
Southern Methodist University Southern Methodist University

SMU Scholar SMU Scholar

Mathematics Theses and Dissertations Mathematics

Spring 2024

Tools for Biomolecular Modeling and Simulation Tools for Biomolecular Modeling and Simulation

Xin Yang
Southern Methodist University, xiny@smu.edu

Follow this and additional works at: https://scholar.smu.edu/hum_sci_mathematics_etds

 Part of the Molecular Biology Commons, Numerical Analysis and Computation Commons, and the

Partial Differential Equations Commons

Recommended Citation Recommended Citation
Yang, Xin, "Tools for Biomolecular Modeling and Simulation" (2024). Mathematics Theses and
Dissertations. 24.
https://scholar.smu.edu/hum_sci_mathematics_etds/24

This Dissertation is brought to you for free and open access by the Mathematics at SMU Scholar. It has been
accepted for inclusion in Mathematics Theses and Dissertations by an authorized administrator of SMU Scholar.
For more information, please visit http://digitalrepository.smu.edu.

https://scholar.smu.edu/
https://scholar.smu.edu/hum_sci_mathematics_etds
https://scholar.smu.edu/hum_sci_mathematics
https://scholar.smu.edu/hum_sci_mathematics_etds?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/5?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/119?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/120?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.smu.edu/hum_sci_mathematics_etds/24?utm_source=scholar.smu.edu%2Fhum_sci_mathematics_etds%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalrepository.smu.edu/

TOOLS FOR BIOMOLECULAR MODELING AND SIMULATION

Approved by:

Dr. Weihua Geng
Associate Professor of Mathematics

Dr. Johannes Tausch
Professor of Mathematics

Dr. Benno Rumpf
Associate Professor of Mathematics

Dr. Peng Tao
Associate Professor of Chemistry

TOOLS FOR BIOMOLECULAR MODELING AND SIMULATION

A Dissertation Presented to the Graduate Faculty of the

Dedman College

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the degree of

Doctor of Philosophy

with a

Major in Department of Mathematics

by

Xin Yang

B.S., Environmental Engineering, Southern Methodist University
M.S., Computational and Applied Mathematics, Southern Methodist University

May 11, 2024

Copyright (2024)

Xin Yang

All Rights Reserved

Acknowledgments

I am deeply grateful for the enriching opportunities and support that have shaped my

academic journey, and I wish to express my heartfelt appreciation to the following individuals

and organizations:

• First and foremost, I extend my sincere gratitude to Professor Weihua Geng, who has

been my advisor since my undergraduate research studies. His unwavering support,

mentorship, and profound influence on both my academic pursuits and personal growth

have been invaluable. I vividly remember attending his class during my sophomore

year, which marked a significant moment in my academic journey, sparking my interest

in mathematics and research. His patience, encouragement, and passion have fostered

in me a commitment to research characterized by thorough attention to detail.

• Additionally, I am equally appreciative of my esteemed committee members, Professor

Johannes Tausch and Professor Benno Rumpf, for their invaluable guidance, insights,

and contributions to my academic journey. Professor Tausch’s mentorship regarding

the expectations of a Ph.D. student, along with his course on Computational Elec-

tromagnetics, significantly enhanced my knowledge and comprehension in this field.

Similarly, Professor Benno Rumpf’s captivating course on Dynamical Systems fueled

my enthusiasm for various mathematical topics. I am also thankful to Professor Peng

Tao for generously serving on the committee.

• Furthermore, I extend special appreciation to Professor Daniel Reynolds for his en-

lightening classes, programming support, and invaluable guidance in the realm of

iv

high-performance computing, which has significantly shaped my career trajectory. Ad-

ditionally, I extend my gratitude to Professor Brandilyn Stigler for her course on Com-

putational Algebraic Geometry, which left a lasting impression on me and ignited a

passion for the subject. I deeply appreciate her mentorship, encouragement, and the

pivotal role her reference letter played in my job search endeavors.

• As I look back on the beginning of my Ph.D. journey, I am thankful to Professor Yunkai

Zhou for his recommendation letter, which played a crucial role in my admission to

the Ph.D. program. I also want to express my gratitude to all the exceptional pro-

fessors from my undergraduate studies, particularly Professors Patricia Taylor, Mark

Boyd and John Easton. Their encouragement and support motivated me to pursue

further education at Southern Methodist University in Dallas. Additionally, I deeply

appreciate the faculty at the Hart Center for Engineering Leadership for their invalu-

able support in guiding my career path during both my undergraduate and graduate

studies.

• I extend my appreciation to the Mathematics Department at Southern Methodist Uni-

versity for providing a conducive and supportive research environment. Special ac-

knowledgment is also due to the Office of Information Technology and the O’Donnell

Data Science and Research Computing Institute for their unwavering resources and

support.

• Lastly, I am deeply grateful for the financial support of my family and the emotional

support of my friends, especially Tianpeng Wu and Lizuo Liu, whose encouragement

has been invaluable throughout my educational journey.

v

Yang, Xin B.S., Environmental Engineering, Southern Methodist University
M.S., Computational and Applied Mathematics, Southern Methodist University

Tools for Biomolecular Modeling and Simulation

Advisor: Dr. Weihua Geng

Doctor of Philosophy degree conferred May 11, 2024

Dissertation completed April 23, 2024

Electrostatic interactions play a pivotal role in understanding biomolecular systems, in-

fluencing their structural stability and functional dynamics. The Poisson-Boltzmann (PB)

equation, a prevalent implicit solvent model that treats the solvent as a continuum while

describes the mobile ions using the Boltzmann distribution, has become a standard tool for

detailed investigations into biomolecular electrostatics. There are two primary methodolo-

gies: grid-based finite difference or finite element methods and body-fitted boundary element

methods. This dissertation focuses on developing fast and accurate PB solvers, leveraging

both methodologies, to meet diverse scientific needs and overcome various obstacles in the

field.

Chapter 2 introduces the Polarizable Multipole Poisson-Boltzmann (PM-PB) model,

which integrates the AMOEBA force field with a linear PB equation. We integrate this

PM-PB model with a regularized Matched Interface and Boundary PB (MIB-PB) solver.

Within the MIB-PB solver framework, we implement boundary conditions on a truncated

computational domain and employ numerical approaches incorporating surface potential

gradients. This implementation is validated using Kirkwood’s analytical solutions. This

integrated approach yields improved PB simulation outcomes with a more precise and re-

alistic source term. Additionally, we propose an ongoing study exploring a sophisticated

vi

Polarizable Multipole Nonlinear PB model (PM-NPB) in future investigations to address

the polarization caused by dipole as well as the nonlinear effects from the Boltzmann term.

Chapter 3 introduces two parallelized solvers for solving the Boundary Integral Poisson-

Boltzmann (BI-PB) equations: the Direct-Sum Boundary Integral (DSBI) PB solver, devel-

oped using KOKKOS on GPUs, and the Treecode-Accelerated Boundary Integral (TABI)

PB solver, developed by our collaborators using the Message Passing Interface (MPI) on

CPUs. These solvers undergo evaluation for their parallel performance in solving the BI-PB

equations on selected proteins crucial for understanding COVID-19 transmission, treatment,

and prevention. The parallelization techniques discussed in this chapter significantly en-

hance computational efficiency for macromolecular simulations. Additionally, we identify a

threshold value, denoted as nb = 250, 000, under the current hardware conditions on Mane-

FrameIII provided, by the O’Donnell Data Science and Research Computing Institute at

Southern Methodist University, which serves as a guideline for selecting the appropriate

solver.

Chapter 4 explores the unique capabilities of the Eulerian Solvent Excluded Surface

(ESES) software, which can generate both Eulerian and Lagrangian surfaces. By interfac-

ing ESES outputs, i.e., the molecular surface representations on both Cartesian grids and

triangular elements, we conduct a thorough numerical assessment of surface discretization

quality using two recently developed Poisson-Boltzmann (PB) solvers: a finite difference

based MIB-PB solver and a boundary integral based TABI-PB solver. Our numerical simu-

lations demonstrate that ESES facilitates the convergence of both solvers respectively when

employing the Eulerian and Lagrangian representations of the molecular surface it generates.

Chapter 5 presents a novel Poisson-Boltzmann-based Machine Learning (PB-ML) model

designed to predict the electrostatic solvation free energies of biomolecules. Through metic-

ulous evaluation of various PB solvers, we choose the most accurate MIB-PB solver for

generating ML labels. Leveraging advanced techniques like the Multiscale Weighted Colored

vii

Subgraph (MWCS) method and the Generalized Born (GB) model, we extract ML features

essential for the prediction task. Subsequently, we assess the performance of several ML

algorithms to determine the best one. The culmination of our research leads to the devel-

opment of a PBML model trained on a dataset comprising over 4000 biomolecules using the

DNN architecture. This model demonstrates superior efficiency and accuracy in predicting

electrostatics compared to traditional grid-based PB solvers.

In summary, the preceding four chapters serve as the foundation of this dissertation,

offering significant contributions to the advancement of PM-PB modeling, the paralleliza-

tion of BI-PB solvers, and the integration of machine learning for accurate and efficient

biomolecular electrostatic computations. Chapter 6 elaborates on software dissemination,

while Chapter 7 discusses the dissertation contributions, along with outlining future avenues

for research.

viii

TABLE OF CONTENTS

LIST OF FIGURES . xiii

LIST OF TABLES . xvi

CHAPTER

1 Introduction . 1

1.1. Implicit Solvent Models . 5

1.1.1. Poisson-Boltzmann Model . 6

1.1.2. Generalized Born Model . 8

1.2. Motivation . 10

2 A Regularized Matched Interface and Boundary Poisson-Boltzmann Solver

with Polarizable Force Fields . 12

2.1. Introduction . 12

2.2. Polarizable Multipole Poisson-Boltzmann Model . 14

2.2.1. Polarizable Multipole Sources of the AMOEBA . 15

2.2.2. Polarization in the Vacuum Phase . 16

2.2.3. Polarization in the Solvated Phase . 18

2.2.4. Boundary Conditions of the PMPB Model . 19

2.2.5. Analytical Solutions for A Spherical Cavity . 20

2.3. Matched Interface and Boundary Method . 23

2.4. A Two-Component Regularization of MIB . 30

2.5. Preliminary Results . 33

2.6. Proposed Polarizable Multipole Nonlinear Poisson-Boltzmann Model 35

2.6.1. A New Regularization Formulation . 36

ix

2.6.2. Linearized Iterative Algorithm for Self-Consistent Mutual Polarization 37

2.7. Conclusion . 38

3 Optimized Parallelization of Boundary Integral Poisson-Boltzmann Solvers 40

3.1. Introduction . 40

3.2. Boundary Integral Poisson-Boltzmann Solvers . 42

3.2.1. Boundary Integral Formulation of Poisson-Boltzmann Equation 43

3.2.2. Discretization of Boundary Integral Equations . 46

3.2.3. Treecode . 47

3.2.4. Preconditioning . 49

3.3. Parallelization Schemes . 53

3.3.1. MPI-based Treecode Accelerated Boundary Integral Solver 53

3.3.2. GPU-accelerated Direct-Sum Boundary Integral Solver 57

3.4. Numerical Results . 59

3.4.1. Parallel Efficiency of MPI-based Computing . 59

3.4.2. MPI-based TABI solver vs GPU-accelerated DSBI solver 61

3.5. Conclusion . 65

4 Bridging Eulerian and Lagrangian Poisson-Boltzmann Solvers by ESES 67

4.1. Background . 67

4.2. Molecular Surface Definitions and Generators . 69

4.3. Results and Discussions of ESES Performance . 71

4.3.1. TABI using Lagrangian ESES vs TABI using NanoShaper 73

4.3.2. MIB using Eulerian ESES vs MIB using Eulerian MSMS 74

4.3.3. MIB using Eulerian ESES vs TABI using Lagrangian ESES 75

4.4. Conclusion . 76

x

5 Poisson-Boltzmann based Machine Learning Model . 77

5.1. Introduction . 77

5.2. Data Preparation . 79

5.2.1. Feature Description . 80

5.2.2. Graph Theory Representation . 82

5.3. Machine Learning Algorithms . 84

5.3.1. Generalized-Born based Gradient Boosting Decision Tree 85

5.3.2. Generalized-Born based Deep Neural Network . 86

5.4. Results . 86

5.4.1. Evaluation Metrics . 86

5.4.2. Convergence Comparison of the PB Solvers . 87

5.4.3. Comparison between Different ML models . 89

5.4.4. Performance of the PBML Model . 90

5.5. Conclusion . 92

6 Software Dissemination . 93

7 Summary of Contributions and Future Work . 96

7.1. Dissertation Contributions . 96

7.2. Future Work . 98

APPENDIX

A Appendix . 100

A.1. Differentiation with respect to Cartesian coordinates . 100

A.2. Differentiation with respect to spherical coordinates . 103

A.3. Tensor multiplications . 105

A.4. Electric dipoles and multipoles . 106

xi

A.5. Electric potential and energy for multipoles . 110

A.6. The general solution of Laplace’s equation in spherical coordinates for the
case of axial symmetry . 112

A.7. Legendre polynomials . 116

A.8. The solution of Laplace’s equation due to a point dipole 116

A.9. The solution of Laplace’s equation due to a point quadrupole 119

A.10.The dipole theory of dielectrics . 120

A.11.Boundary conditions of the PMPB model . 122

A.12.Units of PB equation . 124

BIBLIOGRAPHY . 126

xii

LIST OF FIGURES

Figure Page

1.1 An illustration of the PB model and the GB model. (a): the PB model in
which the molecular surface Γ separates the computational domain into
the solute region Ω1 and solvent region Ω2; (b): the GB model in which
the molecule is represented by the superposition of spherical cavities with
Born radii and centered charges (one is shown here). 8

2.1 In vacuum, induced dipoles are determined by two polarizations: direct induc-
tion by other permanent multipoles and mutual induction by other induced
dipoles. In the AMOEBA force field, all multipoles are defined at atomic
centers. Here, they are placed off-centers for illustration purpose. 18

2.2 In solvent, besides direct induction and mutual induction, induced dipoles
are also subject to polarization produced by the reaction field. In the
AMOEBA force field, all multipoles are defined at atomic centers. Here,
they are placed off-centers for illustration purpose. 19

2.3 Potential measured at P with the dipole moment aligns with the field direction
(redraw from Böttcher [63]). 21

2.4 (a) The PB model showing the solute environment Ω− and the solvent envi-
ronment Ω+, (b) The MIB scheme illustrated in a 2-D setting with inside
fictitious points in red and outside fictitious points in yellow, (c) The MIB
scheme in finding the fictitious values at (i, j, k) and (i+1, j, k) in the cross
section of z = zk. 26

3.1 Details of treecode in 2D. (a) tree structure of particle clusters. (b) particle-
cluster interaction between the particle xi and the cluster c = {xj}. xc:
cluster center; R: particle-cluster distance; and rc: cluster radius. 49

xiii

3.2 A schematic illustration of the boundary element dense matrix A and its pre-
conditioning matrix M: (a) matrix A for the case of N = 20 elements
(the size of the matrix entry shows the strength of the interaction; the four
different color-coded region relates to K1−4 in Eq. (3.16a)-(3.16b)); (b) the
“block diagonal block” preconditioning matrixM (N0 = 3 in this schematic
illustration and there are 10 leaves with 1-3 particles/elements each); (c)
the “block diagonal” preconditioning matrix M, which is a permuted ma-
trix from M in (b) after switching the order of the unknowns. 51

3.3 Pipeline for parallelized TABI solver. 53

3.4 Methods for assigning target particles to tasks: sequential order (top) vs cyclic
order (bottom). 54

3.5 MPI-based parallelization with sequential and cyclic schemes: left: 128 tasks,
right: 256 tasks. The CPU time reported is tAx, the averages GMRES
iteration’s maximum CPU times among all tasks. 61

3.6 Color coded electrostatic surface potential in kcal/mol/ec on the molecular
surface of proteins 6yi3 (left), 7act (middle), and 7n3c (right); plot is drawn
with VMD [81]. 65

4.1 The two SES representation of protein 1a63: (a) Eulerian representation with
location and surface normal direction of intersection between mesh lines and
the SES surface; (b) Lagrangian representation with triangles and surface
normal direction at the vertices. 68

4.2 Molecular surface desciptions. 69

4.3 Triangulation quality comparison between ESES and NanoShaper using SES of
protein 1AJJ: (a) distribution in terms of kernel density estimation (KDE)
of triangles’ areas in Å2; (b) distribution of triangles’ maximum angles in
degrees. 72

4.4 Computing electrostatic solvation energy for the proteins 2pde (left) and 1aho
(right) using MIB solver on the Lagrangian representation from ESES and
from MSMS. 75

5.1 Convergence comparison among Amber, DelPhi, and MIB-PB; (a) MAPEs at
ten grid sizes for Amber, DelPhi, and MIB-PB in computing the electro-
static solvation free energies of 195 test proteins. For a protein in each
method, the reference value is computed at the mesh size of 0.2 Å; (b)-(c)
Illustration of the electrostatic solvation free energies obtained by Amber,
DelPhi, and MIB-PB at ten different mesh sizes from 0.2 to 1.1Å for pro-
teins 3gnw and 3owj respectively. 88

xiv

5.2 Convergence comparison among Amber, DelPhi, and MIB-PB. The graph shows
Absolute relative errors of Amber (dashed lines), DelPhi (dash-dot lines),
and MIB-PB (solid lines) at mesh sizes 0.4 Å (cycles) and 0.8 Å (squares)
for 30 proteins. For a protein in each method, the reference value is calcu-
lated at the mesh size of 0.2 Å. 89

5.3 Comparison of the MAPEs of Amber, DelPhi and PBML (use result in Table 5.1
from DNN model) of the electrostatic solvation free energies of the test set
at ten mesh sizes. The reference values are the results of MIB-PB at the
grid size of 0.2 Å. The DNN is trained with 448 different combinations of
parameters and the final optimized choice uses a batch size of 400, a learning
rate of 0.005, and a training duration of 900 epochs on an architecture with
367 neurons in input layer, (500, 500, 500) neurons in the three hidden
layers respectively, and one neuron in the output layer. 90

5.4 Accuracy and efficiency comparison on computing solvation energy on 195 pro-
teins whose indices are labeled along horizontal axis using MIB-PB at
h = 0.5 and DNN based PBML model:(a): relative error in solvation en-
ergy; (b): time. The average relative errors for PBML and MIB-PB are
0.005327 and 0.02786. The average time for PBML and MIB-PB is 236.5s
and 1417.4s respectively. Note the time for the PBML includes the time to
generate features but not the training time. 91

1.1 A simple electric dipole consisting of one positive charge and one negative
charge at a distance l. 107

1.2 Electric multipoles. 108

1.3 Potential at P outside a sphere encompassing all the charges, i.e., r ≫ ri. 109

xv

LIST OF TABLES

Table Page

2.1 Kirkwood’s spherical cavity results with radius 2Å. 34

2.2 Results on test proteins with atom number ranging from 504 − 1046; show-
ing electrostatic solvation energy Esol (kcal/mol) where the value for 1

