1,450 research outputs found

    Distinguishing Topical and Social Groups Based on Common Identity and Bond Theory

    Full text link
    Social groups play a crucial role in social media platforms because they form the basis for user participation and engagement. Groups are created explicitly by members of the community, but also form organically as members interact. Due to their importance, they have been studied widely (e.g., community detection, evolution, activity, etc.). One of the key questions for understanding how such groups evolve is whether there are different types of groups and how they differ. In Sociology, theories have been proposed to help explain how such groups form. In particular, the common identity and common bond theory states that people join groups based on identity (i.e., interest in the topics discussed) or bond attachment (i.e., social relationships). The theory has been applied qualitatively to small groups to classify them as either topical or social. We use the identity and bond theory to define a set of features to classify groups into those two categories. Using a dataset from Flickr, we extract user-defined groups and automatically-detected groups, obtained from a community detection algorithm. We discuss the process of manual labeling of groups into social or topical and present results of predicting the group label based on the defined features. We directly validate the predictions of the theory showing that the metrics are able to forecast the group type with high accuracy. In addition, we present a comparison between declared and detected groups along topicality and sociality dimensions.Comment: 10 pages, 6 figures, 2 table

    Complex networks approach to modeling online social systems. The emergence of computational social science

    Get PDF
    This thesis is devoted to quantitative description, analysis, and modeling of complex social systems in the form of online social networks. Statistical patterns of the systems under study are unveiled and interpreted using concepts and methods of network science, social network analysis, and data mining. A long-term promise of this research is that predicting the behavior of complex techno-social systems will be possible in a way similar to contemporary weather forecasting, using statistical inference and computational modeling based on the advancements in understanding and knowledge of techno-social systems. Although the subject of this study are humans, as opposed to atoms or molecules in statistical physics, the availability of extremely large datasets on human behavior permits the use of tools and techniques of statistical physics. This dissertation deals with large datasets from online social networks, measures statistical patterns of social behavior, and develops quantitative methods, models, and metrics for complex techno-social systemsLa presente tesis está dedicada a la descripción, análisis y modelado cuantitativo de sistemas complejos sociales en forma de redes sociales en internet. Mediante el uso de métodos y conceptos provenientes de ciencia de redes, análisis de redes sociales y minería de datos se descubren diferentes patrones estadísticos de los sistemas estudiados. Uno de los objetivos a largo plazo de esta línea de investigación consiste en hacer posible la predicción del comportamiento de sistemas complejos tecnológico-sociales, de un modo similar a la predicción meteorológica, usando inferencia estadística y modelado computacional basado en avances en el conocimiento de los sistemas tecnológico-sociales. A pesar de que el objeto del presente estudio son seres humanos, en lugar de los átomos o moléculas estudiados tradicionalmente en la física estadística, la disponibilidad de grandes bases de datos sobre comportamiento humano hace posible el uso de técnicas y métodos de física estadística. En el presente trabajo se utilizan grandes bases de datos provenientes de redes sociales en internet, se miden patrones estadísticos de comportamiento social, y se desarrollan métodos cuantitativos, modelos y métricas para el estudio de sistemas complejos tecnológico-sociales

    Automated image tagging through tag propagation

    Get PDF
    Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial Para obtenção do grau de Mestre em Engenharia InformáticaToday, more and more data is becoming available on the Web. In particular, we have recently witnessed an exponential increase of multimedia content within various content sharing websites. While this content is widely available, great challenges have arisen to effectively search and browse such vast amount of content. A solution to this problem is to annotate information, a task that without computer aid requires a large-scale human effort. The goal of this thesis is to automate the task of annotating multimedia information with machine learning algorithms. We propose the development of a machine learning framework capable of doing automated image annotation in large-scale consumer photos. To this extent a study on state of art algorithms was conducted, which concluded with a baseline implementation of a k-nearest neighbor algorithm. This baseline was used to implement a more advanced algorithm capable of annotating images in the situations with limited training images and a large set of test images – thus, a semi-supervised approach. Further studies were conducted on the feature spaces used to describe images towards a successful integration in the developed framework. We first analyzed the semantic gap between the visual feature spaces and concepts present in an image, and how to avoid or mitigate this gap. Moreover, we examined how users perceive images by performing a statistical analysis of the image tags inserted by users. A linguistic and statistical expansion of image tags was also implemented. The developed framework withstands uneven data distributions that occur in consumer datasets, and scales accordingly, requiring few previously annotated data. The principal mechanism that allows easier scaling is the propagation of information between the annotated data and un-annotated data

