated in the following general equation and,
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tius, define the best estimate of the standard deviation:

2
t S
2 2 c_ INST 2 2,
5= (ST A (T) + (Syopme)” * (552) ()
where: Srr = The true run-to-run sample standard deviation (in-
strumentation error removed) of the engine parameter.

k = The tolerance factor used to increase the uncertainty
limits to achieve the desired probability and confi~
dence.,

t = The "Student t" factor used to compensate for uncer-
tainties in the true mean, based on the sample size
and desired population.

StnsT ™ The sample standard deviation of the random instru-
mentation error assoclated with the data sample.

N = The number of samples or data points used to calculate
the mean value, X.

MopEL ™ The standard deviation of the propulsion model error
in terms of equations or numerical technique,

Spp = The sample standard deviation of the parameter's
true engine-to-engine dispersion.

In equation (4), the first texm accounts for the true run-to-run variability
of the engine parameter; the second teérm accounts for the parameter uncertainty
due to the instrumentation used to measure the parameter; the third term is
to account for uncertainties in the characterizations used to model the parameter
while the fourth term accounts for parameter variability from engine-to-engine.
The complete equation (4) describes the total uncertainty of an engine parameter
given the observed performance from ground tests (sigma '"log-~to-launch'). If
the SEE term 1s zero, the uncertainty applies to a specific engine rather
than the engine class. Whether all of the terms in equation (4) will be
applicable to a given parameter will depend on the particular propulsion
system (1.e., SPS, DPS, or APS) being analyzed and the type of study (i.e.,

for a particular engine system or a general case study).

To illustrate the development of mean and dispersion values, assume
that a particular engine has had n acceptance test runs and that it is one

of a family of M engines.

When a rocket engine is fired a number of times, the engine performance
from test-to-test will contain some variation even though the test conditicns
may appear to be identical each time. This dispersion, commonly known as

the engine "run-to-run' variation, contains the true run-to-run variability

4

T Y T



of the engine plus instrumentation non-repeatability. If more than one
engine of a family is being considered, there will be an additional dis~-

persion in performance due to small hardware differences, This dispersion
is known as "engine~to-engine' variation.

The Sample Run-to~Run Mean, X. During each engine test, the values of

certain parameters (e.g., interface pressure, propellant flow rate) are
measured many times. The parameter values are averaged over several two

to three second spans (time slices) selected from the test. The effect of
this averaging is to generally eliminate the effects of noilse in the measured
values., Assume that the total number of time slices for a given test is
represented by m. Let the average values for each time slice be represented
by Xj, where j=1 to m. Then the mean value of the parameter for the particular

engine, k, under consideration, i1s represented by:

X = = (5)

The averaged parameter, Xj, could represent a quantity directly measured
during the test, such as propellant temperature, or it could represent a

calculated parameter such as hydraulic line resistance.

If a general engine study is being conducted, then the average value

of the parameter is defined as:

M

25

§=- n (5a)

The Sample True Run-To-Run Standard Deviation, Srr. In order to obtain

a representative value for Srr, a large number of samples or test runs is
desirable. However, since each engine experiences only a few runs before a
flight, the following approach was adopted. It is assumed that although
each particular engine of a family may display different mean values for

the particular parameter under consideration, the run-to-run variability of
each engine is the same for all engines. The apparent run-to-run dispersion,
developed from the measured test parameters, deviatés from the true run-to-

run dispersion which we actually seek since the test measurements inherently




contain instrumentation error. The sample dispersion of the true run~to-run
varlability may thus be represented by the following relationship:

2 * 2 2
(kSrr) (lerr) - (RZSINST)

*
where: Srr = The apparent run~to-run dispersion

SINST = The random instrumentation uncertainty

k, = Tolerance factor, insuring compatible confidence and

population.,
*
Although it is expected that the apparent run-to~run dispersion, lerr, will
be greater than the random instrumentation error, kZSINST in actual practice

the reverse situation may occur. If such a situation arises, it is common

to define: Srr = kSrr = 0 (d.e., the engine performance is extremely repeat-
able).