∞ is
linearly extrapolated. The error is computed based on this extrapolated
value. 35

3.1 Pseudocode for MPI-based parallel TABI solver using replicated data algorithm. 56

3.2 Pseudocode for DSBI-PB solver using GPU. 58

3.3 CPU time and parallel efficiency (P.E.) for parallelized direct sum, sequentially
parallelized treecode (seq.) and cyclically parallelized treecode (cyc.) for
computing electrostatic solvation energy (-6020.52 kcal/mol from TABI
solver and -6013.68 kcal/mol from DSBI solver) for protein 7n3c with
529,955 boundary elements. The treecode parameters are θ = 0.8, N0 =
100, and p = 3; The number of tasks np ranges over 1, . . . , 256. The time
for one Ax (tAx) is the average iteration’s maximum CPU time over all
tasks. 60

3.4 Computing electrostatic solvation energies in (kcal/mol) for the involved pro-
teins: ionic strength = 0.15M; ϵ1 = 1, ϵ2 = 80; MSMS [46] density=12; Nc

is the number of atoms/charges, N is the number of boundary elements,
ni is the number of GMRES iterations, Sses is the solvent excluded surface
area, and Esol is the electrostatic solvation energy. 62

3.5 Computing electrostatic solvation energies in (kcal/mol) for the protein 6yi3 at
different MSMS densities: ionic strength = 0.15M; ϵ1 = 1, ϵ2 = 80; d is the
MSMS density, N is the number of boundary elements, ni is the number
of GMRES iterations, Esol is the electrostatic solvation energy. Results are
generated using KOKKOS and MPI on ManeFrame III; MPI results are
from using 64 tasks; GPU results are from using one A100 GPU. 64

xvi

4.1 Computing electrostatic solvation energy of a protein (PDB 1AJJ) with TABI
solver using two molecular surface generators ESES and NanoShaper (NS):
Densities are used as a parameter to control the number of triangular faces
N ; Dimension (for ESES only) is the number of grid points in each di-
rection; ∆Esol is the difference of solvation energy calculated using TABI
solver with ESES and NanoShaper surface generators. 73

4.2 Computing electrostatic solvation energy of a spherical cavity with a centered
charge using MIB solver on the Lagrangian representation from ESES and
from MSMS. 74

4.3 Computing electrostatic solvation energy of protein 1ajj using TABI solver [37]
on the Lagrangian representation and using MIB solver [26] on the Eulerian
representation of the molecular surface, both generated by ESES; zero ionic
strength. 76

5.1 MAPEs of LR, RF, GBDT, and DNN for the test set of 195 proteins. For
LR and RF, default parameters were used. For GBDT, parameters were
set as follows: learning rate 0.05, number of estimators 1500, maximum
depth 5. The DNN was trained with about 500 different combinations of
parameters, and the final optimized choice uses a batch size of 400, an
adjustable learning rate starting at 0.01, and a training duration of 3300
epochs on an architecture with 127 neurons/features in the input layer,
(200, 500, 500, 500) neurons in the four hidden layers, and one neuron in
the output layer. 89

1.1 Explicit values for the functions αn(x) and kn(x) up to quadrupole order. 125

1.2 Explicit values of the coefficients used to calculate the potential at the grid
boundary of LPBE and Poisson equation calculations, respectively, under
the SDH or MDH approximation. The LPBE coefficients reduce to the
Poisson equation coefficients as salt concentration goes to zero. 125

xvii

To my dad, Tian-Min Yang, who nurtured my intellectual curiosity and provided the

means for my educational journey.

Chapter 1

Introduction

Electrostatic interactions play a pivotal role in the study of biomolecular systems, con-

tributing significantly to their structural stability and functional dynamics. However, fully

understanding the strength and characteristics of these interactions requires a deep compre-

hension of the physical and chemical properties of molecules in “aqueous” solutions.

To gain a comprehensive understanding of aqueous solutions, it is essential to employ

models that consider both solute and solvent molecules, along with their interactions. The

widely used molecular mechanics approach utilizes a “force field”, incorporating nonbonded

van der Waals and electrostatic terms to capture intermolecular interactions. Describing sol-

vent effects accurately at the molecular level necessitates computing the interactions among

a vast number of molecules and averaging them over numerous solvent configurations. Al-

though explicit solvent models offer detailed insights into solvent-mediated biomolecular in-

teractions, their computational efficiency diminishes for large systems due to the numerous

solvent degrees of freedom. In contrast, implicit solvent models characterize solvent proper-

ties in an averaged or continuum manner, making them standard techniques for analyzing

the energetics and dynamics of biomolecular systems.

In 1982, leveraging the advancements in comprehending the three-dimensional structure

of proteins and the increased computational power, Warwicker and Watson [1] introduced

a grid-based, finite difference approach for computing the electrostatic potential of non-

spherical proteins by solving the Poisson–Boltzmann (PB) equation. This equation, derived

from a continuum description of the solvent and counterion environment surrounding a

biomolecule [2–5], is a nonlinear partial differential equation (PDE) that incorporates intri-

1

cate details about the biomolecular shape and charge distribution. Since their pioneering

work, the PB equation has emerged as a standard method for conducting detailed investiga-

tions into biomolecular electrostatics. It has broad applications in biomolecular simulations,

including protein structure [6], chromatin packing [7], protein pKa values [8–10], protein-

membrane interactions, [11], binding energy [12], solvation-free energy [13], and ion channel

profiling [14]. In addition to PB models, simpler approximate models have also been devel-

oped for continuum electrostatics. Notably, the generalized Born models, pioneered by Still

et al. [15], have gained widespread popularity among these simpler models.

However, despite its widespread utility, the PB model is an elliptic interface problem

with several numerical challenges:

1. Charge singularity: The potential exhibits singularity at atomic centers due to the

singular point charge representation.

2. Geometric singularity: The solute-solvent boundary forms a complex interfacial molec-

ular surface, characterized by cusps, sharp edges, sharp wedges and self-intersecting

surfaces.

3. Discontinuous dielectric coefficients: Addressing the loss of regularity in the potential

caused by the discontinuous dielectric coefficients across the interface requires an in-

terface treatment. This complicates the scheme, decreasing the convergence speed of

the iterative solver for the linear system.

4. Nonlinearity: Instability may arise from the nonlinearity caused by the strong ionic

strength.

5. Unbounded condition: The model involves an infinite computational domain, necessi-

tating significant memory resources.

2

There are two primary methodologies emerged to address these challenges:

1. Grid-based finite-difference or finite-element methods that discretize the entire compu-

tational domain, resulting in efficient and robust PB solvers such as APBS [16], AM-

BER [17,18], CHARMM [19], and Delphi [3,20]. In these schemes, singular charges are

either interpolated to the grid or regularized using Green’s function, while interface

conditions are approximated, and the far-field boundary condition is enforced on a

truncated domain. However, the inherent nature of discretizing the partial differential

equation leads to a reduction in accuracy unless special treatments for interface [21,22]

and singularity [23–27] are applied. Implementing these treatments requires more

complicated schemes, potentially leading to a decrease in the convergence speed of the

iterative solver for the linear system. Furthermore, discretizing both the solute and

solvent domains imposes significant demands on computer power and resources.

2. Body-fitted boundary element methods that discretize the molecular surface, e.g. [28–

40]. These schemes leverage the fact that in many cases, the differential equations can

be reformulated into a set of boundary integral equations. This reformulation reduces

the dimensionality of the problem by one and circumvents the challenges associated

with domains extending to infinite. These methods offer advantages such as analyt-

ically incorporating singular charges, interface conditions, and far-field conditions in

the formulation, inherent in the nature of a boundary integral formulation. Further-

more, the boundary integral approach can benefit from efficient acceleration using fast

algorithms like the fast multipole method [41] and treecode [42,43], as well as parallel

computing capabilities such as CPU and GPU processing. Despite these advantages,

boundary integral PB solvers face their own set of challenges, including the compu-

tational cost of solving a dense linear system and the complexity of addressing the

nonlinear PB equation under the boundary integral formulation.

3

This dissertation is dedicated to the development of fast and accurate PB solvers, which

serve as invaluable tools for theoretical and computational bio-scientists. We utilize these

two methodologies, each with its advantages and limitations, tailored for different scientific

needs and challenges.

In Chapter 2, we address the challenges (1-3) by employing a regularized Matched Inter-

face and Boundary (MIB) method [24]. This approach involves decomposing the potential

into two parts, allowing the singular component to be analytically captured by the Green’s

function while ensuring that other components remain bounded. Additionally, we integrate

a polarizable and multipolar (PM) force field AMOEBA, which offers a more realistic and

accurate charge density representation, with our MIB-PB solver to solve the simplified lin-

ear PB (LPB) equation. However, for highly charged biomolecules, the assumption of the

LPB model, where the electrostatic potential is weak enough, becomes invalid. Hence, the

nonlinear PB (NPB) model emerges as a superior option compared to the LPB model for

coupling with the PM sources. Nonetheless, implementing the PM-NPB model for real pro-

tein systems presents several challenges due to its highly nonlinear, recursive nature, and

strong singularity in sources. To address these challenges, we propose a new regularization

formulation and a linearized iterative algorithm for future study.

Our attention turns to Boundary Integral PB (BI-PB) solvers for macromolecular sys-

tems, where grid-based discretization becomes impractical. These solvers circumvent the

challenges (1-3). In Chapter 3, we delve into the application of acceleration techniques like

treecode and parallel computing to solve the dense linear system arising from the discretized

boundary integral equations. Moreover, we incorporate a preconditioning scheme [44] to

tackle challenges arising from low-quality triangles generated by the molecular surface gen-

erator, which can increase the number of GMRES iterations needed to solve the linear system.

We present our development of CPU and GPU acceleration for two types of BI-PB solvers:

4

the Treecode-Accelerated BI-PB (TABI-PB) solver and the Direct-Sum BI-PB (DSBI-PB)

solver, followed by a comparative analysis.

As mentioned above, molecular surface generators play a critical role in determining

the accuracy and efficiency of PB solvers by defining discretized solute-solvent interfaces.

In Chapter 4, we evaluate the performance of a novel molecular surface generator, ESES,

in handling surface singularities like cusps and self-intersecting surfaces. We evaluate its

applicability for both MIB-PB and BI-PB solvers.

Lastly, considering the significant computational expense involved in generating highly

accurate electrostatic potentials for large biomolecules, as outlined in Chapter 5, we introduce

a novel PB machine learning (PB-ML) model. By harnessing the power of machine learning

methodologies, our model represents a significant leap forward in the field, offering promising

avenues for addressing increasingly intricate computational challenges.

Indeed, while the Poisson-Boltzmann equation provides valuable insights into the elec-

trostatics of biomolecular systems, it is important to recognize its limitations. As an ap-

proximate theory derived from the mean field of the electrolyte system, the PB equation

neglects counterion correlations and fluctuations. These omissions can significantly impact

the energetics of highly charged biomolecular systems such as DNA and RNA. Therefore,

it is essential to carefully consider the applicability of the PB model for systems with high

charge densities and acknowledge its limitations in such scenarios.

1.1. Implicit Solvent Models

The implicit solvent models average over the configuration space of solvent and counterion

species surrounding the biomolecule. These models retain the electrostatic interactions with-

out explicitly modeling solvent molecules, thereby reducing the dimensionality of the solvent-

solute system. Consequently, the solvent is represented as a polarizable continuum, while

the counterion distribution is depicted as a mean field charge “cloud”, necessitating careful

5

modeling. To initiate our discussion, we delve into the details of the Poisson-Boltzmann

(PB) and Generalized Born (GB) models as outlined by Baker [16] in this section.

1.1.1. Poisson-Boltzmann Model

We start with the canonical Poisson’s equation, which describes the dimensionless elec-

trostatic potential ϕ(x) in some finite domain Ω, generated by a charge distribution ρ(x) in a

polarizable continuum with the dielectric constant ϵ(x) and the Dirichlet boundary condition

g(x) on the boundary Γ:

−∇ · ϵ(x)∇ϕ(x) = ρ(x) for x ∈ Ω,

where ϕ(x) = g(x) for x ∈ Γ.

(1.1)

There are two types of charge distribution for consideration in a biomolecular system. One

is the “fixed” charge distribution for the partial atomic charges:

ρf(x) =
4πe2c
kT

N∑
i=1

qiδ (x− xi) , (1.2)

which models N atomic partial charges as delta functions δ(x − xi) located at the atom

centers xi with magnitudes qi. The coefficients include the charge of an electron ec, and

the thermal energy of the system kT to ensure the dimensionless form of the potential.

The other one is the “mobile” charge distribution, where the counterions’ contributions are

approximated by a Boltzmann distribution in a continuous manner:

ρm(x) =
4πe2c
kT

n∑
j

cjQj exp [−Qjϕ(x)− Vj(x)] , (1.3)

for n counterion species with charges Qi, bulk concentrations cj, and steric potentials Vj.

This equation reduces to:

ρm(x) = κ̄2(x) sinhϕ(x), (1.4)

6

for a one-to-one electrolyte such as NaCl, where the coefficient κ̄2(x) describes ion accessi-

bility and bulk ionic strength.

Up to this point, we obtain the Poisson-Boltzmann equation for a one-to-one electrolyte

considering both fixed and mobile distributions as:

−∇ · ϵ(x)∇ϕ(x) + κ̄2(x) sinhϕ(x) =
4πe2c
kT

∑
i

qiδ (x− xi) for x ∈ Ω,

where ϕ(x) = g(x) for x ∈ Γ.

(1.5)

This nonlinear PB equation can be simplified to a linearized PB equation by taking the

first-order approximation of sinhϕ(x) ≈ ϕ(x):

−∇ · ϵ(x)∇ϕ(x) + κ̄2(x)ϕ(x) =
4πe2c
kT

∑
i

qiδ (x− xi) for x ∈ Ω,

where ϕ(x) = g(x) for x ∈ Γ.

(1.6)

The coefficients of the PB model capture the biomolecular structure. Specifically, the atomic

positions and radii are part of the definitions of ϵ(x) and κ̄2(x) through different molecular

surface definitions. We use the SES representation (further elaborated in Chapter 4), where

ϵ(x) is defined as discontinuous across the biomolecular surface with solute dielectric values

inside and bulk solvent values outside the surface. As illustrated in Fig. 1.1(a), for a system

of charges at positions ri for i = 1, ..., Nc with Nc as the total number of charges, the PB

model is:

−∇ · ϵ(r)∇ϕ(r) + κ̄2(r)ϕ(r) =
Nc∑
i=1

qiδ(r− ri), (1.7)

with

ϵ(r) =

ϵ1 for r ∈ Ω1,

ϵ2 for r ∈ Ω2,

(1.8)

7

and κ̄ is the screening parameter with the relation κ̄2 = ϵ2κ
2, where κ is the inverse De-

bye length measuring the ionic effective length. The resulting interface conditions on the

molecular surface are:

ϕ1(r) = ϕ2(r), ϵ1
∂ϕ1(r)

∂ν
= ϵ2

∂ϕ2(r)

∂ν
, r ∈ Γ (1.9)

where ϕ1 and ϕ2 are the limit values when approaching the interface from the inside and

the outside the solute domain, and ν is the outward unit normal vector on Γ. The far-field

boundary condition is lim|r|→∞ ϕ(r) = 0.

−
𝚪

⊕

⊕

⊕

⊖

⊖

⊖

⊖
⊖

⊖

−

−

−

−

+

−

+

+

+

+

+

+

𝛀2𝑺𝒐𝒍𝒗𝒆𝒏𝒕

𝛀1𝑺𝒐𝒍𝒖𝒕𝒆

− +

+

𝑴𝒐𝒃𝒊𝒍𝒆 𝒊𝒐𝒏𝒔

𝜖 𝒓 = 𝜖1

𝜖 𝒓 = 𝜖2

𝚪
⊖

𝛀!𝑺𝒐𝒍𝒗𝒆𝒏𝒕

𝛀"𝑺𝒐𝒍𝒖𝒕𝒆
𝜖 𝒓 = 𝜖"

𝜖 𝒓 = 𝜖!

Born Radius

(a) (b)

Figure 1.1: An illustration of the PB model and the GB model. (a): the PB model in
which the molecular surface Γ separates the computational domain into the solute region
Ω1 and solvent region Ω2; (b): the GB model in which the molecule is represented by the
superposition of spherical cavities with Born radii and centered charges (one is shown here).

1.1.2. Generalized Born Model

The Generalized Born (GB) model is based on the Born ion model, which characterizes

the electrostatic potential and solvation energy of a spherical ion. It approximates the

electrostatic properties of small molecules using an analytical expression derived from the

Born ion model [45]. Unlike the PB model, the GB model fails to capture the molecular

structure and ion distributions in detail. However, it offers a fast approach, suitable for our

8

PB-ML model in Chapter 5, to evaluating the electrostatics of the solvated biomolecules [16].

Below, we outline the derivations of the GB model.

The potential energy of a system of point charges in free space is the work done by

external force in moving a charge qi from the infinity to ri, where the potential is ϕ(ri),

without acceleration,

Wi = qiϕ(ri) =
qi

4πϵ0

n∑
j=1
j ̸=i

qj
|ri − rj|

. (1.10)

Note that lim|r|→∞ ϕ(r) = 0. Adding each charge in succession,

W =
1

4πϵ0

n∑
i=1

∑
j<i

qiqj
|ri − rj|

=
1

8πϵ0

n∑
i=1

∑
j=1
j ̸=i

qiqj
|ri − rj|

. (1.11)

For a continuous charge distribution ρ(ri), the potential is:

ϕ(r) =
1

4πϵ0

ˆ
ρ(r′)

|r− r′|
dr′, (1.12)

and then the work is:

W =
1

8πϵ0

ˆ ˆ
ρ(r)ρ(r′)

|r− r′|
drdr′ =

1

2

ˆ
ρ(r)ϕ(r)dr. (1.13)

Apply the Poisson’s equation and integration by parts, the work is then:

W =
1

2

ˆ
(−ϵ0∇2ϕ)(ϕ)dr =

ϵ0
2

ˆ
|∇ϕ|2 dr = ϵ0

2

ˆ
|E|2 dr = 1

2

ˆ
E ·Ddr. (1.14)

Now consider assembling a charge to the center of a sphere of origin with ϵ1 for r < a and

ϵ2 for r > a with radius a. The work is:

Gi =
1

8πϵ

ˆ
D ·Ddr ≈ 1

8π

ˆ
Ω1

q2i
r4ϵ1

dr+
1

8π

ˆ
Ω2

q2i
r4ϵ2

dr, (1.15)

9

where Ω1 and Ω2 are the solute and solvent domains, ϵ1 ∈ Ω1 is the permittivity of solute,

and ϵ2 ∈ Ω2 is the permittivity of solvent. The electrostatic free energy is:

∆Gsolv,i =
1

8π
(
1

ϵ2
− 1

ϵ1
)

ˆ
Ω2

q2i
r4
dr = (

1

ϵ2
− 1

ϵ1
)
q2

2ai
. (1.16)

As the molecules are treated as collection of atoms,

∆Gsolv ≈
N∑
i

q2i
2ai

(
1

ϵ2
− 1

ϵ1
) +

1

2

N∑
i

N∑
j ̸=i

qiqj
rij

(
1

ϵ2
− 1

ϵ1
) ≈ (

1

ϵ1
− 1

ϵ2
)
1

2

∑
ij

qiqj
fGB
ij

, (1.17)

where

fGB
ij =

√
r2ij +RiRj exp

(
−

r2ij
4RiRj

)
, (1.18)

with the effective Born radius Ri for ith atom, and the distance rij between atoms i and j.

