1,320 research outputs found

    Memristors for the Curious Outsiders

    Full text link
    We present both an overview and a perspective of recent experimental advances and proposed new approaches to performing computation using memristors. A memristor is a 2-terminal passive component with a dynamic resistance depending on an internal parameter. We provide an brief historical introduction, as well as an overview over the physical mechanism that lead to memristive behavior. This review is meant to guide nonpractitioners in the field of memristive circuits and their connection to machine learning and neural computation.Comment: Perpective paper for MDPI Technologies; 43 page

    The OpenMMPol Library for Polarizable QM/MM Calculations of Properties and Dynamics

    Full text link
    We present a new library designed to provide a simple and straightforward way to implement QM/AMOEBA and other polarizable QM/MM methods based on induced point dipoles. The library, herein referred to as OpenMMPol, is free and open-sourced and is engineered to address the increasing demand for accurate and efficient QM/MM simulations. OpenMMPol is specifically designed to allow polarizable QM/MM calculations of ground state energies and gradients, and excitation properties. Key features of OpenMMPol include a modular architecture facilitating extensibility, parallel computing capabilities for enhanced performance on modern cluster architectures, and a user-friendly interface for intuitive implementation and a simple and flexible structure for providing input data. To show the capabilities of fered by the library we present an interface with PySCF to perform QM/AMOEBA molecular dynamics, geometry optimization and excited state calculation based on (TD)DFT

    Towards Physarum Binary Adders

    Get PDF
    Plasmodium of \emph{Physarum polycephalum} is a single cell visible by unaided eye. The plasmodium's foraging behaviour is interpreted in terms of computation. Input data is a configuration of nutrients, result of computation is a network of plasmodium's cytoplasmic tubes spanning sources of nutrients. Tsuda et al (2004) experimentally demonstrated that basic logical gates can be implemented in foraging behaviour of the plasmodium. We simplify the original designs of the gates and show --- in computer models --- that the plasmodium is capable for computation of two-input two-output gate → \to and three-input two-output → \to . We assemble the gates in a binary one-bit adder and demonstrate validity of the design using computer simulation.Comment: Biosystems (2010), in press. Please download final version of the paper from the Publishers's sit

    Tools for Biomolecular Modeling and Simulation

    Get PDF
    Electrostatic interactions play a pivotal role in understanding biomolecular systems, influencing their structural stability and functional dynamics. The Poisson-Boltzmann (PB) equation, a prevalent implicit solvent model that treats the solvent as a continuum while describes the mobile ions using the Boltzmann distribution, has become a standard tool for detailed investigations into biomolecular electrostatics. There are two primary methodologies: grid-based finite difference or finite element methods and body-fitted boundary element methods. This dissertation focuses on developing fast and accurate PB solvers, leveraging both methodologies, to meet diverse scientific needs and overcome various obstacles in the field
    • …
    corecore