For each engine of the family, a mean for a parameter may be determined
from the n engine tests as shown above. The variability of the parameter

about this mean can be determined as follows:

n f:xj

m

AL (25

X = m -\
m

AXP —
P
p=1l...n
or
X
2%
MR =X - \A— (6)
P P m /_
P
then
i(ﬁ#
2,2 2
(kSrr)” = k" —%—7 SINST® (7

=
fl

in{M)

where N represents the total number of engine runs performed on all engines
of the family. The first term to the right of the equal sign is the square

*
of the apparent run-to-run dispersion, klsrr.




The Tolerance Factoxr, k. It is desirable to predict the behavior of a
parameter in such a way that at least a given percentage of future samples
can be expected to lie within a computed interval with a specified degree
of certainty. The values that specify the computed interval are called toler-

ance limits and can be generally represented by X # ks. The tolerance factor
k accounts for the sampling errors in X and s as well as for the percent pop-
ulation in the interval, P, and the confidence desired. The degree of cer-
tainty (confidence) is given by the confidence coefficient, y. Suppose
that X * ks is selected to include 68.27% (one standard deviation) of the
population at a confidence level (y) of 95%. Then, 1if many sets of random
samples are taken from the population, the interval X * ks will contain at
least 68.277% of the population in 95% of the sets chosen. The factor k may
be obtained by the following:

k = ru (8)

where r and u are presented in Tables 1 and 2 respectively. The statistical
background and justification for the k factor may be found in References 1
and 2. The derivation of the factors r and u are found in Reference 1.
Tables 1 and 2 were reproduced from this reference. The factor r is a
function of the sample size, N, used to determine ik, and the proportion of
the population, P, desired. The factor 'u is a function of degrees of freedom,
£, associated with Srr and the desired degree of confidence, y. The number
of degrees of freedom 1s defined as the number of independent observations
in the sample (i.e., sample size) minus the number of statistical quantities
(i.e.,li, standard deviation, etc) which must be estimated from sample
observations. Since only the sample standard deviation is being computed,

f becomes the sample size used to calculate Srr minus one. The k factor as
used above is only applicable for normal or nearly normal distributionms.
However, it has already been noted that all input parameters (to which the
tolerance factor will be applied) are assumed to be normal. It is thus

expected that this constraint will have little effect on the approach.

Instrumentaticn Error, SINST' In general, instrumentation error may

be considered as random in nature. The characteristic of random error is
that if enough run-to-run data samples from a measurement are taken, then
the effec.s of random error on the mean of all samples will approach zero

(i.e., random error has a zero mean). The existence of random error results




in an uncertainty in the mean value (X) of a measured parameter that was
derived from a small number of data samples. In equation (4) this uncer-
tainty 1s taken into account by dividing the random instrumentation error
standard deviation by the square root of the number of observations. Thus,
as the number of observations or samples increases, the effect of random
instrumentation uncertainty on the knowledge of the true mean decreases.

If the standard deviation of the random instrumentation error, SINST’ is

a sample value rather than a population (or true) standard deviation, then
it is necessary to include the "Student t" factor, t,» to estimate, with
the desired confidence, the interval which contains the true parameter mean.
The statistical background for the "Student t'" factor may be found in
References 2 to 4. Table 3 f£from Reference 3 presents values of t,as a
function of degrees of freedom and confidence coefficients where the sub-
script c is given by %-+ %3 where P is the fractional population desired.
The degrees of freedom are determined by the number of samples (used to
determine the random instrumentation standard deviation term) minus one.

If a good estimate of the standard deviation of the random instrumentation
error is available, then t, will approach a value which simply reflects the

desired population in terms of the number of standard deviations.

The tolerance factor, k, when used with the term for instrumentation
error is determined in the same manner as 1s the tolerance factor for the
apparent run-to-run dispersion, Sir. The components of k (r and u) are
related to the number of samples and degrees of freedom used in obtaining
SINST while the population desired and confidence level are defined by
the user. Under normal circumstances, it is anticipated that the standard
deviation of the instrumentation error, as supplied by the engine manufac-
turer, will be of a sufficient confidence level and population so that no

adjustment using the tolerance factor will be necessary.