The effective Born radii Ri is calculated by the following boundary integral:

R−1
i =

(
− 1

4π

˛
Γ

r− ri
|r− ri|6

· dS
)1/3

. (1.19)

1.2. Motivation

As mentioned earlier, the PB model presents several challenges. A primary concern lies

in accurately and efficiently modeling molecular surfaces, as they significantly impact the

stability of PB solvers. We choose the solvent excluded surface (SES) definition for all our

PB models due to its C1-continuous surface representation, as discussed further in Chapter

4. While existing SES software packages, such as MSMS [46], efficiently offer SESs in the

Lagrangian representation, we require the conversion of its Lagrangian representation into

the Eulerian form for the utilization of finite difference based PB solvers. This is where the

Eulerian Solvent Excluded Surface (ESES) software becomes essential, as it provides both

Lagrangian and Eulerian representations. We integrate ESES’s outputs on both Cartesian

10

grids and triangular elements with the Eulerian (MIB) and Lagrangian (BI) PB solvers

respectively to assess its efficacy.

Another concern arises regarding the source term in the PB model. In describing electro-

static interactions among highly charged biomolecules, the traditional partial charge repre-

sentation for the source term lacks accuracy as it overlooks crucial polarization effects, i.e.,

the redistribution of the electron density in the presence of an external electric field. To ad-

dress this limitation, we adopt a Polarizable Multipole (PM) source representation, leading

to the utilization of our PM-PB model, and to capture the singularities from this source rep-

resentation, we couple it with a regularized Matched Interface and Boundary (MIB) method.

Given the computational challenges associated with solving dense linear systems in

boundary integral PB (BI-PB) solvers, particularly considering the problem size after dis-

cretizing molecular surfaces for various proteins, we have devised two BI-PB solvers opti-

mized for different hardware configurations: a Direct-Sum Boundary Integral (DSBI) PB

solver utilizing Kokkos on GPUs, and a Treecode-Accelerated Boundary Integral (TABI)

PB solver employing MPI on CPUs. These parallel PB solvers are capable of delivering both

global solvation energy and local surface potential in practical applications.

Despite these advancements, effectively and accurately solving PB models for large-scale

modeling remains computationally expensive. Furthermore, insights gained from electro-

static analysis of one biomolecule may not directly apply to others, necessitating separate

electrostatic analyses for different proteins or even the same protein with different proto-

nation states or conformations. To address this challenge, we propose developing an effi-

cient machine learning based tool. Leveraging the capability of the PB model to capture

biomolecular structure, we plan to design a PB-based ML model for predicting the electro-

static properties based on the biomolecular structure. As the dataset grows in the future,

there is a potential to incorporate experimental label data for training the ML model.

11

Chapter 2

A Regularized Matched Interface and Boundary Poisson-Boltzmann Solver

with Polarizable Force Fields

In this chapter, we introduce a Polarizable Multipole Poisson-Boltzmann (PM-PB) model,

which integrates the polarizable and multipolar Atomic Multipole Optimized Energetics for

Biomolecular Applications (AMOEBA) force field with a linear PB equation. Our aim is to

mitigate inaccuracies stemming from the traditional partial charge representation of charge

density in the PB equation’s source term. As the polarizable multipole source representation

involves the Dirac delta functions and their derivatives, we utilize a regularized Matched

Interface and Boundary (MIB) method [26] to analytically regularize the singular source

term in the PB model, maintaining second-order accuracy by handling interface conditions.

Initially, we incorporate the MIB-PB solver with the multipole source term and perform

preliminary validation of this method on spherical cavities and several test proteins. The

inclusion of polarizable dipoles is deferred to future implementations.

Additionally, we propose a more sophisticated PM Nonlinear PB (PM-NPB) model, given

that PM source models amplify electrostatic interactions, resulting in substantial nonlinear

effects in the Boltzmann term. We tackle the associated challenges, such as high nonlinearity,

recursion, and strong singularity in sources, by proposing a new regularization formulation

and a linearized iterative algorithm.

2.1. Introduction

The implicit solvent models are parameterized based on the force fields, and these force

fields significantly influence the accuracy of molecular simulations. The most commonly

12

used force fields, known as the classical force fields, describe the charge distribution using

the partial charge model [3,47]. In this model, point charges are positioned at atomic centers

and are represented in terms of Dirac delta functions. These force fields have demonstrated

success in numerous applications [48].

However, when describing electrostatic interactions among highly charged biomolecules,

this discrete charge representation is recognized as an important source of the PB modeling

errors [49], and it fails to capture the important polarization effects [50], i.e., the redistri-

bution of the electron density in the presence of an external electric field. Instead, more

sophisticated force fields are employed, which take into account not only the monopoles but

also higher-order multipole components capable of polarization, to provide a more realis-

tic and precise charge representation, leading to an improved accuracy in the simulations.

Among these newer force fields, the AMOEBA force field [48,51] is the most popular one. It

utilizes point multipoles, extending up to the quadrupole moment, to characterize the charge

distribution and allows the dipole moment to incorporate a polarizable component. As a

result, this model demonstrates notably improved agreement with experimental and high-

level ab initio findings across various domains, including cluster structures, energetics, bulk

thermodynamics, and structural characteristics for water [51], organic molecules [52], and

proteins [53]. This force field is accessible through several packages, such as Tinker [54–56],

OpenMM [57] and AMBER [58].

Besides the errors in PB source modeling, irregular interfaces and geometric singulari-

ties also pose challenges by introducing numerical instability and impeding the convergence

of the PB solvers. To tackle these issues, we utilize the Matched Interface and Bound-

ary (MIB) method, which rigorously enforces the flux jump conditions at the solvent-solute

interface, ensuring highly accurate biomolecular electrostatics in continuum electric environ-

ments. However, when the mesh size nears half of the van der Waals radius, the accuracy of

MIB decreases due to the overlap between grid points carrying the interface jump conditions

13

and those carrying the distributed singular charges. To address this limitation, we employ a

regularization formulation that divides the PB solution into “regular” and “singular” parts,

by adopting a Green’s function formulation for the molecular surfaces of proteins with po-

tential geometric singularities. This approach efficiently redistributes the impact of charge

singularities into a set of interface jump conditions, which can be determined from solving

the corresponding Laplace equation with given singular sources. Hence, we are capable of

addressing geometric and charge singularities with equal efficacy.

Furthermore, for highly charged biomolecules [59], the electrostatic interactions are in-

tensified, leading to amplified nonlinear effects on the Boltzmann term. Consequently, the

assumption of the LPB model, which presumes weak electrostatic potentials, becomes un-

tenable. Therefore, the nonlinear Poisson-Boltzmann (NPB) model emerges as a superior

choice over the LPB model as an implicit solvent theory for interfacing with PM sources.

However, implementing the PM-NPB model for real protein systems presents computational

challenges due to its highly nonlinear, recursive self-consistent, and strongly singular nature

in sources. To tackle these challenges, we propose a theoretical framework for future inves-

tigations: utilizing a Green’s function-based decomposition method to analytically eliminate

the charge singularities arising from the Dirac delta function and its derivatives, combined

with an iterative algorithm to linearize the self-consistency recursion. This approach reduces

the computational burden by solving a linearized Poisson-Boltzmann (LPB) equation in each

iteration.

2.2. Polarizable Multipole Poisson-Boltzmann Model

Ideally, the representation of charge density should accurately reflect the electron density

distribution obtained from computationally intensive quantum mechanical (QM) calculations

[60, 61]. To achieve this, we employ a recently developed polarizable multipole (PM) model

utilizing the AMOEBA force field [51,53]. This approach enhances the accuracy of modeling

electron density and polarization while preserving the atomic representation.

14

In AMOEBA, permanent multipoles such as dipoles and quadrupoles (see Appendix

A.4) are expressed at atomic centers using derivatives of delta functions. The polarization

of the solute is taken into account to compute induced dipoles. These additional dipole

and quadrupole moments, representing lone pairs and π bonds respectively, contribute to a

more precise depiction of electrostatic interactions and properties across diverse physical and

chemical environments [50]. Notably, in this framework, only dipole moments are regarded

as polarizable, while quadrupoles are treated as non-polarizable for simplicity.

As a result, this model demonstrates substantially enhanced agreement with experimental

and high-level ab initio outcomes across a range of systems, encompassing cluster configu-

rations, energetics, bulk thermodynamic properties, and structural metrics for water [51],

organic molecules [52], and proteins [53]. Furthermore, the AMOEBA force field maintains a

straightforward atomic architecture, facilitating its seamless substitution for the traditional

partial charge model as the source in PB computations.

2.2.1. Polarizable Multipole Sources of the AMOEBA

Consider a protein containing Nc atoms. Each atomic center, denoted as rn = (xn, yn, zn),

possesses permanent atomic monopole, dipole, and quadrupole moments, expressed as:

Mn = [qn, dnx, d
n
y , d

n
z ,Θ

n
xx,Θ

n
xy, . . . ,Θ

n
zz]

t, (2.1)

where the superscript t denotes the transpose. As the permanent multipoles including dipoles

and quadrupoles are in terms of derivatives of delta functions, the permanent charge at rn

in vacuum can be written as [51,53]:

ρn(r) = qnδ(r− rn) + dnα∂αδ(r− rn) + Θn
αβ∂αβδ(r− rn), (2.2)

15

where the subscripts α and β represent the x, y, or z components of a position vector or the

corresponding differentiations. Based on this charge density representation, the Coulomb

potential, which is the fundamental solution to Poisson’s equation in Eq. (1.1):

G(r) =
1

4πϵ1

Nc∑
n=1

qn

|r− rn|
, (2.3)

can then be expanded into terms of Green’s function as:

G(r) =
1

4πϵ1

Nc∑
n=1

qn
[

1

|r− rn|
− rn,α

(rα − rn,α)

|r− rn|3
+ rn,αrn,β

3 (rα − rn,α) (rβ − rn,β)

2 |r− rn|5

]
=

1

4πϵ1
q

(
1

R

)
− dα∇α

(
1

R

)
+

1

3
Θαβ∇α∇β

(
1

R

)
,

(2.4)

where R denotes the scalar distance, and the multipole moments are defined as:

q =
Nc∑
n=1

qn, (2.5a)

dα =
Nc∑
n=1

rn,αq
n, (2.5b)

Θαβ =
Nc∑
n=1

3

2
rn,αrn,βq

n − 1

2
rnrnδαβ. (2.5c)

Note that the total Coulomb potential in Eq. (2.4) is “additive” for all permanent multipoles

M = [M1,M2, . . . ,MNc]t.

2.2.2. Polarization in the Vacuum Phase

The polarization is “non-additive”, even in a vacuum, meaning that the total polariza-

tion cannot be simply summed from individual atomic polarizations. Based on the Green’s

16

function, we propose to compute the induced dipole moment µn at position rn, given by:

µn = αnEn = αn

(∑
m̸=n

∇Gm(rn) +
∑
m̸=n

Tnmµ
m

)
, (2.6)

where αn represents the isotropic atomic polarizability for the n-th atom and En denotes

the total field at each site rn arising from contributions of permanent multipole sites and

induced dipoles. The gradient of the Coulomb potential due to the m-th atom, denoted as

∇Gm(r), can be analytically derived, while the tensor coefficient Tnm is a 3-by-3 interaction

tensor provided in the AMOEBA force field, incorporating masking and Thole damping for

a distance snm [62]:

Tnm =

∂2/∂xn∂xm ∂2/∂xn∂ym ∂2/∂xn∂zm

∂2/∂yn∂xm ∂2/∂yn∂ym ∂2/∂yn∂zm

∂2/∂zn∂xm ∂2/∂zn∂ym ∂2/∂zn∂zm

1

snm
. (2.7)

As shown in Fig. 2.1, the electric field En in Eq. (2.6) consists of both the polarization

by other permanent multipoles, which is known as direct induction, and the polarization

by other induced dipoles, which is known as mutual induction. The mutual polarization

described in Eq. (2.6) represents a “self-consistent process” [62]. From a mathematical

perspective, this self-consistent process can be viewed as an iterative procedure: the n-th

induced dipole µn depends on all other induced dipoles µm, while the new value of µn

computed using Eq. (2.6) will, in turn, influence other induced dipoles µm. To achieve

an equilibrium state for electrostatic analysis, the self-consistent process must be iteratively

computed.

We propose a non-iterative solution for Eq. (2.6). By rearranging the terms and com-

bining the second term on the right-hand side (RHS) with the left-hand side (LHS), Eq.

17

+
_

+
+

_

_

+
+ __

+
_

+
_

+
_

Figure 2.1: In vacuum, induced dipoles are determined by two polarizations: direct
induction by other permanent multipoles and mutual induction by other induced dipoles.
In the AMOEBA force field, all multipoles are defined at atomic centers. Here, they are
placed off-centers for illustration purpose.

(2.6) can be reformulated into a linear system. The equilibrium state of the self-consistent

mutual polarization in vacuum can then be determined by solving this linear system directly.

We denote the solution as µ(V), where the superscript (V) denotes vacuum. The Coulomb

potential GV induced by µ(V) can be represented using Green’s functions:

GV(r) =
Nc∑
n=1

rα − rn,α
|r− rn|3

µ(V),n
α , E

(V)
elec =

1

2
kBT

ˆ (
G(r) +GV(r)

) Nc∑
n=1

ρn(r) dr (2.8)

Once the Coulomb potential for permanent multipoles and induced dipoles, G and GV re-

spectively, are determined, the electrostatic energy in vacuum E
(V)
elec can be computed based

on Eq. (2.8).

2.2.3. Polarization in the Solvated Phase

For discussing the situation in the solvated phase, consider a macromolecule with a low

dielectric ϵ1 immersed in a solvent with a high dielectric ϵ2. We propose to characterize

this polarization with three components as shown in Fig. 2.2: the direct induction by other

permanent multipoles, the mutual induction by other induced dipoles, and the polarization

18

-600
201

-400

151

u R
F

-200

y

201101 151

x

51 101511 1

+
_

+
+

_

_

+
+ __

+
_

+
_

+
_

Figure 2.2: In solvent, besides direct induction and mutual induction, induced dipoles are
also subject to polarization produced by the reaction field. In the AMOEBA force field, all
multipoles are defined at atomic centers. Here, they are placed off-centers for illustration
purpose.

induced by the total solvation reaction field ϕRF, so that the induced dipole is:

µn = αn

(∑
m ̸=n

∇Gm(rn) +
∑
m ̸=n

Tnmµ
m −∇ϕRF(rn)

)
, (2.9)

where the reaction potential ϕRF is the difference between the electrostatic potential ϕ and

Coulomb potential G, i.e., ϕRF = ϕ−G. Since the potential ϕRF of NPB cannot be separated

into the reaction field produced by all permanent multipoles and all induced dipoles, i.e.

ϕRF ̸= ϕM
RF + ϕµ

RF, because of the nonlinearity like sinh(ϕ) in Eq. (1.5), the polarization is

now not only “non-additive”, but also “inseparable. Different from Eq. (2.2) in the vacuum

phase where only the permanent multipoles are involved, the total singular source ρ in the

solvated phase contains not only the permanent multipoles but also the induced dipoles

written as:

ρ = 4π
Nc∑
n=1

(
qnδ(r− rn) + (µn

α + dnα)∂αδ(r− rn) + Θn
αβ∂αβδ(r− rn)

)
. (2.10)

Note that the total dipole at rn is pn = dn + µn.

19

2.2.4. Boundary Conditions of the PMPB Model

According to Schnieders [62], the Single Debye-Hückel (SDH) and multiple Debye-Hückel

(MDH) boundary conditions represent two common approximations used to delineate the

true potential when specifying Dirichlet boundary conditions for nonspherical solutes char-

acterized by a set of atomic multipoles. The SDH approximation simplifies the process by

consolidating all atomic multipole sites into a single multipole located at the solute’s center,

treating it as a “sphere” with radiues a. Conversely, the MDH approximation involves sum-

ming the contributions of each atomic multipole independently, considering them in isolation

from all other sites that displace solvent. Therefore, to formulate the Dirichlet problem for

a solute described by any number of atomic multipole sites, it is necessary to determine the

potential outside a solvated multipole positioned at the center of a sphere. The detailed

formulations can be found in Appendix A.11.

2.2.5. Analytical Solutions for A Spherical Cavity

Kirkwood’s dielectric sphere is widely recognized as a robust benchmark for assessing the

effectiveness of Poisson-Boltzmann (PB) solvers in terms of accuracy, convergence speed,

and efficiency. Within this framework, we explore the analytical solutions derived from a

point monopole, a point dipole, and a point quadrupole, each positioned at the center of a

spherical cavity respectively. The detailed derivations for a dipole and a quadrupole can be

found in Appendix A.8-A.9.

Consider a dielectric sphere with a radius a and an interior dielectric constant ϵ1 (ϵi),

immersed in an infinite dielectric medium characterized by a solvent dielectric constant ϵ2

(ϵs), as shown in Fig. 2.3. An external electric field is induced by a fixed external charge

distribution, configured such that in the scenario where ϵ1 = ϵ2, the electric field within the

dielectric would adopt a uniform state denoted as E0.

20

A conducting sphere within a uniform external field can be addressed by employing the

general solution of Laplace’s equation (see Appendix A.6) for the potential in regions devoid

of charge, assuming axial symmetry. In regions outside and inside the sphere, Laplace’s

equation ∇2ϕ = 0 holds true. However, on the surface of the sphere, Laplace’s equation is

not applicable. Therefore, we require two distinct functions, ϕout and ϕin, to represent the

potential for regions outside and inside the sphere, respectively.

Figure 2.3: Potential measured at P with the dipole moment aligns with the field direction
(redraw from Böttcher [63]).

The solution is described using spherical polar coordinates r, θ, and φ (see Appendix

A.2), with the center of the spheres serving as the origin of a coordinate system. The z-axis

aligns with the direction of the uniform field. In situations where there is symmetry about

the z-axis, the general solution of Laplace’s equation in terms of Legendre polynomials (see

Appendix A.7) takes the following form:

ϕout =
∞∑
n=0

(
Anr

n +
Bn

rn+1

)
Pn(cos θ),

ϕin =
∞∑
n=0

(
Cnr

n +
Dn

rn+1

)
Pn(cos θ),

(2.11)

21

with the boundary conditions:

(ϕout)r→∞ = −E0z = −E0r cos θ, (2.12)

(ϕout)r=a = (ϕin)r=a , (2.13)

ϵ2

(
∂ϕout

∂r

)
r=a

= ϵ1

(
∂ϕin

∂r

)
r=a

. (2.14)

We derive the following solutions (see Appendix A.8-A.9) neglecting the parameters and

units based on the content from Böttcher [63].