    An open‐source image classifier for characterizing recreational activities across landscapes

    Get PDF
    Environmental management increasingly relies on information about ecosystem services for decision-making. Compared with regulating and provisioning services, cultural ecosystem services (CES) are particularly challenging to characterize and measure at management-relevant spatial scales, which has hindered their consideration in practice. Social media are one source of spatially explicit data on where environments support various types of CES, including physical activity. As tools for automating social media content analysis with artificial intelligence (AI) become more commonplace, studies are promoting the potential for AI and social media to provide new insights into CES. Few studies, however, have evaluated what biases are inherent to this approach and whether it is truly reproducible. This study introduces and applies a novel and open-source convolutional neural network model that uses computer vision to recognize recreational activities in the content of photographs shared as social media. We train a model to recognize 12 common recreational activities to map one aspect of recreation in a national forest in Washington, USA, based on images uploaded to Flickr. The image classifier performs well, overall, but varies by activity type. The model, which is trained with data from one region, performs nearly as well in a novel region of the same national forest, suggesting that it is broadly applicable across similar public lands. By comparing the results from our CNN model with an on-site survey, we find that there are apparent biases in which activities visitors choose to photograph and post to social media. After considering potential issues with underlying data and models, we map activity diversity and find that natural features (such as rivers, lakes and higher elevations) and some built infrastructure (campgrounds, trails, roads) support a greater diversity of activities in this region. We make our model and training weights available in open-source software, to facilitate reproducibility and further model development by researchers who seek to understand recreational values at management-relevant scales—and more broadly provide an example of how to build, test and apply AI to understand recreation and other types of CESs

    On Measuring Bias in Online Information

    Get PDF
    Bias in online information has recently become a pressing issue, with search engines, social networks and recommendation services being accused of exhibiting some form of bias. In this vision paper, we make the case for a systematic approach towards measuring bias. To this end, we discuss formal measures for quantifying the various types of bias, we outline the system components necessary for realizing them, and we highlight the related research challenges and open problems.Comment: 6 pages, 1 figur

    Network Sampling: From Static to Streaming Graphs

    Full text link
    Network sampling is integral to the analysis of social, information, and biological networks. Since many real-world networks are massive in size, continuously evolving, and/or distributed in nature, the network structure is often sampled in order to facilitate study. For these reasons, a more thorough and complete understanding of network sampling is critical to support the field of network science. In this paper, we outline a framework for the general problem of network sampling, by highlighting the different objectives, population and units of interest, and classes of network sampling methods. In addition, we propose a spectrum of computational models for network sampling methods, ranging from the traditionally studied model based on the assumption of a static domain to a more challenging model that is appropriate for streaming domains. We design a family of sampling methods based on the concept of graph induction that generalize across the full spectrum of computational models (from static to streaming) while efficiently preserving many of the topological properties of the input graphs. Furthermore, we demonstrate how traditional static sampling algorithms can be modified for graph streams for each of the three main classes of sampling methods: node, edge, and topology-based sampling. Our experimental results indicate that our proposed family of sampling methods more accurately preserves the underlying properties of the graph for both static and streaming graphs. Finally, we study the impact of network sampling algorithms on the parameter estimation and performance evaluation of relational classification algorithms
    corecore