Modeling Error, S When the engine is operating at conditions

MODEL'

removed from the nominal or outside of the acceptance test conditions, it

may be desirable to assign a value to S In general, the value of

MODEL*
SMODEL may be arbitrarily assigned by the user. This is necessary since
one is actually extrapolating along the model equation into a region that
may not have been substantiated by test data. To illustrate a possible

error source, suppose that an equation for some given parameter is developed



£

from many test firings. Suppose that all tests were conducted with propellant
temperatures of approximately 70°F. In using regression techniques, the
equation representing this parameter would not contain propellant temperature
as a variable. If it is known from other engines of a similar type that the
parameter is effected by propellant temperature, then one would be justified
in establishing an appropriate value for Syopgr. The above discussion of
modeling error is related only to the effects of independent parameters upon
dependent parameters. The need may also arise to apply an uncertainty to the
dependent (output) parameters 1f errors due to computer convergence criterion-

or numerical integration techniques are to be accounted for.

Engine-to-Engine Sample Standard Deviation, SEE' When a particular

engine is to be used in a study, then SEE = 0 in equation (4). However, 1if
it 1s necessary to make a general propulsion study (i.e., what is the uncer-
tainty associated with the performance if any engine is selected at random),

then a term such as SEE is needed. In this case:

1 i
Ksgy = —y o7 - (kzsms'r)z ©)
where: 'ii = The parameter mean for each engine.
X = The average of the parameter means for all engines.
N = The number of engines considered.
SINST = The random instrumentation error.

ki = The tolerance factor as described above.

Equation (4) will then estimate the dispersion, S, required to insure that
X + S will contain 68.27% of the population of all engines at some prescribed
level of confidence. This equation should be applied to each parameter needed

as input for a PATS simulation.

Example Problem. The total run~to~-run and engine-to-engine variability

of the oxidizer system resistance for the DPS engine will be determined
(i.e., one standard deviation at 95% confidence will be calpulated). This
will be the resistance that corresponds to the pressure drop as measured
from engine interface to injector face while the engine is operating at
the fixed throttle position. The resistance is defined by:

_AP - p - 144

R )
w

(10)
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This particular parameter i1s not measured directly, but is calculated from

the measured pressure drop (AP), oxidizer demsity (p) and oxldizer flowrate
(W); thus, 4its accuracy is a function of the variability of the measured
parameters, Data from DPS engines 1026, 1037, and 1030, each with two
acceptance tests, each test with several time slices, were analyzed. These
calculated resistances are tabulated in Table 4 and are referred to as

Cases A, B, and C, respectively. As previously mentioned, it is assumed that
run~-to-run variations for each engine are the same; thus the data from several
engines may cntribute to the run~to-run statistic. Mean values for each

engine are:

%, - 3913.2 + 3916.9 . 4915 05
D

Eﬁ _ 3802.2 ; 3793.0 . 4800.6

iﬁ _ 3918.6 ; 3926.9 _ 3992.8

Using equation (6) one obtains

—

AX; = 3915.05 - 3913.2 = 1.85
A?é = 3915.05 - 3916.9 = ~1.85
A¥, = 3800.6 - 3802.2 = -1.6
AX, = 3800.6 - 3799.0 = 1.6
Aﬁ% = 3922.8 - 3918.6 = 4.2
Ai% = 3922.8 - 3926.9 = -4.1

Before equation (7) can be used to determine Srr the instrumentation
error (SINST) must be defined. Since resistance is not measured directly,
there is no direct instrumentation error. However, there 1s an uncertainty
in the observed variability of R due to the instrumentation error in measuring
AP, p, and w. This variability is defined by the following equation

(Reference 5)
2 2 2 2

= (oR , OR | o9R_ |
SinsT = (3p Sp) + (a& S&) + (aAP SAP) (11)

where Sp, SW’ and S are standard deviations of the variabilities of the sub-

AP
scripted parameters and are obtained from engine manufacturer instrumentation
error analysis. From Reference 6, assuming 957% confidence for this example:

sp = 0.00067 p

10



S* = 0,00083 w
SP = 0.00173 P

From equation (10), the following quantities may be determined:
R _ AP R
o - .2(144) =5
0 o R
WZ AP
3R _ =20AP _ -2R
oW .3 (144) 2
W
Then equation (11) becomes: .
s \? s[5\
s2 = (r2) + {-2r%) 4+ (—E
INST P w AP