Due to A Point Charge: Applying the boundary conditions in Eq. (2.12-2.14) and

using the fact that the Legendre functions are linearly independent, the analytical solution

satisfying the Laplace’s equation for the potential due to a point charge is:

ϕout =
q

r
, (2.15a)

ϕin =

[
1

r
− ϵ2 − ϵ1

ϵ2

1

a

]
q, (2.15b)

where r is the distance between the potential measured and the centered charge q. The

potential energy, with subscript m denoted for monopole, is:

Um = −1

2

(
ϵ2 − ϵ1
ϵ2

)
q2

a
. (2.16)

Due to A Point Dipole: Similarly, for a point dipole, we derive:

ϕout =
3ϵ2

2ϵ2 + ϵ1

1

r3
d · r, (2.17a)

ϕin =

[
1

r3
− 2(ϵ2 − ϵ1)

2ϵ2 + ϵ1

1

a3

]
d · r. (2.17b)

22

where d stands for the dipole moment vector and r is the direction vector. The potential

energy, with subscript d denoted for dipole, is:

Ud = −1

2

(
2(ϵ2 − ϵ1)

2ϵ2 + ϵ1

1

a3

)
d · d. (2.18)

Due to A Point Quadrupole: Finally, for a point quadrupole, we derive:

ϕout =
5ϵ2

3ϵ2 + 2ϵ1

3

r5
Θ : rr, (2.19a)

ϕin =

[
1

r5
− 3 (ϵ2 − ϵ1)

3ϵ2 + 2ϵ1

1

a5

]
3Θ : rr, (2.19b)

where Θ the quadrupole moment and rr are 3-by-3 tensors. Their product Θ : rr is a scaler,

performing the same way as a dot product. As the traceless quadrupole is normally used,

the potential derived needs to be shifted by a coefficient 1
3
:

ϕout =
5ϵ2

3ϵ2 + 2ϵ1

1

r5
Θ : rr, (2.20a)

ϕin =

[
1

r5
− 3 (ϵ2 − ϵ1)

3ϵ2 + 2ϵ1

1

a5

]
Θ : rr. (2.20b)

The potential energy, with subscript q denoted for quadrupole, also shifted by a coefficient

1
3
, is represented as:

Uq = −1

6

(
3 (ϵ2 − ϵ1)

3ϵ2 + 2ϵ1

1

a5

)
ΘΘ. (2.21)

2.3. Matched Interface and Boundary Method

In this section, we use the nonlinear PB equation in Eq. (2.22) to elucidate the funda-

mental principles of the MIB method from Geng’s work [26] for tackling the elliptic interface

problem characterized by discontinuous coefficients:

−∇ · (ϵ(r)∇ϕ(r)) + κ̄2(r) sinh(ϕ(r)) = ρ(r). (2.22)

23

Note that the solvent domain Ω+ and the solute domain Ω− are used interchangeably with

Ω2 and Ω1, similar for ϵ+ and ϵ− with ϵ2 and ϵ1 in the following context. The jump conditions

across the interface are assumed to be:

[ϕ]Γ = g0(r), (2.23a)

[ϵϕn]Γ = g1(r), (2.23b)

where n = (nx, ny, nz) is the outer normal direction of the interface Γ, ϕn = ∂ϕ
∂n

is the

directional derivative in n, and the notation [f]Γ = f+ − f− is the difference of the function

f in solvent and in solute respectively. The nonhomogeneous jump data g0(r) and g1(r) are

either given or computable, and ϵ is the piecewise dielectric constants in solute and solvent.

Suitable boundary conditions for the far-field are also defined, and a regular outer boundary,

denoted as Ω+, is selected.

Considering a uniform Cartesian grid partition of the computational domain, it is widely

known that the standard finite difference methods encounter challenges in maintaining their

intended convergence near the interface. To address this issue, the interface jump conditions

are employed to restore the accuracy. For this purpose, all grid points within the domain

are categorized into “regular” grid points and “irregular” grid points. The regular points,

situated away from the interface, undergo a central difference discretization of Eq. (2.22),

involving a grid node (xi, yj, zk) and its six neighboring points. The irregular grid points are

defined as nodes where the standard finite difference schemes involve grid points across the

interface, indicating that at least one of its six neighboring points belongs to the other side

of the interface. At these irregular points, the finite difference approximations are adjusted

by incorporating fictitious values from the opposite side of the interface. For example,

consider a two-dimensional (2D) cross section z = zk shown in Fig. 2.4(c), and denote

24

ϕi,j,k = ϕ(xi, yj, zk). The modified finite difference approximation for the x derivative is

∂2

∂x2
ϕi+1,j,k ≈

1

∆x2
(fi,j,k − 2ϕi+1,j,k + ϕi+2,j,k) , (2.24)

where fi,j,k is a fictitious value defined at (xi, yj, zk). With accurately estimated fictitious

values, the modified finite difference approximations at irregular points maintain the second

order of accuracy.

When considering the derivatives with respect to x, y, and z at all irregular points, it

suffices to accurately compute two layers of fictitious values surrounding the interface: one

inside and one outside. Figure 2.4(b) illustrates an example in 2D for the MIB scheme,

with inside fictitious points depicted in red and outside fictitious points in yellow. From

a physical perspective, these fictitious values can be interpreted as smooth extensions of

function values from the opposite side of the interface. Numerically, they are determined

by discretizing the jump conditions Eq. (2.23a) and (2.23b). The fictitious value fi,j,k at

(xi, yj, zk) is expressed as a linear combination of function values on a set of neighboring

nodes Si,j,k and nonhomogeneous jump data (g0, g1):

fi,j,k =
∑

(xI ,yJ ,zK)∈Si,j,k

wI,J,KϕI,J,K + w0g0 + w1g1. (2.25)

The primary objective of a specific MIB approximation is to identify the point set Si,j,k

and the representation weights wI,J,K , w0, and w1 by discretizing Eq. (2.23a) and (2.23b).

Subsequently, Eq. (2.25) is substituted into Eq. (2.24) to adjust the x-derivative approxima-

tion. After correcting all necessary x, y, and z derivatives in the discretization of Eq. (2.22),

a discretized linear algebraic system of equations is formed, where the nonhomogeneous data

(g0, g1) only affects the right-hand side of the equation.

25

Figure 2.4: (a) The PB model showing the solute environment Ω− and the solvent
environment Ω+, (b) The MIB scheme illustrated in a 2-D setting with inside fictitious
points in red and outside fictitious points in yellow, (c) The MIB scheme in finding the
fictitious values at (i, j, k) and (i+ 1, j, k) in the cross section of z = zk.

A fundamental concept in the MIB fictitious value determination is to break down the

three-dimensional (3D) jump conditions Eq. (2.23a) and (2.23b) so they can be imposed

in a one-dimensional (1D) manner. Below, we elucidate the MIB interface treatment by

examining two irregular points positioned at (i, j, k) and (i + 1, j, k) in the cross-section of

z = zk, as depicted in Fig. 2.4(c).

Assuming the interface Γ intersects the grid line in the x-direction at a point (i0, j, k),

situated between (i, j, k) and (i + 1, j, k), determining the fictitious values fi,j,k and fi+1,j,k

necessitates treating a derivative in the normal direction of the interface at point (i0, j, k)

in Eq. (2.23b). Introducing local coordinates (ξ, η, ζ) such that ξ aligns with the normal

direction (ξ = n), and η and ζ lie in the tangential plane, the coordinate transformation is

given by:
ξ

η

ζ

= P

x

y

z

, (2.26)

26

where P is the transformation matrix defined as:

P =

sinψ cos θ sinψ sin θ cosψ

− sin θ cos θ 0

− cosψ cos θ − cosψ sin θ sinψ

, (2.27)

with θ and ψ denoting the azimuth and zenith angles with respect to the normal direction

ξ, respectively. By differentiating Eq. (2.23a) along the two tangential directions η and ζ,

two additional jump conditions can be derived as:

[ϕη]Γ = (ϕ+
x p21 + ϕ+

y p22 + ϕ+
z p23)− (ϕ−

x p21 + ϕ−
y p22 + ϕ−

z p23) =
∂g0
∂η

, (2.28)

[ϕζ]Γ = (ϕ+
x p31 + ϕ+

y p32 + ϕ+
z p33)− (ϕ−

x p31 + ϕ−
y p32 + ϕ−

z p33) =
∂g0
∂ζ

, (2.29)

where pij denotes the i-th row and j-th column component of the transformation matrix P.

The right-hand side terms ∂g0
∂η

and ∂g0
∂ζ

can be computed when the analytical form of g0 is

provided. Since Eq. (2.26) implies

ϕξ

ϕη

ϕζ

= p

ϕx

ϕy

ϕz

. (2.30)

27

Eq. (2.23b), (2.28), and (2.29) can be rewritten as follows:

C

ϕ+
x

ϕ−
x

ϕ+
y

ϕ−
y

ϕ+
z

ϕ−
z

=

g1

∂g0
∂η

∂g0
∂ζ

, (2.31)

where

C =

C1

C2

C3

=

p11ϵ

+ −p11ϵ− p12ϵ
+ −p12ϵ− p13ϵ

+ −p13ϵ−

p21 −p21 p22 −p22 p23 −p23

p31 −p31 p32 −p32 p33 −p33

, (2.32)

with Ci representing the i-th row of matrix C. For the three jump conditions given in Eq.

(2.31), the matrix C and the right-hand side terms are known. However, none of these con-

ditions is easy to implement due to the coupling of six derivatives (ϕ+
x , ϕ

−
x , ϕ

+
y , ϕ

−
y , ϕ

+
z , ϕ

−
z).

Especially for complex solvent-molecule interfaces of macromolecules, numerically evaluating

some of these derivatives can be very challenging. Therefore, in the MIB method, we cir-

cumvent calculating two of the most difficult derivatives by excluding them from Eq. (2.31).

Symbolically, we illustrate this idea by removing the l-th and m-th elements of the array

28

(ϕ+
x , ϕ

−
x , ϕ

+
y , ϕ

−
y , ϕ

+
z , ϕ

−
z). Consequently, Eq. (2.31) is reduced to a single jump condition:

(aC1 + bC2 + cC3)

ϕ+
x

ϕ−
x

ϕ+
y

ϕ−
y

ϕ+
z

ϕ−
z

= ag1 + b
∂g0
∂η

+ c
∂g0
∂ζ

, (2.33)

where

a = C2lC3m − C3lC2m,

b = C3lC1m − C1lC3m,

c = C1lC2m − C2lC1m.

(2.34)

Note that the jump condition in Eq. (2.33) essentially involves four derivatives out of

(ϕ+
x , ϕ

−
x , ϕ

+
y , ϕ

−
y , ϕ

+
z , ϕ

−
z), even though all six derivatives are shown in the equation.

In this case, it is adequate to discretize two jump conditions Eq. (2.23a) and (2.33) along

the x-direction to determine the fictitious values fi,j,k and fi+1,j,k. Specifically, ϕ+ and ϕ+
x

at (i0, j, k) can be approximated by the fictitious value fi,j,k and ϕ values at (i+ 1, j, k) and

(i + 2, j, k), and ϕ− and ϕ−
x are treated similarly. After solving for fi,j,k and fi+1,j,k based

on the discretized 1D jump conditions, we can express these fictitious values in a linear

combination form as shown in Eq. (2.25), with the point set and representation weights now

known. For instance, in the scenario depicted in Fig. 2.4(c), the point set Si,j,k includes all

brown triangles in the plane z = zk, as well as another six points in the planes z = zk−1 and

z = zk+1. The MIB interface treatment is systematically executed to determine all fictitious

29

values along any mesh lines and at any interface intersection points. Further details of this

procedure for handling geometric complexity and singularity can be found in [64].

Finally, it is important to note that in the discretization of jump conditions Eq. (2.23a)

and (2.33), determination of fictitious values Eq. (2.25), and finite difference derivative

correction Eq. (2.24), it does not matter whether the nonhomogeneous data g0(r) and g1(r)

are vanishing or not. Allowing g0(r) to be nonzero provides additional flexibility in devising

a new regularization approach for solving the PB equation.

2.4. A Two-Component Regularization of MIB

In this section, we keep presenting the concept from the work by Geng [26].

While implementing second and higher-order numerical representations of delta functions

on Cartesian grid points is feasible through interpolation schemes, the overlap between grid

points carrying redistributed partial charges and those involved in treating geometric inter-

face singularities can result in a reduction in accuracy. Motivated by the research conducted

by Cai et al. [25], we adopt a methodology wherein the electrostatic potential is divided into

the “singular” Coulomb component ϕC and the “regular” reaction field component ϕRF, such

that ϕ = ϕC +ϕRF. Consequently, the nonlinear PB equation in Eq. (2.22) can be rewritten

as:

−∇ · (ϵ∇ϕC(r))−∇ · (ϵ∇ϕRF (r)) + κ̄2 sinh (ϕC(r) + ϕRF (r)) = ρ(r) in Ω. (2.35)

The Coulomb potential satisfies the free space Poisson’s equation with the singular charges:

−ϵ−∆ϕC(r) = ρ(r) in R3;

ϕC(r) = 0 as |r|→ ∞.

(2.36)

30

Thus, the analytical solution of ϕC is the Green’s function G(r):

ϕC(r) = G(r) := C
Nc∑
i=1

qi
ϵ− |r− ri|

. (2.37)

It should be noted that ∇ · (ϵ∇ϕC) = 0 everywhere in solute or solvent domain except at

locations with partial charges, given that ϵ is a piecewise constant. By subtracting Eq. (2.36)

from Eq. (2.35), we obtain a regularized PB equation for ϕRF:

−∇ · (ϵ∇ϕRF (r)) + κ̄2 sinh (ϕC(r) + ϕRF (r)) = 0 in Ω− ∪ Ω+. (2.38)

Thus, ϕRF satisfies the following:

−∇ ·
(
ϵ−∇ϕRF

)
= 0 in Ω− (2.39a)

−∇ ·
(
ϵ+∇ϕRF

)
+ κ̄2 sinh (ϕC + ϕRF) = 0 in Ω+ (2.39b)

[ϕRF] = 0 on Γ (2.39c)[
ϵ
∂ϕRF

∂n

]
=
(
ϵ− − ϵ+

) ∂G
∂n

on Γ (2.39d)

ϕRF = ϕb −G on ∂Ω (2.39e)

However, this two-component regularization faces several numerical challenges. It has been

observed in [65] that the magnitudes of ϕC and ϕRF are considerably larger than that of

ϕ, and ϕC and ϕRF have opposite signs. Since ϕC is analytically determined, even a minor

error in ϕRF can lead to a significant error in ϕ. The amplification factor can be as high

as (ϵ+/ϵ− − 1) [65], which is approximately 79 for our current parameter configuration with

ϵ+ = 80 and ϵ− = 1. Additionally, this method necessitates the evaluation of ϕC or G at

all N grid points in Ω+, incurring a computational cost of O(N2), which is prohibitively

expensive for large N . Although techniques like multipole expansion such as treecode or fast

31

multipole method can reduce this cost to O(N logN) or O(N), they come with increased

algorithmic complexity.

To address these numerical challenges, Luo et al. [25] proposed solving the original po-

tential ϕ instead of ϕRF within the domain Ω2. Without resorting to jump conditions, the

finite difference scheme developed in [25] manages the dielectric interface using an integral

form of the PDE and discrete Green’s functions, proving to be straightforward and effective.

In order to extend the regularization approach of [25] to other finite difference or finite

element methods, it is imperative to rigorously formulate the interface jump conditions.

Hence, we introduce a new elliptic interface problem with discontinuous function and flux

jumps for the two-component regularization. Specifically, we define a regularized potential

as:

ϕ̃ =

ϕRF in Ω1

ϕ in Ω2.

(2.40)

The jump conditions for ϕ̃ can be derived from those for ϕ using the definition ϕ = ϕC+ϕRF .

ϕ+ = ϕ−
RF + ϕ−

C , ϵ+
∂ϕ+

∂n
= ϵ−

∂ϕ−
RF

∂n
+ ϵ−

∂ϕ−
C

∂n
, on Γ. (2.41)

Thus, the regularized Poisson-Boltzmann (PB) equation for ϕ̃, along with its corresponding

interface and boundary conditions, is given as:

−∇ · (ϵ−∇ϕ̃) = 0 in Ω− (2.42a)

−∇ · (ϵ+∇ϕ̃) + κ̄2 sinh(ϕ̃) = 0 in Ω+ (2.42b)[
ϕ̃
]
= G on Γ (2.42c)[

ϵ
∂ϕ̃

∂n

]
= ϵ−

∂G

∂n
on Γ (2.42d)

ϕ̃ = ϕb on ∂Ω (2.42e)

32

It is noteworthy that ϕ̃ actually satisfies the same PB equation without the source term:

−∇ · (ϵ∇ϕ̃(r)) + κ̄2 sinh(ϕ̃(r)) = 0 in Ω− ∪ Ω+. (2.43)

Numerically, only one PB interface problem given in Eq. (2.42a)-(2.42e) needs to be solved.

Subsequently, the original potential is recovered as ϕ = ϕ̃ in Ω+ and ϕ = ϕ̃+G in Ω−, where

the Green’s function G is analytically provided.

2.5. Preliminary Results

Our numerical results are computed using a 13inch MacBook Pro with intel core-i5 pro-

cessor and 16 GB of RAM. The dielectric constants of the solvent domain and molecular

domain for the Kirkwood’s results are set as 80 and 1 respectively. For the test proteins in

Table 2.2, the solvent dielectric constant is set as 78.3, and κ is set as 0.125 Å−1. Note that

we only use permanent dipole moments discussed in Section 2.2.3.

As shown in Table 2.1, dcel is the grid size for finite difference method, eint is the interface

error, Column 3 is the corresponding order of convergence. Esol is the solvation energy

(kcal/mol), eEsol
is the corresponding error with Column 6 as the order of convergence.

These tables show a 2nd order of convergence, validating the fitness of PM source with our

MIB-PB solver. Comparing the values of Esol for monopole and multipole in Column 5, it

shows that using the multipole moments significantly enhances the modeling accuracy.

As outlined in Section A.11, the boundary conditions of our PM-PB model rely on se-

lecting the radius a for the approximated “sphere”. Further investigation is needed to fully

understand this concept. In Table 2.2, we use a = 60Å to compute the results for several

test proteins. We compute the solvation energy value at 1/∞ by linearly extrapolating it as

the grid size approaches infinity. We consider this value as our exact value and compare the

33

Table 2.1: Kirkwood’s spherical cavity results with radius 2Å.