From Reference 6, the following equation may be written:

2 2
o2, - (25, + (2
1P1 2 P

or
s \2 s_\? s \?
< Aé) . (2se P1) | faar P2
AP BPl AP 8P2 AP
where
AP = Pl - P2
where: P1 = oxidizer interface pressure, psia
P2 = chamber pressure, psia,
Then,
OAP 0AP
—_ = ] — -]
aPl 8P2
and

(12)

(13)

(14)

(15)



It was given

and

()

>

2
Sap) |
AP

above that:

.00173 Pl

00173 P2

00173, 2 .00173¢, 2
- AP + AP

(.00173)2

At the FTP throttle position,

Therefore, °

2
Sap) _
AP

and substituting in

(.00173)%

r

(b 2 [p. - ap\%
P I
AP AP

(.00173)2

;
2\’ B
\5) -2 +1

- P

. . . L.
P1~220 and P2~110, AP=110 and N 2,

(5)

equation (12)

SiNST = Rz(.ooom)2 + 4R2(.00083)2 + 5R2(500173)2

2 - . -6\.2

- (18.11 107%)x

s = 4.26 + 10738

INST ‘

For an average resistance R of 3880,

sécz

g2 = 16.51 :

INST e

The apparent run-to-run dispersion has been defined as:

12




For this example, then,

X 2 (1.85)% 4 (=1.85)% 4 (1.6)% + (~1.6)% + (4.2)% + (=4.2)°
(Srr)” = 6= 1

= 9.45 sec
£t°

It i1s now necessary to determine the tolerance factor, k. For
N = 2 {number of points used to establish mean value,'Xk)
f = 5 (degrees of freedom assoclated with Sgr)
y = .95 (confidence level)
P = 68.27% (proportion of population considered)
from Tables 1 and 2, the values of u and r of 2.0893 and 1.2778 respectively

are obtained. Then,

k = (2.0893) (1.2778) = 2,6697

Equation (7) may now be applied:

(kSrr)% = (2.6697)2(9.45) - (16.51)% = 67.4 - 272.5

As indicated as being possible, the variability due to random instrumentation
uncertainties is greater than the apparent run-to-run variability. Inherent,
however, in each value of R is the dnability to determine the resistapce more
accurately than any one of the independent parameters (P, p, or W) can be

determined. Thus, we must set the true run~to-run variability to zero.

The final quantity needed is S which should be given by those

MODEL
responsible for the engine model. Assume that
SMODEL = ,097%

Equation (4) may now be used to determine the value of the standard
deviation to be used in conjunction with a specific engine's Monte-Carlo

analysis. For this case, Srr and S__, are equal to zero.

EE

For

N = 2 (number of points used to determine mean, Xk)
P = 68.27% (proportion of population considered)

Assuming that S is a good estimate of the true standard deviation,

INST
the "Student t'" factor (to) is equal to a value of 1.0.

13



Using equation (4), one then obtains

2 1 )
S = [0.0 + (1“'%'51)) + (00097 - 3880)2]’2' - 12,27 985
Ft

If a Monte~Carlo analysis is to be performed for a particular engine,
engine 1026, as an example, the mean value of resistance (Xp) and the
assoclated standard deviation (S) to be used are 3915.05 and 12,27, respectively
If a study is to be completed for the class of three engines, the mean value
of resistance is

= Xa "% "% 3915.05 + 3800.6 + 3922.8

= 3879.4833

The parameter kSEE must then be calculated for use in equation (9). For

y = ,95 (confidence level)

n = 3 (sample size)

P = 68.27% (proportion of population considered
f=n-1=3~-1=2 (degrees of freedom)

Tables 1 and 2 yield values of r and u of 1.3412 and 4.4154 respectively;
thus, by equation (8) one gets
k = 1.3412 + 4.4154 = 5,922

As with run~to-run dispersions, the true engine-to-engine dispersion
must be estimated from the observed engine-to-engine dispersion and random

instrumentation error. Thus, using €quation (9):

(kSEE)z 3 - 1

- (16.51)2

[¢5.92) (68.42)1% - (16.51)%

(404.71)2

The magnitude of kSEE reflects the very small sample size used in this

example.
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Substituting into equation (4) the yields:

2 2|&
S = {(.12.27) + (404,747 = 404.90

Thus for a class study, the mean value of resilstance (X) and the
standard deviation (S) are 3879.48 and 404.90 respectively.
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SECTION II. OPTIMUM PROPELLANT MANAGEMENT~~-BIASING AND RESERVES

Introduction. Section I was concerned with the probable variability of
propulsion performance; Section II will define the means of minimizing

the impact of such variability on the vehicle velocity (AV) capability,

Discussion., "¢ . ideal velocity equation (1) approximates the relationship

between the propulsion system's performiunce and the attainable velocity of

the Apollo vehicles to an accuracy suffilclent to 1llustrate the value of
optimum propellant biasing and flight pexformance reserves:

Vf - Ispgcln(MR) - gty + Vi (1)

Vf = maximum attainable cutoff velocity
Vi = velocity at ignition

I = average specific impulse over the duty cycle

=

Initial Vehicle Mass
MR = yehicle mass ratio = Final Vehicle Mass = p

g = welght to mass conversipn factor
E'H average gravitational attraction during the duty cycle

£, = engine burn time during the duty cycle

Temporarily ignoring the acceleration term (Efb) in equation (1), rearranging
and substituting, one gets

- My
AV = Vf - Vi = Ispgcln<}qf @
Since there is some lack of confidence associated swith predicted performance,
it becomes necessary to carry reserve propellants in order to guarantee the
attainment of a particular AV. Of course, the caryxying of such reserves
represents a vehicle performance loss since they are traded off with payload.
Since the reserves are proportional to the variability of predicted propulsion
performance, it becomes obvicus that appreciable payload gains may be made by
reducing systems variabilities and improving confidence in flight prediction

capabilities. Confidence (tolerance bands) in predicted values can be improved
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only by improved analysis, techniques, testing, and instrumentation; however,
the impact of the system variability may be reduced by optimum propellant
biasing and reserves.,

Iderlly, the vehicle cutoff velocity (Vf) would be attained at the same
time both usable propellants are simulatneously consumed. Since most vehicles
and environmental influences cannot be predicted with 100% confidence, the
probability of attaining that terminal velocity (with the nominal propellant
loading) will be considerably less than 1., However, from the proper statistical
analyses of all performance affecting influences, the probability of occurrence
of potential terminal velocities can be determined; that is the cutoff velocity
will be in the band Vf -~ Gvf to Vf + gvf with Vf usually having the highest
probability of occurrence. The upper and lower bands were established with
different probability terms (¢ and f) since the distribution is not usually
Gaussian. The better than predicted performance is of trivial importance for
the Apollo spacecrafts since cutoff is initiated at Vf by the guidance system
and not by propellant depletion. Since the lower velocity value is possible,
it 1s necessary to carry reserve propellants to guarantee the attainment of
Vf. Typical influences on terminal velocity are uncertainties assoclated
with the following items:

1. Final mass (due to propellant outage)

o

2. Average specific impulse

3. Thrust

4. Guidance system

5. Trajectory

6. Stage weight (structure, miscellaneous items, payload)
7. Initial propellant weight and MR

The individual variabilities of terminal velocity due to items 2 through 7 are

usually nearly normally distributed. However, because mixture ratio (by weight)

is other than unity, normally distributed variations in it result in non-normal
distributions in propellant outage. Furthermore, any propellant outage results in

a velocity loss as compared to the no outage case. The outage affect is by far the
predominate influence on the non-normal distribution of Vf, although the log term

of equation (2) shows that the effect of any weight term is non-npcimal. Likewise, !
one would not expect thrust variations, because of the coupled gravity affect, to

yleld normal variations on Vf.