Centered monopole in a spherical cavity

dcel eint order Esol eEsol
order

1 4.46E-04 -81.9611 1.90E-02

0.5 7.31E-05 2.61 -81.9718 8.35E-03 1.19

0.25 2.07E-05 1.82 -81.9784 1.73E-03 2.27

0.125 5.67E-06 1.87 -81.9798 3.38E-04 2.36

0.0625 1.40E-06 2.02 -81.9801 6.30E-05 2.42

Centered dipole in a spherical cavity

1 2.86E-04 -2.3939 2.27E-03

0.5 5.85E-05 2.29 -2.3949 1.27E-03 0.84

0.25 1.82E-05 1.68 -2.3959 2.81E-04 2.18

0.125 4.91E-06 1.89 -2.3962 5.41E-05 2.38

0.0625 1.22E-06 2.00 -2.3962 9.95E-06 2.44

Centered quadrupole in a spherical cavity

1 3.78E-04 -1.7883 4.17E-03

0.5 1.05E-04 1.85 -1.7901 2.38E-03 0.81

0.25 3.67E-05 1.52 -1.7919 5.37E-04 2.15

0.125 1.07E-05 1.77 -1.7923 1.01E-04 2.41

0.0625 2.65E-06 2.02 -1.7924 1.82E-05 2.47

Centered multipole in a spherical cavity

1 9.79E-04 -86.1428 2.60E-02

0.5 1.88E-04 2.38 -86.1565 1.24E-02 1.07

0.25 5.77E-05 1.70 -86.1662 2.62E-03 2.24

0.125 1.56E-05 1.88 -86.1683 5.04E-04 2.38

0.0625 3.67E-06 2.09 -86.1687 9.33E-05 2.43

34

results with it using the formula:

Error =
|Esol − Eex

sol |
|Eex

sol |
× 100%. (2.44)

The results for these proteins show a convergent pattern validating the performance of our

MIB-PB solver coupled with PM source term.

Table 2.2: Results on test proteins with atom number ranging from 504− 1046; showing
electrostatic solvation energy Esol (kcal/mol) where the value for 1

∞ is linearly
extrapolated. The error is computed based on this extrapolated value.

1crn 1enh 1fsv 1pgb 1vii

h Esol Error Esol Error Esol Error Esol Error Esol Error

1.00 -230.51 0.68% -1476.61 1.66% -777.67 1.64% -797.66 1.00% -681.62 0.49%

0.50 -227.98 0.43% -1450.01 0.17% -763.14 0.25% -785.22 0.57% -676.64 0.24%

0.25 -228.47 0.21% -1451.28 0.08% -764.12 0.13% -787.49 0.29% -677.47 0.12%
1
∞ -228.96 -1452.50 -765.09 -789.76 -678.29

2.6. Proposed Polarizable Multipole Nonlinear Poisson-Boltzmann Model

In this section, we propose a novel PM-NPB model for the first time in the literature.

A PM-NPB model offers a more accurate representation of highly charged biomolecules [59],

where electrostatic interactions are intensified, thus amplifying the nonlinear effects on the

Boltzmann term. Consequently, the assumption of the LPB model, which assumes weak

electrostatic potentials, becomes untenable. Therefore, the nonlinear Poisson-Boltzmann

(NPB) model emerges as a superior choice over the LPB model as an implicit solvent theory

for interfacing with PM sources. However, implementing the PM-NPB model for real protein

systems poses computational challenges due to its highly nonlinear, recursive, and strongly

singular nature in sources. To address these challenges, we propose a theoretical framework:

utilizing a Green’s function-based decomposition method to analytically eliminate the charge

singularities arising from the Dirac delta function and its derivatives, plus an iterative algo-

35

rithm to linearize the self-consistency recursion, thereby reducing the computational burden

by solving a linearized Poisson-Boltzmann (LPB) equation in each iteration.

2.6.1. A New Regularization Formulation

A two-component decomposition ϕ = ϕRF + ϕC [26, 27] is proposed here to regularize

the singular source in Eq. (2.22) for solving the PM-NPB model. Here, ϕC is the Coulomb

potential written in terms of Green’s function as:

ϕC(r) = G(r) := C

Nc∑
n=1

1

ϵ1

[
1

|r− rn|
qn +

rα − rn,α
|r− rn|3

pnα +
(rα − rn,α)(rβ − rn,β)

2|r− rn|5
Θn

αβ

]
. (2.45)

It solves the Gauss’s law in the free space:

−ϵ1∆ϕC(r) = 4πC
Nc∑
n=1

qnδ(r− rn) + pnα∂αδ(r− rn) + Θn
αβ∂αβδ(r− rn). (2.46)

By capturing the singularities via ϕC , the reaction field potential ϕRF satisfies:

−ϵ1∆ϕRF = 0 in Ω1 (2.47)

−ϵ2∆ϕRF + κ̄2 sinh(ϕRF +G) = ϵ2∆G in Ω2 (2.48)

[ϕRF] = 0

[
ϵ
∂ϕRF

∂n

]
= (ϵ1 − ϵ2)

∂G
∂n

on Γ (2.49)

ϕRF = ϕb −G on ∂Ω (2.50)

where the derivative of G is known analytically. Note that ϵ2∆G = 0 in Ω2 is still kept in

the formulation because the negligence of this term will significantly reduce the accuracy in

numerical discretization near the dielectric interface [27].

36

2.6.2. Linearized Iterative Algorithm for Self-Consistent Mutual Polarization

Using the superscript (k) to denote the kth iteration, the Eq. (2.47) and (2.48) become:

−∆ϕ
(k+1)
RF = 0 in Ω1, (2.51)

−∆ϕ
(k+1)
RF +

κ̄2

ϵ2
sinh(ϕ

(k+1)
RF +G(k+1)) = ∆G(k+1) in Ω2, (2.52)

where G(k+1) is treated as known and ϕ
(k+1)
RF is to be solved. Note κ̄ is a constant in Ω1 ∪Ω2.

A naive linearization of (2.52) is calculating the nonlinear term based on ϕ
(k)
RF:

−∆ϕ
(k+1)
RF = ∆G(k+1) − κ̄2

ϵ2
sinh(ϕ

(k)
RF +G(k+1)) in Ω2, (2.53)

so that only a LPB equation needs to be solved in each iteration. However, the excess source

sinh(ϕ
(k)
RF +G(k+1)) could be too strong to sufficiently converge [66,67]. We propose to limit

the excess source by adding a LPB term in (2.53):

−∆ϕ
(k+1)
RF +

κ̄2

ϵ2
ϕ
(k+1)
RF = ∆G(k+1) +

κ̄2

ϵ2
ϕ
(k)
RF − κ̄2

ϵ2
sinh(ϕ

(k)
RF +G(k+1)) in Ω2. (2.54)

The new excess source in (2.54) becomes weaker, as the hyperbolic sine term cancels its first

order Taylor expansion. Then, applying the same addition to (2.51):

−∆ϕ
(k+1)
RF +

κ̄2

ϵ2
ϕ
(k+1)
RF =

κ̄2

ϵ2
ϕ
(k)
RF in Ω1, (2.55)

and combining Eq. (2.54) and (2.55) into a new LPB equation by using the piecewise

definition of κ such that κ = 0 in Ω1 and κ = κ̄ in Ω2 will generate:

−∆ϕ
(k+1)
RF +

κ̄2

ϵ2
ϕ
(k+1)
RF =

κ2

κ̄2
∆G(k+1) +

κ̄2

ϵ2
ϕ
(k)
RF − κ2

ϵ2
sinh(ϕ

(k)
RF +G(k+1)) in Ω1 ∪ Ω2, (2.56)

37

subject to the jump and boundary conditions (2.49) and (2.50). The proposed linearized

iterative algorithm will therefore consist five steps:

1. Step 1 (initialization): G(0) = GM and µ(0) = 0. Solve the LPB equation with the

permanent multipoles for the initial reaction field ϕ
(0)
RF.

2. Step 2 (mutual polarization): Update µ(k+1) by µ(k) and ϕ
(k)
RF according to Eq. (2.9).

3. Step 3 (regularization): Combine the permanent and induced dipoles p(k+1) = d(k+1)+

µ(k+1), and update the Green’s function G(k+1) according to (2.45).

4. Step 4 (LPB): Solve the LPB equation (2.56) subject to jump and boundary conditions

(2.49) - (2.50) and known G(k+1) and ϕ
(k)
RF for reaction field potential ϕ

(k+1)
RF .

5. Step 5 (while loop): go to Step 2, until convergence.

2.7. Conclusion

In this chapter, we introduce a Polarizable Multipole Poisson-Boltzmann (PM-PB) model

that integrates the AMOEBA force field with a linear PB equation. We incorporate our

MIB-PB solver with the multipolar PM source term and present initial results focusing on

spherical cavities. Our numerical analysis on Kirkwood spheres confirms the suitability of the

PM source for the MIB-PB solver by demonstrating second-order accuracy. Additionally, we

validate the performance on real test proteins using a free parameter of radius, denoted as a =

60Å . While these proteins exhibit consistent and convergent behavior, further investigation

into the radius of the approximated sphere for simulating the boundary conditions for the

PM-PB model is necessary.

Furthermore, we propose a more sophisticated PM nonlinear PB (PM-NPB) model that

includes the polarizable PM source term. We address associated challenges such as high

38

nonlinearity, recursion, and strong singularity in sources by employing a Green’s function-

based decomposition method to analytically eliminate charge singularities arising from the

Dirac delta function and its derivatives. This is combined with an iterative algorithm to

linearize the self-consistency recursion. Ultimately, once the solver is fully developed, it can

serve as an efficient tool for computing electrostatic solvation energy for biomolecules with

significant ionic strength.

39

Chapter 3

Optimized Parallelization of Boundary Integral Poisson-Boltzmann Solvers

In this chapter, we focus on the parallelization development of Boundary Integral PB

(BI-PB) solvers. Our aim is to improve the performance by parallel computing the dense

matrix resulting from the BI formulations and to provide guidance for selecting between the

Treecode-Accelerated Boundary Integral (TABI) PB solver and the Direct-Sum Boundary

Integral (DSBI) PB solver. Leveraging contemporary algorithms and computer hardware

capabilities, we concentrate on parallelizing the TABI-PB solver using the Message Passing

Interface (MPI) on CPUs and the DSBI-PB solver using KOKKOS on GPUs. Furthermore,

we validate the effectiveness of our BI-PB solvers on selected proteins that play pivotal

roles in understanding the spread, treatment, and prevention of COVID-19 virus diseases.

Throughout our investigation, we explore the factors that influence the choice between em-

ploying the MPI-based TABI-PB solver or the GPU-accelerated DSBI-PB solver based on

specific computational needs and constraints.

3.1. Introduction

The BI-PB solvers lend themselves well to parallel computing due to their similarity in

computing pairwise interactions among charges or induced charges located at the boundary

elements, which is in fact an N -body problem. The parallelization of these pairwise inter-

actions with O(N2) computational cost is straight-forward. However, when fast algorithms

are used, such as treecode [42] or fast multipole method (FMM) [68], additional efforts are

required to ensure optimal parallel efficiency [10,69].

40

In our investigation, we highlight the comparison of parallelization between treecode and

direct-sum methods when different computing hardware is available. With MPI implemen-

tation using multicore CPUs for moderate numbers of particles, we can build the tree on

every CPU/task, thus all particle-tree interactions can be concurrently done with high par-

allel efficiency [10, 37]. However, in cases where the number of particles is huge, making

it impossible to replicate the tree on each task, a domain decomposition approach is used

instead [10,70].

In recent years, Graphic Processing Units (GPUs) have revolutionized computationally

intensive tasks across various domains, including high-performance computing, call centers,

autopilot systems, artificial intelligence, etc. A single GPU card can consist hundreds to

thousands of cores, enabling the swift execution of numerous tasks, especially those involving

Single Instruction Multiple Data (SIMD) tasks that leverage large-scale concurrency. The

N -body problem, where all particles concurrently interact with all other particles, is highly

conducive to GPU computation. Subsequently, with the development of fast algorithms like

treecode for addressing the N -body problem, their implementation on GPUs has also become

feasible [71–73]. However, these complex algorithms are challenging to implement on GPUs,

thereby reducing the achievable level of parallel speedup.

Our contention is that when a faster algorithm, such as treecode, is available to replace the

direct summation method, there exists a break-even number nb where the faster algorithm

should only be used when the size of the problem exceeds this threshold. For instance,

considering an N -body problem, let us compare the c1N logN complexity of the treecode

algorithm with the c2N
2 complexity of direct summation, where c1 and c2 are constants

derived from the algorithms. The break-even number nb satisfies the equation c1N logN =

c2N
2. Because of the algorithmic simplicity of direct summation, the break-even number

nb is considerably larger on GPUs compared to CPUs. Therefore, when implementation

efficiency is crucial, such as in repetitive usage within molecular dynamics or Monte Carlo

41

simulations, direct summation should be used on GPUs when the problem size is smaller

than nb. In Section 3.4, it is demonstrated that the break-even number nb for the current

GPU/CPU hardware conditions used in this project is approximately 250,000. In practice,

a molecular surface with 250,000 triangular elements can adequately represent a large group

of proteins with less than 2000-3000 atoms. For larger problems, we can use the MPI-based

parallel treecode [10] or use the domain decomposition approach [70].

In this study, we concentrate on two strategies for parallelizing boundary integral PB

solvers. One approach involves parallelizing the Treecode-Accelerated Boundary Integral

(TABI) solver using MPI, where an identical tree is constructed on each task/CPU. Its

parallelization involves four stages of the TABI solver: source term computation, treecode

for matrix-vector product, preconditioning, and energy computation. Among these stages,

we adapt schemes developed for N -body parallelization [10] to the more complex BI-PB

problem. Additionally, we develop MPI-based parallelization for the preconditioning scheme

designed for BI solvers [44]. Our second parallelization approach centers on GPU-based

parallelization of the Direct-Sum Boundary Integral (DSBI) solver, which simultaneously

computes the source term, matrix-vector product, and energy computation. At this stage,

we have decided not to incorporate the preconditioning scheme into this approach due to its

complex and inefficient GPU implementation.

3.2. Boundary Integral Poisson-Boltzmann Solvers

The key numerical algorithms utilized in BI-PB solvers are as follows:

1. A well-posed boundary integral formulation of the PB equation.

2. Triangular discretization using centroids.

3. Parallelization using MPI.

4. Implementation of the treecode algorithm.

42

5. Preconditioning.

6. Acceleration using GPUs.

There are inherent trade-offs between accuracy and efficiency depending on the selection

and combination of these algorithms. As a result, we have developed a treecode-accelerated

boundary integral PB (TABI-PB) solver employing algorithms 1 to 5 and a GPU-accelerated

direct-sum boundary integral PB (DSBI-PB) solver integrating algorithms 1, 2, and 6 using

Kokkos [74]. The parallelization schemes 3 and 6 will be detailed in Section 3.3.

3.2.1. Boundary Integral Formulation of Poisson-Boltzmann Equation

In this context, we provide an overview of the well-conditioned boundary integral formu-

lation [29,37] of the implicit Poisson-Boltzmann solvent model.

The electrostatic potential equation given in Eq. (1.7) can be discussed separately for

the inside and outside domains as:

−ϵ1∇2ϕ(x) =
Nc∑
k=1

qkδ (x− yk) , x ∈ Ω1, (3.1a)

−ϵ2∇2ϕ(x) + κ̄2ϕ(x) = 0, x ∈ Ω2, (3.1b)

with the interface conditions:

ϕ1(x) = ϕ2(x), ϵ1
∂ϕ1(x)

∂ν
= ϵ2

∂ϕ2(x)

∂ν
, x ∈ Γ, (3.2)

where ϵ1 and ϵ2 are the dielectric constants in solute domain Ω1 and solvent domain Ω2

respectively, qk = ecQk

kBT
is the partial atomic charge with ec being the electronic charge,

kB being the Boltzmann’s constant, and T being the temperature, δ is the delta function,

κ is the Debye–Hückel parameter measuring the ionic concentration with κ2 = κ2

ϵ2
, and

43

ν = (nx, ny, nz) denotes the outward normal direction of the interface Γ. The far-field

boundary condition is:

lim
|x|→∞

ϕ(x) = 0. (3.3)

The fundamental solutions for these domains are the Coulomb potential G0(x,y) and

the screened Coulomb potential Gκ(x,y), respectively:

G0(x,y) =
1

4π|x− y|
, Gκ(x,y) =

e−κ|x−y|

4π|x− y|
. (3.4)

Applying Green’s second identity and the fundamental solutions yields the following expres-

sions:

ϕ(x) =

ˆ
Γ

[
G0(x,y)

∂ϕ(y)

∂ν
− ∂G0(x,y)

∂νy
ϕ(y)

]
dSy +

Nc∑
k=1

qkG0(x,yk), x ∈ Ω1, (3.5a)

ϕ(x) =

ˆ
Γ

[
−Gκ(x,y)

∂ϕ(y)

∂ν
+
∂Gκ(x,y)

∂νy
ϕ(y)

]
dSy, x ∈ Ω2, (3.5b)

In Eq. (3.5a) and (3.5b), the normal derivative with respect to y is given by

∂G(x,y)

∂νy
= ν(y) · ∇yG(x,y) =

3∑
n=1

νn(y)∂ynG(x,y), (3.6)

where G represents either G0 or Gκ. Following the steps by Juffer et al. [29], applying the

interface conditions in Eq. (3.2) and differentiating the electrostatic potential in each domain

yields a set of boundary integral equations relating the surface potential ϕ1 and its normal

derivative ∂ϕ1/∂ν on Γ:

1

2
(1 + ϵ)ϕ1(x) =

ˆ
Γ

[
K1(x,y)

∂ϕ1(y)

∂ν
+K2(x,y)ϕ1(y)

]
dSy + S1(x), x ∈ Γ, (3.7a)

1

2

(
1 +

1

ϵ

)
∂ϕ1(x)

∂ν
=

ˆ
Γ

[
K3(x,y)

∂ϕ1(y)

∂ν
+K4(x,y)ϕ1(y)

]
dSy + S2(x), x ∈ Γ, (3.7b)

44

where ϵ = ϵ2/ϵ1. The kernels K1,2,3,4 and the source terms S1,2 are linear combinations of

G0, Gk, and their first- and second-order normal derivatives [29,37] are:

K1(x,y) = G0(x,y)−Gκ(x,y), K2(x,y) = ϵ
∂Gκ(x,y)

∂νy
− ∂G0(x,y)

∂νy
, (3.8)

K3(x,y) =
∂G0(x,y)

∂νx
− 1

ϵ

∂Gκ(x,y)

∂νx
, K4(x,y) =

∂2Gκ(x,y)

∂νx∂νy
− ∂2G0(x,y)

∂νx∂νy
, (3.9)

where the normal derivative with respect to x is given by:

∂G(x,y)

∂νx
= −ν(x) · ∇xG(x,y) = −

3∑
m=1

νm(x)∂xmG(x,y), (3.10)

and the second normal derivative with respect to x and y is given by:

∂G(x,y)

∂νy∂νx
= −

3∑
m=1

3∑
n=1

νm(x)νn(y)∂xm∂ynG(x,y). (3.11)

The source terms S1,2 are defined by

S1(x) =
1

ϵ1

Nc∑
k=1

qkG0 (x,yk) , S2(x) =
1

ϵ1

Nc∑
k=1

qk
∂G0 (x,yk)

∂νx
. (3.12)

Once the potential and its normal derivative are solved from Eq. (3.7a)-(3.7b), the potential

at any point inside the molecule can be determined via Eq. (3.5a). Alternatively, a more

precise numerical formulation, as detailed in [29], can be employed for better accuracy:

ϕ1(x) =

ˆ
Γ

[
K1(x,y)

∂ϕ1(y)

∂ν
+K2(x,y)ϕ1(y)

]
dSy + S1(x), x ∈ Ω1. (3.13)

45

With the potential and its normal derivative on Γ, the electrostatic free energy can be

obtained by:

Efree =
1

2

Nc∑
k=1

qkϕ1(yk) =
1

2

Nc∑
k=1

qk

(ˆ
Γ

[
K1(yk,y)

∂ϕ1(y)

∂ν
+K2(yk,y)ϕ1(y)

]
dSy + S1(yk)

)
.