17



Uncorrelative Independent Parameters. For optimal propellant management

calculations, the typical procedure 1s to assume that the listed influences act
independently of one another; then their equivalent velocity variations are
statistically combined to obtain 6vf and LV Since outage is a very strong

influence on Vy_ its minimization can appreciably increase the final velocity at

£
the desired probability and confidence. Before developing the optimum fuel bias

equation to minimize outage, the following definitions are made:

U = average vehicle mixture ratio over the duty cycle

o = one standard deviation in mixture ratio variability (includes)

H propulsion system, propellant loading, and unusable propellant
variability)
k = tolerance factor for desired probability and confidence
WC = propellant nominally consumed during the duty cycle

WOT = propellant outage; that value of usable propellant that would be
consumed if an apportioned amount of the other propellant were
available for combustion.

o = gubscript oxidizer
f = subscript fuel

p = subscript sum of oxidizer and fuel

If the nominal propellant loads are such that simultaneous depletion takes

place at the same time Vf is attained, the maximum oxidizer and fuel outage that

will exist for a “aussian variability in p and an open loop propellant utilization
system is determined by equations (3) and (4) (Reference 9).

ko WC

- H D
WOT = ) (3)

ko]J ng
WoTe = 4 ¥ ko ) (v + 1)

(4)

If outage is plotted versus mixtur¢ ratio wvariability, it is found to consist

of two legs that are approximately linear but which have different slopes, as
illustrated in Figure l-a by the #0lid line. Since the system mixture ratio is
greater than one, negative variations in y cause maximum (oxidizer) outages.

Such variations would result in an outage frequency distribution similar to the
solid line of Figure 1-b. From Figures 1l-a and 1-b, it is apparent that outage

is not normally distributed even if u is. If the fuel bias (WB) is defined as
that amount of fuel that causes the maximum oxidizer and fuel outage to be equal,
one easily obtains equations (5) and (6) for oxidizer and fuel outage respectively,

and equation (7) for the optimum fuel bias.
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ko WC_
WOTO -~ (u + l) - (Pc - kcu)WB (5)
ko WC

- P
WOT . (u n ko“ TF 1)* WB (6)

ko WC (u - 1+ ko )
WB = TR 0 lp- k§ U + ko ﬁ + 1 7
T2

where uc 1s the mixture ratio at cutoff.

The dotted line of Figure l-a illustrates the typical variation of outage
(wita fuel bias included) for anticipated variations in p while the dotted line
of Figure 1-b typifies the resulting change for the propellant outage frequency
distribution. Although the fuel bias causes a \f
and increases the probability of fuel outage, the total outage probability will be

decrease for the nominal case

minimized; particularly the occurrence of extreme values of outage that affect AV
the greatest. By minimizing propellant outage, the bias appreciablj reduces the
propellant reserve requirements. In fact, it 1s easily shown that at the desired

probability and confidence of accomplishing a mission,
Baised Propellant Reserve + Bias < Unbiased Propellant Reserve;

thus, propellant reserve requirements can be appreciably reduced, with the
significance of the reduction proportional to the average vehicle mixture

ratio and total propellant load.

Correlative Independent Parameters. In the preceding section the parameters

that affect vehicle maximum velocity gain variability were considered to act indepen-.

dently of one another, when in fact, certain of those parameters may be highly
correlated. Thus, the method of combining their influences (root sum square,
for example) may result in either pessimistic or optimistic answers, depending
on the actual correlation. As an example, the correlation of mixture ratio (u),
specific impulse (Isp), and outage (WOT) will be considered. As noted in the
preceding section, anticipated velocity variations due to outage are propor-
tional to the uncertainty associated with predicted mixture ratio; likewise,
there are velocity uncertainties due to the uncertainty associated with pre-
dicted specific impulse. Portions of these respective uncertainties are truly

independent of one another: that due to instrumentation error, run—-to-run
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varlability, etc. However, portions of the total uncertainties may be highly
correlated; e.g. IBp which is strongly influenced by u. Possible variations

in mixture ratio due to the uncertainties in propellant temperatures, pressures,
etc., result in corresponding variations in specific impulse. The effects of these
variations are fixed and predictable. Figure 2 (a and b) are plots of correlative
outage and specific Impulse as functions of mixture ratio, for a hypothetical
engine. Figure 2c represents the. corresponding maximum velocity variations due

to both influences, while the solid line of Figure 2d shows the resultant maximum
velocity variations. This composite maximum velocity distribution may be considered
independently of all other velocity distributions (if there are no other correlative
parameters) and combined (RSS) with them, and with the distributions due to the
random variations in mixture ratio and specific impulse. For the engine considered,

ignoring the correlation of y and I__ would result in a propellant reserve greater