(3.14)

The electrostatic solvation free energy can also be obtained by:

Esol =
1

2

Nc∑
k=1

qkϕ
reac(yk) =

1

2

Nc∑
k=1

qk

ˆ
Γ

[
K1(yk,y)

∂ϕ1(y)

∂ν
+K2(yk,y)ϕ1(y)

]
dSy, (3.15)

where ϕreac(x) = ϕ(x)−S1(x) is the reaction field potential [29,37]. In our numerical results

in Section 3.4, we focus on solution of the PB equation and calculation of the electrostatic

solvation free energy.

3.2.2. Discretization of Boundary Integral Equations

We discretize the molecular surface Γ by employing the MSMS software [46] to perform

triangulation. MSMS requires atomic coordinates and radii as input and generates triangles

along with normal vectors at their vertices as output. The integrals in Eq. (3.7a)-(3.7b) are

discretized using centroid collocation, a popular method known for its simplicity [37].

Denoting the triangle centroids of the N triangular elements as xi, i = 1, . . . , N , the

discretized equations (3.7a)-(3.7b) take the following form for i = 1, . . . , N :

1

2
(1 + ϵ)ϕ1(xi) =

N∑
j=1
j ̸=i

[
K1(xi,xj)

∂ϕ1(xj)

∂ν
+K2(xi,xj)ϕ1(xj)

]
∆sj + S1(xi), (3.16a)

1

2

(
1 +

1

ϵ

)
∂ϕ1(xi)

∂ν
=

N∑
j=1
j ̸=i

[
K3(xi,xj)

∂ϕ1(xj)

∂ν
+K4(xi,xj)ϕ1(xj)

]
∆sj + S2(xi), (3.16b)

46

where ∆sj represents the area of the jth boundary element. The term j = i is excluded

from the summation to prevent singularity issues with the kernel.

Equations (3.16a)-(3.16b) form a linear system Ax = b, where x contains the surface

potentials ϕ1(xi) and their normal derivatives ∂ϕ1(xi)
∂ν

, and b contains the source terms S1(xi)

and S2(xi). Solving this system involves using the generalized minimal residual (GMRES)

iterative method, which requires a matrix-vector product in each step [75]. However, since

the matrix is dense, computing the product directly through summation requires O(N2)

operations, which becomes prohibitively expensive for large N . To address this challenge,

fast algorithms for N -body computations like the treecode [37, 76] has been applied on the

centroid discretization algorithm. In the subsequent section, we outline how the treecode

algorithm accelerates the matrix-vector product calculation.

3.2.3. Treecode

In this context, we offer a brief overview of the treecode algorithm, with more compre-

hensive details available in previous works [42,77–79].

The particles are partitioned into a hierarchy of clusters, as shown in Fig. 3.1(a). This

partitioning process involves subdividing each cluster into four (or eight for 3D) sub-clusters

until the predefined treecode parameter N0, which represents the maximum number of par-

ticles per leaf is reached. Here, we illustrate the 2D scenario using N0 = 3; the 3D case

follows a similar approach. The treecode evaluates the potential as a sum of particle-cluster

interactions:

Vi =
N∑
j=1
j ̸=i

qjG(xi,xj), i = 1, . . . , N, (3.17)

where qj denotes a charge associated with xj, and G denotes the interaction between each

individual target particle xi interacts with a cluster of xj particles.

47

The matrix-vector product Ax for Eq. (3.16a)-(3.16b) takes the form of N -body po-

tentials same as Eq. (3.17), where xi and xj denote centroids (also referred to as particle

locations in this context). To this end, the qj term in Eq. (3.17) corresponds to ∆sjϕ1(xj)

or ∆sj
∂ϕ1(xj)

∂ν
in Eq.(3.16a)-(3.16b), and G represents one of the kernels K1−4.

Then, Vi can be fastly computed as a summation of particle-particle interactions and

particle-cluster interactions, as illustrated in Fig. 3.1(b):

Vi ≈
∑
c∈Ni

∑
xj∈c

qjG(xi,xj) +
∑
c∈Fi

p∑
∥k∥=0

ak(xi,xc)m
k
c , (3.18)

where c denotes a cluster, and Ni, Fi denote the near-field and far-field clusters of particle

xi. The first term on the right represents a direct summation for particles xj located near

xi, while the second term denotes a pth order Cartesian Taylor approximation around the

cluster center xc for clusters that are well-separated from xi [42]. The Taylor coefficients are

given by:

ak (xi,xc) =
1

k!
∂kyG (xi,xc) , (3.19)

and the cluster moments are given by:

mk
c =

∑
xj∈c

qj (xj − xc)
k . (3.20)

where k = (k1, k2, k3) , ki ∈ N, ∥k∥= k1 + k2 + k3,k! = k1! k2! k3! [37]. A particle xi and

a cluster c are defined to be well-separated if the multipole acceptance criterion (MAC) is

satisfied,

rc/R ≤ θ, (3.21)

where rc is the cluster radius, R = |xi − xc| is the particle-cluster distance and θ is a user-

specified parameter [77]. If the criterion is not satisfied, the code examines the children of the

48

cluster recursively until the leaves of the tree are reached, at which point direct summation

is used. The Taylor coefficients are computed using recurrence relations [42].

(a) (b)

q
q

q qq q
qq q q qq

qq q
qqq qq q

q q qq
q q qqq q q

q
xi

c

b
xc

q
q

q
q

q

q
q xjq
q

R
@

@
@
@@

rc

Figure 3.1: Details of treecode in 2D. (a) tree structure of particle clusters. (b)
particle-cluster interaction between the particle xi and the cluster c = {xj}. xc: cluster
center; R: particle-cluster distance; and rc: cluster radius.

The accuracy and efficiency of the treecode depend on the chosen combination of the

order p, the MAC parameter θ, and the maximum particles per leaf N0. Employing the

treecode, the operation count for the matrix-vector product scales as O(N logN), where N

represents the number of particles xi, and logN is the number of levels in the tree.

3.2.4. Preconditioning

In this section, we summarize the work by Chen [44].

In order to precondition Krylov subspace methods for solving Ax = b, we employ a left-

preconditioning scheme. With a preconditioning matrix M, we consider the modified linear

system M−1Ax = M−1b. We aim to find a preconditioning matrix or a preconditioner M

that satisfies two conditions:

1. M should be similar to A, resulting in M−1A having improved conditioning compared

to A, thus requiring fewer GMRES iterations.

2. The equation M−1z = y can be efficiently computed, which is equivalent to solving y

from My = z.

49

It is important to note that these two conditions cannot be optimized simultaneously, and a

trade-off must be made. For example, setting M = A maximizes the first condition, while

setting M = I maximizes the second condition. The ideal preconditioner lies between these

two extremes.

We base our preconditioner design on the observation that in electrostatic interactions,

particularly between boundary elements in integral equation solutions, short-range interac-

tions are fewer in number but more significant in strength compared to long-range interac-

tions, which are numerous and computationally more expensive. Hence, long-range interac-

tions are typically computed using multipole expansions. With this insight, we construct the

preconditioner M to contain only short-range interactions and disregard long-range interac-

tions. Specifically, we consider interactions between elements within the same leaf only. This

choice of M offers significant advantages in efficiency and accuracy when solving My = z.

To be more precise, we give the explicit definition of A and M as from the discretized

system (3.16a)-(3.16b). Let A =

 A11 A12

A21 A22

 ∈ R2N×2N , where Amn ∈ RN×N for m,n =

1, 2. Then the entries of these block matrices are given as:

A11(i, j) =
1

2
(1 + ϵ) δij +K2(xi,xj) ∆sj(1− δij), (3.22)

A12(i, j) = K1(xi,xj) ∆sj(1− δij), (3.23)

A21(i, j) = K4(xi,xj) ∆sj(1− δij), (3.24)

A22(i, j) =
1

2

(
1 +

1

ϵ

)
δij +K3(xi,xj) ∆sj(1− δij), (3.25)

for i, j = 1, · · · , N , where δi,j is the Kronecker delta function and ∆sj is the area of the jth

element. The definition of M will be essentially similar to A except that the entries of M

50

are zero if i and j are not on the same leaf of the tree, i.e.

Mm,n(i, j) =

Am,n(i, j) if i, j are on the same leaf,

0 otherwise,

(3.26)

for i, j = 1, · · · , N and m,n = 1, 2.

(a) (b) (c)

Figure 3.2: A schematic illustration of the boundary element dense matrix A and its
preconditioning matrix M: (a) matrix A for the case of N = 20 elements (the size of the
matrix entry shows the strength of the interaction; the four different color-coded region
relates to K1−4 in Eq. (3.16a)-(3.16b)); (b) the “block diagonal block” preconditioning
matrix M (N0 = 3 in this schematic illustration and there are 10 leaves with 1-3
particles/elements each); (c) the “block diagonal” preconditioning matrix M, which is a
permuted matrix from M in (b) after switching the order of the unknowns.

Here, we utilize Fig. 3.2 to elucidate the design and benefits of our preconditioning

approach. Figure 3.2(a) depicts the dense boundary element matrix A for the discretized

system (3.16a)-(3.16b) with 20 boundary elements. The four distinct colors represent the

entries related to the four kernels K1−4 of the linear algebraic matrix A in Eq. (3.16a)-

(3.16b). It is note worthy that the unknowns are arranged according to the potentials

ϕ1 on all elements, followed by the normal derivative of the potential ∂ϕ1

∂ν
. The size of

the matrix entry in Fig. 3.2 indicates the magnitude of the interaction between a target

element and a source element, which diminishes from the main diagonal to its two wings.

By solely incorporating the interactions between elements in the same leaf, we derive our

51

tailored preconditioning matrix M as depicted in Fig. 3.2(b). This preconditioning matrix

M comprises four blocks, with each block being a diagonal block matrix. Strictly speaking,

M should be termed a “block diagonal block matrix,” but for simplicity, we use the term

“block diagonal matrix,” as explained next.

The primary advantage of the designed preconditioning matrix M lies in its rapid compu-

tation of y = M−1z, or equivalently, solving y fromMy = z. To elucidate this, we reorganize

the unknowns in vector y. Initially, y comprises the first segment of potential on all elements

followed by the second segment of normal derivatives of the potential on all elements. Upon

rearrangement, y is segmented into Nl parts, where Nl denotes the total number of leaves in

the tree structure. Each segment of the rearranged y, progressing leaf by leaf, encapsulates

the potentials on elements belonging to the leaf, succeeded by the normal derivatives of the

potential on elements of the same leaf. This reordering results in a block diagonal matrix

M, depicted in Fig. 3.2(c). This rearranged matrix M exhibits equivalence with the original

matrix M concerning properties such as condition number, eigenvalues, and singular values.

Besides, it offers significantly improved efficiency and convenience in solving My = z and

computing characteristic quantities of M. For simplicity and coherence with the aforemen-

tioned equivalence, we do not differentiate between the original M and the rearranged M in

this context.

Since M = diag{M1,M2, · · · ,MNl
}, as shown in Fig. 3.2(c), is a block diagonal matrix,

My = z can be efficiently solved using direct methods such as LU factorization, by solving

each individual Miyi = zi. Here, each Mi is a square nonsingular matrix, representing the

interaction between particles/elements on the ith leaf of the tree. It is noteworthy that the

efficiency is not compromised even when Mi has a large condition number, since a direct

solver is used for solvingMy = z. Additionally, we can easily compute the condition number,

eigenvalues, and singular values of M, which are similar or close to corresponding values of

matrix A and are very useful for studying the properties of A.

52

We also provide an estimate of the computational cost for the preconditioning scheme,

which essentially corresponds to the cost of solving My = z. Let N0 be the number of

particles per leaf, a user-specified treecode parameter as explained in the previous section.

Since we only consider interactions between particles on the same leaf for preconditioning,

the dimension of the matrix Mi is less than or equal to N0, and we use the upper limit N0 to

represent it. The total number of blocks is N/N0. Hence, the total cost of solving My = z

by solving all Miyi = zi is O(N
3
0N/N0) = O(NN2

0), which is essentially O(N) if a small N0

is used. However, N0 cannot be too small, or else M will not include the singular element

interactions to cancel with the corresponding interaction in A. These considerations suggest

using a small N0, e.g., 100, in our preconditioning scheme.

3.3. Parallelization Schemes

In this section, we delve into the parallelization procedures, encompassing a MPI-based

TABI solver developed by other collaborators and a GPU-accelerated DSBI solver.

3.3.1. MPI-based Treecode Accelerated Boundary Integral Solver

Figure 3.3: Pipeline for parallelized TABI solver.

53

As depicted by the red circled items in Fig. 3.3, our parallelization of the TABI solver

focuses on four key stages of the pipeline: the O(NNc) computation of the source term, the

O(niN logN) matrix-vector product using treecode, the O(niNn
2
0) preconditioning stage,

and the O(NcN) computation of the solvation energy. Here, N represents the number of

surface triangles, Nc signifies the number of partial charges, ni indicates the number of

GMRES iterations, and n0 denotes the maximum number of particles per leaf. Among these

stages, the most time-consuming and challenging component is the matrix-vector product

using treecode. To address this, we explore two potential strategies for solving N -body

problems, as outlined in [80], which are also summarized below.

task1 task2 taskn

task1 task2 taskn

particles

particles

tasks

tasks

Sequential

Cyclic

Figure 3.4: Methods for assigning target particles to tasks: sequential order (top) vs cyclic
order (bottom).

The initial and intuitive approach to allocate target particles to tasks is through “sequen-

tial ordering”. In this scheme, for a system consists of np processors, the 1st task manages

the first N/np particles in a consecutive segment, the 2nd task handles the subsequent N/np

particles, and so on. This job assignment is illustrated at the top of Fig. 3.4. However, upon

examining the resulting CPU times for each task, we observed significantly different times

on each task, indicating a notable load imbalance. This discrepancy can be attributed to the

fact that particles at different locations may exhibit varying types of interactions with other

54

particles through the treecode. For instance, a particle with only a few close neighbors tends

to engage in more particle-cluster interactions than particle-particle interactions, resulting

in shorter CPU time requirements compared to a particle with numerous close neighbors.

Additionally, we observed that particles in close proximity to each other exhibit similar

interactions with other particles, whether through particle-particle or particle-cluster inter-

actions. Consequently, certain consecutive segments ended up computing significantly more

particle-particle interactions than others, which were instead dominated by particle-cluster

interactions.

In light of these observations, we design a “cyclic ordering” scheme aimed at enhancing

load balancing, as depicted at the bottom of Fig. 3.4. In this approach, particles located near

each other are evenly allocated to different tasks. For instance, in a cluster of particles in

close proximity, the first task handles the first particle, the second task handles the second

particle, and so forth. This cycle continues from the (np + 1)-th particle onwards. The

numerical findings presented in Section 3.4 illustrate the substantial enhancement in load

balancing achieved through this simple strategy.

The pseudocode for our MPI-based parallel TABI solver using the replicated data algo-

rithm is presented in Table 3.1. Each task builds identical trees, as depicted in line 6. The

four-stage MPI-based parallelization, encompassing the source term, matrix-vector product

with treecode, preconditioning, and solvation energy, is executed in lines 4, 10, 12, and 17,

respectively, followed by MPI communications.

55

Table 3.1: Pseudocode for MPI-based parallel TABI solver using replicated data algorithm.

1 on main processor

2 read protein data

3 call MSMS to generate triangulation

4 copy protein data and triangulation to all other processors

5 on each processor

6 build local copy of tree

7 compute assigned segment of source terms by direct sum

8 copy result to all other processors

9 set initial guess for GMRES iteration

10 compute assigned segment of matrix-vector product Ax by treecode

11 copy result to all other processors

12 compute assigned segment of solving Mx = y for x by LU factorization

13 copy result to all other processors

14 test for GMRES convergence

15 if no, go to step 10 for next iteration

16 if yes, go to step 15

17 compute assigned segment of electrostatic solvation free energy by direct sum

18 copy result to main processor

19 on main processor

20 add segments of electrostatic solvation free energy and output result

56

3.3.2. GPU-accelerated Direct-Sum Boundary Integral Solver

For the GPU parallelization, we use Kokkos [74], which is a programming model and

C++ library designed to facilitate performance portability of applications across diverse high-

performance computing (HPC) architectures, including CPUs, GPUs, and other accelerators.

The pseudocode for the DSBI-PB solver utilizing GPUs is provided in Table 3.2. In

this pseudocode, we categorize all operations into those executed on the host by the CPUs

and those executed on the device by the GPUs. The three compute-intensive stages involve

computing the source term, matrix-vector product, and solvation energy, each performed on

GPUs as shown in lines 6, 11, and 20, followed by data transfer from the device to the host.

The host CPU manages all complex and non-concurrent tasks.

We acknowledge that lines 13 and 14 are currently under investigation due to concerns

about parallel efficiency, and thus, we have deactivated these two lines in our current nu-

merical implementation. One of the challenges we encounter is the varying sizes of the block

matrices Mi for i = 1, . . . , n comprising the preconditioner M, resulting in significant load

imbalance on the GPU. Additionally, the use of LU factorization for solving the Miyi = zi

equations is highly inefficient on GPUs in our present configuration. However, it is crucial to

note that disabling the preconditioner in the GPU-based parallelization could substantially

increase computation time, particularly when matrix A is ill-conditioned.

57

Table 3.2: Pseudocode for DSBI-PB solver using GPU.

1 On host (CPU)

2 read biomolecule data (charge and structure)

3 call MSMS to generate triangulation

4 copy biomolecule data and triangulation to device

5 On device (GPU)

6 each thread concurrently computes and stores source terms for assigned

triangles

7 copy source terms on device to host

8 On host

9 set initial guess x0 for GMRES iteration and copy it to device

10 On device

11 each thread concurrently computes assigned segment of matrix-vector

product y = Ax

12 copy the computed matrix-vector y to host memory

13* each thread concurrently solves its assigned portion of Mx = y

14* copy the solution x to host memory

15 On host

16 test for GMRES convergence

17 if no, generate new x and copy it to device, go to step 10 for the

next iteration

18 if yes, generate and copy the final solution to device and go to step 19

19 On device

20 compute assigned segment of electrostatic solvation free energy

21 copy computed electrostatic solvation free energy contributions to host

22 On host

23 add segments of electrostatic solvation free energy and output result

* currently disabled

58

3.4. Numerical Results

In this study, we select several proteins relevant to COVID-19 and utilized our par-

allel PB solvers to compute their electrostatic properties, including both global solvation

energies and local surface potentials. Our numerical results are conducted using super-

computers supported by the O’Donnell Data Science and Research Computing Institute

at Southern Methodist University. The MPI-based computations are performed on M3

(https://www.smu.edu/oit/services/m3), while the GPU-accelerated computations are exe-

cuted on SuperPOD (https://www.smu.edu/oit/services/superpod).

3.4.1. Parallel Efficiency of MPI-based Computing

We initially evaluate the parallel efficiency of our MPI-based algorithm using both se-

quential and cyclic schemes by calculating the solvation energy for protein 7n3c with an

MSMS density of 12, resulting in 529,911 boundary elements. We employ up to 256 MPI

tasks, and the results are presented in Table 3.3. Column 1 indicates the increasing number

of MPI tasks, while Column 2 reports the total CPU time when employing the DSBI scheme

to compute the electrostatic solvation free energy.

Due to its O(N2) computational cost, the CPU time for the DSBI solver is excessively

long, even with 256 tasks utilized. Columns 4 and 5 in Table 3.3 present the total CPU time

and parallel efficiency for the TABI solver using the sequential and cyclic schemes, both of

them significantly outperform DSBI. Columns 8 and 9 provide a closer examination of the

time required for a single matrix-vector product Ax, denoted as tAx. This metric represents

the average of the iteration’s maximum CPU time across all tasks:

tAx =
1

ni

ni∑
k=1

max
j
tj,kAx, (3.27)

where tj,kAx is the CPU time to compute Ax from the jth task in the kth GMRES iteration.

59

https://www.smu.edu/oit/services/m3
https://www.smu.edu/oit/services/superpod

Table 3.3: CPU time and parallel efficiency (P.E.) for parallelized direct sum, sequentially
parallelized treecode (seq.) and cyclically parallelized treecode (cyc.) for computing
electrostatic solvation energy (-6020.52 kcal/mol from TABI solver and -6013.68 kcal/mol
from DSBI solver) for protein 7n3c with 529,955 boundary elements. The treecode
parameters are θ = 0.8, N0 = 100, and p = 3; The number of tasks np ranges over
1, . . . , 256. The time for one Ax (tAx) is the average iteration’s maximum CPU time over
all tasks.

np DSBI Solver TABI solver

Total Time Total Time Time for one Ax (tAx,)

CPU (s) P.E. (%) CPU (s) P.E. (%) CPU (s) P.E. (%)

seq. cyc. seq. cyc. seq. cyc. seq. cyc.

1 106063.17 100.00 1874.88 1873.60 100.00 100.00 89.75 89.60 100.00 100.00

2 53132.86 99.81 971.25 967.12 96.52 96.87 45.49 45.22 98.63 99.07

4 26549.87 99.87 561.25 502.60 83.51 93.20 25.69 22.57 87.34 99.26

8 13291.47 99.75 321.42 285.25 72.91 82.10 13.94 12.02 80.46 93.22

16 6710.06 98.79 171.41 158.04 68.36 74.09 6.43 5.77 87.30 97.08

32 3928.71 84.37 128.13 114.73 45.73 51.03 3.99 3.26 70.22 85.84

64 2022.84 81.93 99.75 90.81 29.37 32.24 2.14 1.66 65.55 84.24

128 1042.49 79.48 79.82 76.83 18.35 19.05 1.08 0.85 64.65 82.77

256 554.50 74.72 71.70 71.16 10.21 10.28 0.56 0.45 62.27 78.61

Parallel efficiencies are presented in Columns 3, 6, 7, 10, and 11. The parallelization of

the DSBI solver exhibits high efficiency, as indicated in Column 3. This is attributed to

the simplicity of the algorithm. Apart from the four stages identified in Fig. 3.3, there is

minimal serial computation or communication required. However, the parallel efficiency of

the TABI solver is not as high as that of the DSBI solver, as illustrated in Columns 6 and

7. This is mainly attributed to the utilization of treecode, which incurs some serial time

for tree construction and moment computation. Although the serial time is relatively short

when np is small, it becomes more significant as np increases, while the time spent within

parallelized stages decreases.

60

Figure 3.5: MPI-based parallelization with sequential and cyclic schemes: left: 128 tasks,
right: 256 tasks. The CPU time reported is tAx, the averages GMRES iteration’s
maximum CPU times among all tasks.

If we specifically analyze the parallelization of the treecode in computingAx, Columns 10

and 11 demonstrate a high level of parallel efficiency. It is also evident that the cyclic scheme

notably enhances the parallel efficiency compared to the sequential scheme. However, as the

fraction of runtime spent on computing matrix-vector products diminishes with increasing

np, the overall parallel efficiencies in Columns 6 and 7 do not exhibit a significant disparity

between the sequential and cyclic schemes. To further scrutinize the performance distinctions

between the sequential and cyclic decomposition schemes, we plot tAx from Eq. (3.27) in

Fig. 3.5 when 128 and 256 MPI tasks are utilized. The reduced variance in the cyclic scheme

compared to the sequential scheme is evident, attributed to its superior load balancing.

3.4.2. MPI-based TABI solver vs GPU-accelerated DSBI solver

Next, we compute the solvation energy for the six COVID-19 proteins using MSMS with

a density of 12 to provide sufficient detail of the molecular surface. We employ both the

MPI-based TABI solver and the GPU-accelerated DSBI solver. For a fair comparison of

computing power, we utilize 64 CPU cores for the MPI-related computing and 1 GPU card

for the GPU-related computing. Table 3.4 presents the simulation results.

61

Table 3.4: Computing electrostatic solvation energies in (kcal/mol) for the involved
proteins: ionic strength = 0.15M; ϵ1 = 1, ϵ2 = 80; MSMS [46] density=12; Nc is the
number of atoms/charges, N is the number of boundary elements, ni is the number of
GMRES iterations, Sses is the solvent excluded surface area, and Esol is the electrostatic
solvation energy.

PDB Nc N SSES nMPI
i nGPU

i EMPI
sol EGPU

sol tMPI (s) tGPU (s)

6yi3 2083 169,968 7516.44 10 10 -1941.81 -1945.18 14.76 8.96

7act 2352 188,054 8286.70 14 14 -1893.88 -1934.49 21.35 17.39

7cr5 8133 513,226 22524.23 16 100+ -5713.52 -5786.69 89.52 695.17

7n3c 8459 530,084 23244.85 19 17 -6020.52 -6013.68 99.13 132.20

6wji 10182 641,266 28116.88 13 14 -14009.55 -14016.02 112.82 152.71

7sts 15797 993,572 43457.63 26 100+ -11622.63 -11583.26 422.67 2544.70

Column 1 displays the PDB ID for the proteins in ascending order of their size, followed

by the number of atoms in Column 2, the number of boundary elements in Column 3, and the

areas of the solvent-excluded surface in Column 4. Columns 5 and 6 represent the number of

GMRES iterations. It is noteworthy that the TABI solver exhibits a significantly improved

condition number compared to the DSBI solver, attributed to the TABI preconditioner

discussed in Section 3.2.4. The solvation energies are reported in Columns 7 and 8, showing

a close agreement between the values. Any differences observed can be attributed to factors

such as the treecode approximation, the application of the preconditioning scheme, and the

error tolerance achieved when the iteration is stopped.

When computing the electrostatic solvation energy of proteins, it is important to note

that there is not a precise reference value for comparison. However, if the DSBI solver

achieves convergence before reaching the maximum allowed GMRES iterations, its outcome

is expected to be more precise compared to that of the TABI solver. This is because the

treecode and preconditioning used in TABI may introduce additional approximations. For

instance, the solvation energy results (EGPU
sol) for proteins 6yi3, 7act, 7n3c, and 6wji are

likely to be more accurate than the corresponding results (EMPI
sol) obtained using the TABI

62

solver. Indeed, when the GMRES solver reaches its maximum iteration limit 100 without

achieving the desired accuracy threshold 10−4, as observed for proteins 7cr5 and 7sts, it

becomes difficult to ascertain which result, either EGPU
sol or EMPI

sol , is more precise.

The computation times are presented in Columns 9 and 10, revealing comparable com-

puting power between 64 CPUs and 1 GPU. However, the choice of algorithms, such as

preconditioning versus no preconditioning, and direct summation versus treecode, can lead

to significant variations, especially for ill-conditioned or larger systems. For instance, in the

case of protein 7sts, which involves nearly one million boundary elements, the MPI-based

TABI solver outperforms the GPU-based DSBI solver significantly due to the ill-conditioned

nature of the system and the substantial size of the problem.

We subsequently delve deeper into determining the conditions favoring the use of the

GPU-accelerated DSBI solver or the MPI-based TABI solver. An illustrative example, de-

tailed in Table 3.5, offers crucial insights. In this scenario, we compute the solvation energy

for protein 6yi3 while progressively increasing the MSMS density (d), leading to larger prob-

lem sizes, as depicted in Columns 1 and 2. Columns 3 and 4 display the corresponding sol-

vation energy computed using these two approaches. Columns 5 and 6 provide the number

of GMRES iterations. The similarity in these results suggests that the discretized system for

this protein is well-conditioned, thereby limiting the impact of the preconditioning scheme.

We solve the problem using a single CPU core and present the time in Column 7 for refer-

ence. Subsequently, we report the time for solving the problem using 64 MPI tasks and one

A100 GPU card in Columns 8 and 9, respectively.

63

Table 3.5: Computing electrostatic solvation energies in (kcal/mol) for the protein 6yi3 at
different MSMS densities: ionic strength = 0.15M; ϵ1 = 1, ϵ2 = 80; d is the MSMS density,
N is the number of boundary elements, ni is the number of GMRES iterations, Esol is the
electrostatic solvation energy. Results are generated using KOKKOS and MPI on
ManeFrame III; MPI results are from using 64 tasks; GPU results are from using one A100
GPU.

d N EMPI
sol EGPU

sol nCPU
i nGPU

i tCPU (s) tMPI (s) tGPU (s)

2 28,767 -2057.61 -2056.26 10 10 29.34 2.76 0.83

4 56,127 -1999.01 -1997.03 10 10 66.40 4.46 1.52

6 84,903 -1968.00 -1966.87 10 16 108.52 7.05 4.98

8 110,307 -1954.62 -1952.23 10 10 145.13 9.35 4.32

12 169,955 -1945.18 -1941.81 10 10 240.54 14.76 8.91

16 229,901 -1940.96 -1936.87 10 11 340.82 19.86 17.66

18 257,236 -1938.27 -1933.67 10 11 385.96 21.69 23.73

20 287,202 -1937.18 -1931.77 10 12 438.86 24.54 28.73

24 343,806 -1933.63 -1928.65 10 11 534.31 35.13 38.62

28 407,196 -1933.04 -1927.56 10 12 653.06 41.84 55.18

32.5 471,307 -1931.76 -1926.04 10 12 760.12 51.23 77.83

64 946,335 -1928.51 -1921.81 10 13 1701.06 145.65 311.07

The findings indicate that for a protein with a well-conditioned discretized system and

a number of boundary elements less than 250,000, opting for the GPU-accelerated DSBI

solver is preferable. This preference arises because smaller systems demonstrate the superior

performance of the GPU-accelerated DSBI solver compared to the MPI-based TABI solver.

If the condition of matrix A highlights a significant requirement for preconditioning, the

threshold number will be lower for the GPU-accelerated DSBI solver. The rapid performance

of GPUs, at the very least, offers the possibility of conducting molecular dynamics or Monte

Carlo simulations for small and medium-sized proteins. For instance, if a protein can be

adequately described with 50,000 boundary elements, a single PB equation solution would

take approximately one second using one GPU card, whereas it would take about 4 seconds

on a 64-core cluster.

64

It is worth mentioning that solving the boundary integral PB equation provides both the

electrostatic potential and its normal derivative on the molecular surface. By plotting the

potential on the surface elements and color-coding them accordingly, we can gain insights into

various aspects such as identifying docking sites for ligands or understanding protein-protein

interactions. Fig. 3.6 illustrates some examples of such visualizations.

Figure 3.6: Color coded electrostatic surface potential in kcal/mol/ec on the molecular
surface of proteins 6yi3 (left), 7act (middle), and 7n3c (right); plot is drawn with VMD [81].

3.5. Conclusion

In this chapter, we investigate on the practical application of the PB model to examine

selected proteins that hold crucial roles in the transmission, treatment, and prevention of

COVID-19 viral diseases. For this purpose, we apply the boundary integral form of the

PB equation to the molecular surfaces of these proteins. Through these computations, we

obtain both the electrostatic solvation energy, which serves as a global measurement, and the

electrostatic surface potential, offering insights into the local characteristics of the selected

proteins.

We examine the parallel performance of two competing solvers for solving the BI-PB

equations on these selected proteins. Taking into account the strengths of current algorithms

and computational hardware, our focus is on parallelizing TABI-PB solver using MPI on

65

CPUs and DSBI-PB solver using KOKKOS on GPUs. Our numerical investigations reveal

that the DSBI solver running on a single A-100 GPU outperforms the TABI solver with MPI

on 64 CPUs when the number of elements is below 250,000. Thus, when suitable hardware

is available, employing the DSBI solver on GPUs for PB model-based molecular dynamics

or Monte Carlo simulations is advisable, particularly when dealing with smaller numbers of

boundary elements to achieve rapid calculations.

When both GPU and MPI resources are available, and the quality of the triangulation

is satisfactory enough to obviate the need for the TABI preconditioner in achieving GMRES

convergence, we propose the use of the GPU-accelerated DSBI solver when the number of

boundary elements is below 250,000. In cases where the number of elements exceeds this

threshold, the MPI-based TABI solver is recommended. Moreover, if the number of elements

grows to a point where the memory capacity of a CPU task cannot accommodate an entire

tree, it is advisable to consider employing a domain-decomposition MPI scheme [10,70,76,82].

It is worth mentioning that the memory utilization of the TABI solver scales linearly with

the size of the problem. For instance, when employing one million boundary elements, the

memory consumption slightly exceeds 1GB. Consequently, for computing tasks on clusters

equipped with at least 64GB of memory per MPI rank, we can efficiently handle problems of

up to approximately 64 million boundary elements. This capacity is adequate for simulating

medium to large-sized proteins comprising tens of thousands of atoms. However, for even

larger biomolecules, such as the viral capsids of Zika or H1N1 viruses, which may contain

tens of millions of atoms [83], a domain decomposition approach should be considered [76].

66

Chapter 4

Bridging Eulerian and Lagrangian Poisson-Boltzmann Solvers by ESES

In this chapter, we investigate the capabilities of the Eulerian Solvent Excluded Surface

(ESES) software [84] in generating conjugated Eulerian and Lagrangian representations of

molecular surfaces. Our motivation is to identify a tool that can accurately and efficiently

simulate the molecular surface prior to conducting the PB modeling. We evaluate the quality

of surface discretization under both frameworks through numerical validation using two

recently developed PB solvers: a Cartesian-based MIB-PB solver (discussed in Chapter 2)

and a Lagrangian TABI-PB solver (discussed in Chapter 3).

4.1. Background

Gauss’s law, one of the four fundamental equations of electromagnetism, establishes a

relationship between the distribution of electric charges and the resulting electric field. It can

be formulated in both integral and differential forms. The integral form describes the electric

flux passing through a closed surface, while the differential form yields the Poisson equation.

The connection between finite difference PB solvers and boundary integral PB solvers lies

in the relationship between the differential and integral forms of Gauss’s law. When a finite

difference method is used, a rigorous treatment of interface conditions requires the location

where the mesh line intersects the molecular surface and the normal direction of the surface

at the intersection. This is called a “Eulerian” representation of the molecular surface as seen

in Fig. 4.1(a). Conversely, the boundary integral method requires a body-fitted triangulation

of the molecular surface, referred to as the “Lagrangian” representation in Fig. 4.1(b).

67

Figure 4.1: The two SES representation of protein 1a63: (a) Eulerian representation with
location and surface normal direction of intersection between mesh lines and the SES
surface; (b) Lagrangian representation with triangles and surface normal direction at the
vertices.

Previously, Liu et al. developed a software package known as Eulerian Solvent Excluded

Surface (ESES) [84] for accurately generating Solvent Excluded Surfaces (SESs) on Cartesian

grids. Besides, for a given biomolecule, ESES not only calculates the total surface area but

also partitions the surface area based on atomic types.

In this chapter, we focus on ESES’s body-fitted or Lagrangian representation of the

molecular surface. While previous studies primarily used the Lagrangian representation

of ESES for visualization [84], we aim to quantitatively measure the performance of it in

triangulation and investigate its usage for Lagrangian PB solvers like the TABI solver [37],

compared with Eulerian PB solvers like the MIB solver [24, 26, 85]. This work presents the

first exploration in the literature of the conjugated Eulerian and Lagrangian surfaces of

ESES, along with an examination of the associated differential and integral forms of Gauss’s

law.

68

4.2. Molecular Surface Definitions and Generators

Figure 4.2: Molecular surface desciptions.

The molecular surface typically has three popular definitions. The van der Waals (VDW)

surface, formed by the union of exposed atomic surfaces, provides a simple definition that is

useful for both molecular modeling and visualization. However, the VDW surface introduces

numerous geometric singularities, which can cause numerical instability when used as an

interface for implicit solvation modeling.

The other two surfaces involve a spherical solvent probe rotating upon contacting the

VDW surface. The trace of the probe’s center yields the Solvent Accessible Surface (SAS),

while the contact, toroidal, and reentrant surfaces of the probe sphere constitute the Solvent

Excluded Surface (SES), as originally described by Lee and Richards [86]. The SAS boasts

a relatively simple definition and is easier to describe numerically. Nonetheless, despite

being smoother than the VDW surface, the SAS still exhibits many sharp corners when

transitioning between atoms.

The SES emerges as the smoothest among the three surfaces, displaying an essentially C1-

continuous surface with only occasional cusps under extreme conditions [22]. Consequently,

it has gained prominence as the predominant surface definition in the fields of biophysics

69

and molecular biology. In addition to its effectiveness in visualizing biomolecules, it is widely

employed in implicit solvent models owing to its smoothness akin to C1. Connolly formulated

the mathematical representation of the SES for arbitrary biomolecules in terms of convex

patches, saddle patches, and concave patches [87].