8
than actually required; however, if ELe slope of the Isp-u relationship were
positive, the reserve would be inadequate. Fignre 2 also shows that the total
variability of terminal velocity may be minimized by carrying an oxidizer bias
which, by reducing the possible fuel outage, would result in the distribution
illustrated in Figure 2d by the dotted line. Thus, ihe reserve requirement can be
further reduced. Ideally, both the independent and correlative variations would
be utilized to determine the optimum combination of blas and reserves. Prime
parameters that are usually partially correlative are mixture ratio, specific
impulse, thrust, the guldance system effects, and the trajectory. Since optimum
biasing and reserve determination for correlative variables do not lend themselves
to simple closed form solutions, iterative techniques are usually employed in

conjunction with complete system models.
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TABLE 1%

Values of "r" for Tolerance Factors with Population Fraction, P, and Sample Size, N.

1.2940

1.2654 2.1408 2.7963

1.2463 2.1127 2.7640

1.2326 1.7587 2.0922 2.7399 3.4853

1.2224 1.7448 2.0765 2.7211 2. 4644
0.7127 1.2144 1.7340 2.0641 2.7066 3.4476
0.7088 1.2080 1.7253 2.0541 2,6945 3.4338

0.7056 1.2027 1.7182 2.0459 2.6845 3.4223

0.7030 1.1984 1.7122 2.0390 2.6760 3.4125
0.7008 1.1947 1.7071 2.0331 2.6688 3.4040
0.6989 1.1915 1.7027 2.0280 2.6625 3.3967
0.6973 1.1887 1.6990 2.0236 2.6571 3.3902

0.6958 1.1863 1.6956 2.0197 2.6523 3.3845

0.6945 1.1842 1.6926 2,0163 2.6480 3.3794
0.6934 1.1823 1.6901 2.0132 2.6441 3.3748
0.6924 1.1807 1.6877 2.0105 2.6407 3.3707

0.6915 1.1792 1.6855 2.0080 2.6376 3.3670

0.6907 1.1778 1.6837 2.0058 2.6348 3.3636
0.6900 1.1765 1.6819 2.0037 2.6322 3.3605
0.6893 1.1754 1.6803 2.0018 2.6298 3.3576
0.6887 1.1743 1.6788 2.0001 2.6276 3.3550

0.6881 1.1734 1.6775 1.9985 3.6256 3.3526

0.6875 1.1725 1.6762 1.9971 2.6238 3.3503

0.6870 1.1717 1.6750 1.9957 2.6221 3.3482
0.6866 1.1709 1.6740 1.9945 2.6205 3.3462
0.6862 1.1702 1.6730 1.9933 2.6190 3.3444

0.6858 1.1695 1.6721 1.9922 2.6176 3.3427

3.3301

0.6830 1.1647 1.6653 1.9842 2.6074

0.6813 1.1618 1.6612 1.9794 2.6012 3.3225
0.6801 1.1600 1.6585 1.9762 2.5970 3.3173
0.6793 1.1586 1.6566 1.9739 2.5940 3.3135
0.6787 1.1575 1.6551 1.9722 2.5917 3.3107
0.6782 1.1568 1.6540 1.9708 2.5900 3.3085
0.6779 1.1561 1.6531 1.9697 2.5886 3.3067
0.6745 1.1504 1.6449 1.9600 2.5758 3.2905

*A, Weissburg and G. L. Beatty, ''Tables of Tolerance-Limit Factors for Normal
Distributions,' Technometrics, Vol. 2, No. 4, November 1960.

Number of measurements used to obtain X

N k
population mean).

(the sample estimate of the

a~]
n

Proportion of population included between limits.
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TABLE 2

Values of "u" for Tolerance Factors With Confidence y and f degrees of freedom

7.9579 15,9472 79,7863
3.0808 C h.4154 9.9749
2.2658 2.9200 5.1113
1.9393 2.3724 3. 6692
1.7621 2.0893 3.0034
1.6499 1.9154 2.6230
1.5719 1.7972 2.3769
1.5141 1.7110 2.2043
1.4694 1.6452 2.0762
1.4337 1.5931 1.9771
1.4043 1.5506 1.8980
1.3797 1.5153 1.8332
1.3587 1.4854 1.7792
1.3406 1.4597 1.7332
1.3248 1.4373 1.6936
1.3108 1.4176 1.6592
1.2983 1.4001 1.6288
1.2871 1.3845 1.6019
1.2770 1.3704 1.5778
1.2678 1.3576 1.5560
1.2594 1.3460 1.5363
1.2517 1.3353 1.5184
1.2446 1.3255 1.5020
1.2380 1.3165 1.4868
1.2319 1.3081 1.4729
1.2262 1.3002 1.4600
1.2209 1.2929 1.4479
1.2159 1.2861 1.4867
1.2112 1.2797 1.4263
1.2068 1.2737 1.4164
1.1734 1.2284 1.3434
1.1518 1.1993 1.2973
1.1364 1.1787 1.2651
1.1248 1.1631 1.2411
1.1156 1.1510 1.2224
1.1082 1.1410 1.2072
1.1019 1.1328 1,1947
1.0000 1.0000 1.0000

wo~NOoOTUMITS~LND R

*A. Weissburg and G. L. Beatty, '"Tables of Tolerance - Limit Factors for
Normal Distributions," Technometrics, Vol. 2, No. 4, November 1960.

f = Number of degrees of freedom associated with s (sample estimate of
population standard deviation).
y = Confidence coefficient associated with limits.
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TABLE

PERCENTILE VALUES (t )
for P
STUDENTS t DISTRIBUTION
with £ degrees ¢ freedom
(shaded ar = p)

t, 995 t,99 £,975

727
+816 1617 . 289 142
' 765 584 277 137
1569

559
718 +553 1265 «131
711 549 1263 130
706 » 546 » 262 +130
543

542
697 540 » 260 129
+695 +539 259 128
694 538 » 259 128
+a37

+ 536
. 690 +535 +258 128
. 689 v 534 257 128
. 688 534 257 127
+533

533

. 686 «032 +257 127
686 +532 + 256 127
. 685 «532 256 127

531

+ 531

684 531 .« 256 127
684 <531 +256 127
+683 »530 .256 .127

. 530

+530

. 681 529 +255 . 126
. 679 + 527 « 254 126
. 677 1526 254 ,126

524

*Murray R. Speigel, Theory, and Problems of Statistics, Schaum Publishing Company, New York, 1961,
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TABLE 4

DPS ENGINE, OXIDIZER RESISTANCE AT FTP

Calculated Oxidizer
Line Resistance,

DPS

, Acceptance 2 Average Line
Engine Test ) L asg Resistance, R,
Serial Number 0 ft5 For Test
Number ;

(Engine Interface
To Thrust Chamber)

3916.89

3916.9

391322

3913.2

3755.84
3819.42
3810.89
3812.91
3825.62
3788.52

3802, 2

3799,05

3799.0

3912.54
3921.97
3915.25
3918.50
3921.67
3919.27
3920.79

3916.53
3921.59
3926.66
3932.03
3928.03
3928.85
3934.89
3927.50

3926.9

lTRW Report No. 01827-6076-T000, "TRW LM Descent Engine S/N 1026 Acceptance
Test Performance Report,'" dated 22 May 1967,

2TRW Report No. 01827-6098-T000, "TRW LM Descent Engine S/N 1037 Acceptance
Test Performance Report,' dated 29 July 1967.

3TRW Report #o. 01827-6122-T000, "TRW LM Descent Engine S/N 1030 Acceptance
Test Performance Report,' dated 11 December 1967.
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