Several software tools are available for generating the SES in Lagrangian representations,

such as MSMS [46] and NanoShaper [88].

• MSMS, based on the use of the reduced surface introduced by Sanner [46], generates

a triangulation of specified density by fitting predefined triangulated patches to the

surface. The density of the mesh is controlled by a user-specified parameter d that sets

the number of triangles in units of vertices per Å2.

• NanoShaper, developed by Decherchi and Rocchia [88], utilizes a ray-casting algorithm,

where rays parallel to the coordinate axes are projected, and intersections with the

surface are determined, and then utilize the resulting vertex positions of intersection

to generate the triangulation via Marching Cubes Algorithm [89]. The density of the

mesh is controlled by a scaling parameter s, which dictates the inverse side length of

a cubic grid cell in units of Å.

These representations are particularly suitable for boundary integral methods. In a pre-

vious study [90], a comparison between the popular MSMS and NanoShaper has been con-

ducted. However, when the Eulerian representation is necessary, additional efforts are re-

quired to determine the intersection of the mesh line and its normal direction, which poses

a significant challenge and often involves complex interpolation schemes [20,91].

ESES excels in generating accurate SESs for solving the PB equation on Cartesian grids.

It provides surface information by identifying intersection points between grid lines and the

interface, offering coordinates for each intersection point and their corresponding surface

70

normals. Moreover, each grid point can be categorized as inside or outside the interface,

facilitating the initialization of the PB equation and enforcement of interface conditions.

The analytical approach used by ESES ensures high-order PB solvers achieve their in-

tended convergence or accuracy in the L1 norm, crucial for assessing the performance of these

methods on complex biomolecular surfaces. ESES computes the analytical representation

of potential SES patches based on Connolly’s work [87], where accurate convex, saddle, and

concave patches are generated and stored for efficient access. Each Cartesian grid point is

then classified as inside or outside the SES based on its relationship with these patch types

in its neighborhood. For Cartesian edges spanning from inside to outside the SES, their

analytical intersection positions and corresponding normal directions with respect to the

outermost surface patch are computed. The SES comprises three types of patches: convex

patches, saddle patches, and concave patches. These patches are determined by single atoms,

pairs of atoms, or triplets of atoms, respectively.

Upon completing the Cartesian representation of the SES, the intersection points be-

tween the grid points and the SES can be connected to form a triangulated surface using

the Marching Cubes Algorithm [89]. Initially intended for visualization purposes, this tri-

angulation unexpectedly yields a compatible Lagrangian representation of the SES, suitable

for solving boundary integral PB equations. Concerns have been raised regarding the non-

equilateral nature of the triangles generated by ESES, potentially impacting the convergence

of the GMRES method for solving the discretized integral equations. However, the precon-

ditioning schemes outlined in Chapter 3 effectively address this issue, rendering the ESES

Lagrangian representation another viable option as a body-fitted surface for PB solvers.

4.3. Results and Discussions of ESES Performance

In this section, we numerically demonstrate that ESES can generate high-fidelity Solvent

Excluded Surfaces (SESs) with both Eulerian and Lagrangian representations. In all calcu-

71

lations, the solute dielectric constant is set to ϵ1 = 1 and the solvent dielectric constant is

set to ϵ2 = 80. For test cases on spherical cavities with analytical solutions, the tolerance for

the bi-conjugate gradient solver used by the MIB solver and the tolerance for the GMRES

solver used by the TABI solver are all set to 10−10. Other than this, the tolerance for the

MIB solver is set to 10−6, and the tolerance for the TABI solver is set to 10−4 as default

values. In the TABI solver [37], the treecode parameters are specified as follows: the Max-

imum Acceptance Criterion (MAC) parameter θ = 0.8, Taylor expansion order p = 3, and

maximum number of particles per leaf N0 = 100. These results are computed using a 13inch

MacBook Pro with intel core-i5 processor and 16 GB of RAM.

(a) (b)

Figure 4.3: Triangulation quality comparison between ESES and NanoShaper using SES of
protein 1AJJ: (a) distribution in terms of kernel density estimation (KDE) of triangles’
areas in Å2; (b) distribution of triangles’ maximum angles in degrees.

First of all, the “triangulation quality”, which is crucial for numerical simulation methods

such as the finite element and the boundary element methods, needs to be validated between

ESES and NanoShaper. Ideally, the triangles should be quasi-uniform, meaning that they

are essentially the same size, and they should resemble equilateral triangles. As shown in

Figure 4.3, the triangles generated by ESES [84] and NanoShaper [88] are compared using

their areas and maximum angles. When a similar number of triangles are generated by ESES

and NanoShaper, the distribution of areas of triangles from NanoShaper is more centered

72

around 0.1 Å2 compared to that from ESES, and the distribution of maximum angles of

triangles from NanoShaper is closer to 60◦ than that from ESES, meaning that NanoShaper

provides a slightly better triangulation quality than ESES.

4.3.1. TABI using Lagrangian ESES vs TABI using NanoShaper

Table 4.1: Computing electrostatic solvation energy of a protein (PDB 1AJJ) with TABI
solver using two molecular surface generators ESES and NanoShaper (NS): Densities are
used as a parameter to control the number of triangular faces N ; Dimension (for ESES
only) is the number of grid points in each direction; ∆Esol is the difference of solvation
energy calculated using TABI solver with ESES and NanoShaper surface generators.

Densities Dimension N Esol (kcal/mol) CPU time (s)

ESES NS ESES ESES NS ESES NS ∆E ESES NS

1.12 0.90 28*30*33 5084 5096 -1222.20 -1261.92 39.72 2.18 2.14

0.80 1.26 39*42*46 10124 10168 -1180.16 -1188.74 8.58 5.70 5.55

0.56 1.80 56*60*65 20640 20884 -1157.24 -1160.53 3.29 15.16 15.17

0.40 2.50 78*84*91 40752 40772 -1146.93 -1148.53 1.60 34.89 34.05

0.28 3.58 111*119*130 83232 83640 -1141.76 -1142.54 0.77 76.33 76.84

0.20 5.00 155*167*182 163276 163292 -1138.94 -1139.26 0.32 196.14 193.70

We present an example here for comparing the ESES performance in solving PB model

with NanoShaper [88] by using the TABI solver, as depicted in Table 4.1. When refining

the mesh, we adjust the parameters in ESES (Column 1) and NanoShaper (Column 2) to

generate a similar number of triangles N as seen in Columns 4-5. Concurrently, ESES

reports the number of Cartesian grid points as shown in Column 3. From this example, we

observe that as the mesh is refined, the electrostatic solvation energy computed by the TABI

solver using ESES in Column 6 approaches that computed using NanoShaper in Column 7,

resulting in a smaller energy difference ∆Esol as seen in Column 8. The total CPU time is

similar when different surfaces are used, as shown in Columns 9 and 10. This is owed to the

73

preconditioning scheme [44]; similar numbers of iterations are used when different surfaces

from ESES and NanoShaper are utilized.

There are extensive studies on the Eulerian SES representation from ESES as opposed to

the Lagrangian representation from MSMS [46] in [84]. Both comparison demonstrate that

when ESES’s Lagrangian surface representation is used for the BI-PB solver, ESES performs

as well as popular surface generators such as NanoShaper and MSMS.

4.3.2. MIB using Eulerian ESES vs MIB using Eulerian MSMS

Following the validation of the Lagrangian representation of ESES using the TABI solver,

we proceed to validate the Eulerian representation of ESES using the MIB solver. Similar

to the need for the well-established NanoShaper for comparison, we use MSMS instead [46].

It is worth noting that MSMS and NanoShaper have direct generation of a Lagrangian SES,

and Zhou developed a Fortran wrapper of MSMS in his thesis [92] to convert the Lagrangian

representation to the Eulerian representation, so that we can use MSMS for the Eulerian

comparison here.

Table 4.2: Computing electrostatic solvation energy of a spherical cavity with a centered
charge using MIB solver on the Lagrangian representation from ESES and from MSMS.

h MSMS(den=10) MSMS(den=20) MSMS(den=100) ESES

1 -82.48219907 -82.27048894 -82.16175924 -79.58699949

0.5 -82.52123400 -82.32504614 -82.19843970 -82.01643791

0.25 -82.53823124 -82.33111065 -82.21280699 -82.28426183

0.125 -82.53534892 -82.34891499 -82.21596355 -82.26497101

We calculate the solvation energies for three different molecules: a spherical cavity of

radius 2Å with a centered unit charge, and proteins 2pde and 1aho. The results for the

spherical cavity are reported in Table 4.2. From this table, we observe that when MSMS

surface with a fixed density is used, the solvation energy converges as the mesh is refined

74

(from top to bottom with h changing from 1 to 0.125). Similarly, when ESES surface is

used, the same convergence pattern can be observed. The most significant observation from

this table is that the results obtained with MSMS using refined density converge to those

obtained with ESES using a sufficiently fine mesh (h = 0.125).

0.25 0.5 1

Grid size

-1210

-1200

-1190

-1180

-1170

-1160

-1150

S
o
lv

a
ti
o
n
 E

n
e
rg

y

MSMS (den=20)

MSMS (den=30)

MSMS (den=100)

ESES

0.25 0.5 1

Grid size

-925

-920

-915

-910

-905

-900

-895

-890

-885

S
o
lv

a
ti
o
n
 E

n
e
rg

y

MSMS (den=10)

MSMS (den=20)

MSMS (den=30)

ESES

Figure 4.4: Computing electrostatic solvation energy for the proteins 2pde (left) and 1aho
(right) using MIB solver on the Lagrangian representation from ESES and from MSMS.

For the two proteins, we present the results in Fig. 4.4. Depending on the size of the

protein, we use MSMS density 20, 30, 100 for protein 1pde, and MSMS density 10, 20, 30

for protein 1aho. The figure illustrates that increasing MSMS density leads to a solvation

energy approaching that obtained with ESES.

4.3.3. MIB using Eulerian ESES vs TABI using Lagrangian ESES

We then provide an example demonstrating the connection between the Eulerian repre-

sentation and the Lagrangian representation of ESES. These representations are employed

to solve the PB model using finite difference methods with interface treatment, i.e., the MIB

solver [26,85], and using the boundary integral method, i.e., the TABI solver [37].

The results for Protein 1ajj are displayed in Table 4.3. In this scenario, we have no

control over the number of triangles with the Lagrangian representation. Once the mesh size

h in Column 1 is determined for the Eulerian representation, the number of grid points for

75

MIB in Column 2 and the number of triangles in Column 3 are automatically determined as

well. We observe that the solvation energy from MIB in Column 4 and that from TABI in

Column 5 approach each other as the mesh is refined. Regarding the CPU time in Columns

7-8, the TABI solver exhibits slower performance at the initial stage but demonstrates an

advantage in convergence speed as the mesh is refined, owing to the O(N logN) treecode

acceleration.

Table 4.3: Computing electrostatic solvation energy of protein 1ajj using TABI solver [37]
on the Lagrangian representation and using MIB solver [26] on the Eulerian representation
of the molecular surface, both generated by ESES; zero ionic strength.

h Dimension N Esol (kcal/mol) CPU time (s)

MIB TABI ∆E MIB TABI

1 31*34*37 6464 -1137.35 -1208.98 71.63 0.95 2.97

0.5 62*67*73 25956 -1138.04 -1153.46 15.42 8.80 20.45

0.25 124*134*146 104412 -1139.25 -1140.60 1.35 107.04 116.53

0.125 248*267*292 418544 -1139.37 -1137.48 -1.89 1312.65 522.24

4.4. Conclusion

In this study, we explore the unique capabilities of ESES software [84] for generating Eu-

lerian and Lagrangian surfaces. We conduct a numerical assessment of surface discretization

quality under both frameworks using two PB solvers: a Cartesian-based MIB-PB solver and

a Lagrangian TABI-PB solver. Our numerical findings demonstrate that, owing to ESES,

both solvers achieve the desired convergence when employing the Eulerian and Lagrangian

representations of the molecular surface generated by ESES. This study marks the initial

investigation in the literature of the combined Eulerian and Lagrangian surfaces provided

by ESES, accompanied by an analysis of the differential and integral forms of Gauss’s law.

Consequently, ESES proves to be a valuable asset for producing two distinct mesh types,

thereby enhancing our ability to tackle various types of PB solvers with greater flexibility.

76

Chapter 5

Poisson-Boltzmann based Machine Learning Model

In this chapter, we introduce a Poisson-Boltzmann based Machine Learning (PB-ML)

model designed to predict electrostatic solvation free energies of biomolecules. Our aim is

to provide an efficient ML-based tool that achieves a similar level of accuracy in solving the

PB equation but requires significantly less time for computation. We start from evaluating

various PB solvers to identify the most accurate one for generating ML labels. Additionally,

we adopt the Multiscale Weighted Colored Subgraph (MWCS) technique, which provides

intrinsically low-dimensional representations of biomolecular structures, in conjuration with

the fast GB models, to generate our ML features. To guarantee computational efficiency,

we evaluate various ML algorithms, such as Linear Regression (LR), Random Forest (RF),

Gradient Boosting Decision Tree (GBDT), and Deep Neural Network (DNN), to identify the

most effective ML techniques.

5.1. Introduction

Acquiring highly accurate electrostatic potentials for large biomolecules often comes with

substantial expenses. For instance, solving the PB model for a protein containing around

50,000 atoms with a mesh size of 0.2 Å can take several days on a single CPU. Additionally,

the insights gained from electrostatic analysis of one biomolecule cannot be directly applied

to others. Consequently, separate electrostatic analysis are required for different proteins or

for the same protein with different protonation states or conformations, placing significant

demands on computational resources. These challenges underscore the importance of in-

novative approaches, such as machine learning and dynamic programming, in biomolecular

electrostatic analysis.

77

To address this, we develop a machine learning solution for the PB equation to analyze

the electrostatic properties of biomolecules. We begin by constructing a precise and efficient

mathematical representation of the electrostatic potential to effectively characterize its prob-

ability distribution within the space of protein structures and electric charge configurations.

Although the exact form of this distribution is theoretically unknown, it can be sampled us-

ing a PB solver, which generates training labels for machine learning. Our approach is guided

by two main hypotheses: the “representability” hypothesis and the “learning” hypothesis.

The “representability” hypothesis suggests that the electrostatic potential of a biomolecule

can be represented by a set of partial charges and their geometric relationships with the sol-

vent. This hypothesis informs the construction of the feature vector used to characterize the

probability distribution of biomolecular electrostatics. The “learning” hypothesis suggests

that biomolecular electrostatics can be effectively represented by a feature vector, as defined

by the representability hypothesis. With a sufficiently sampled probability distribution ob-

tained from a training set, we can establish a machine learning model based on training

labels and associated feature vectors. This model can accurately predict the electrostatic

potential of unseen datasets which share the same probability distribution as the training

set.

The outlined protocol requires the utilization of a precise Poisson-Boltzmann (PB) solver

to calculate machine learning labels and subsequently determine the probability distribution

of molecular and biomolecular electrostatics. In this context, we utilize the reliable MIB-PB

solver [24] with a fine mesh size of 0.2 Å to generate solvation energy labels, thus mitigating

numerical inaccuracies.

In addition, the representability hypothesis lacks specific methodologies for developing

an accurate and efficient representation. Typically, a biomolecule within the human body

consists of approximately 6,000 atoms, leading to a Euclidean space of 18,000 dimensions

(R18,000). The high dimensionality makes calculations based on first principles infeasible for

78

predicting data on a large scale. Therefore, it becomes crucial to devise representations

of biomolecular structures that are scalable and inherently of lower dimensionality. Our

hypothesis suggests that the essential physics of these structures can be found within low-

dimensional areas or manifolds within the vast dimensional space. We choose to utilize

graph theory for its simplicity, complemented by a set of features derived from the rapid

Generalized Born (GB) models, to predict electrostatics based on the Poisson-Boltzmann

(PB) model.

In the following sections, we delineate our data preparation procedure for our Poisson-

Boltzmann Machine Learning (PBML) model, which involves employing graph theory to

generate features. We then conduct several convergence tests to verify that our MIB-PB

solver is the most accurate and suitable for generating labels for our PBML model. Sub-

sequently, we utilize these features and labels to train our PBML model and compare its

performance with other PB solvers.

5.2. Data Preparation

In this study, we employ a dataset consisting of 4294 protein structures sourced from the

“PDBbind v2015 refined set” and “PDBbind v2018 refined set” for training purposes [93].

Additionally, we utilize the “PDBbind v2015 core set”, consisting of 195 proteins, as our

test dataset. The protein structures in the training set range in size from 997 to 27,713

atoms, while those in the test set vary from 1,702 to 26,236 atoms. The original dataset

comprises protein-ligand complexes, some of which contains missing atoms and side chains.

To rectify this, we pre-process the data using the protein preparation wizard utility from the

“Schrodinger 2015-2 Suite” with default parameters to fill the missing atoms and side-chains.

Furthermore, we assign atomic van der Waals radii and partial charges to these structures

using the “Amber ff14SB” general force field.

79

We formulate the prediction of PB electrostatic solvation free energy as a standard su-

pervised learning task. The training dataset D is represented as:

D = {(x(i), y(i))|x(i) ∈ Rn, y(i) ∈ R, i = 1, · · · ,M},

where x(i) denotes the feature vector for the ith sample in the training set, y(i) = ∆GPB
i −

∆GGB
i represents the difference between the electrostatic solvation free energy computed by

the PB and GB model for the ith sample, and n andM denote the sizes of the feature vector

and the training set, respectively. The term GPB
i is obtained from the accurate MIB-PB

solver, as verified in Section 5.4.2. The other term ∆GGB serves as a core feature outside the

network, offering a global estimate, while other features are fed into the network to provide

local details. The feature vector is constructed utilizing graph theory and the GB model.

5.2.1. Feature Description

We currently employ 367 features considering protein structures, force field, graph theory

representation, etc. These features can be categorized into two groups: 15 paired elements

among {C,N,S,O,H} and 6 types of kernels (Exponential and Lorentz kernels). Among these

features, 240 are GB model related features based on effective Born Radii and element-

specific relationships; 51 are protein features based on protein structure and charges distri-

bution; 31 are environment features based on properties of residual groups; and finally 45

features from graph theory representation:

80

• GB model related features (240): As previously described in Chapter 1, the GB ap-

proximation can be formulated as:

∆GGB ≈
∑
ij

∆GGB
ij (5.1)

=
1

2

(1

ϵ2
− 1

ϵ1

) 1

1 + αβ

∑
ij

qiqj

(1

fij(rij, Ri, Rj)
+
αβ

A

)
. (5.2)

For each of the 15 paired elements among {C,N,S,O,H}, there are 16 features, encom-

passing the summand terms and absolute summand terms of Eq. (5.1), the first term

of the summand terms of Eq. (5.1) and its absolute value, the second term of the sum-

mand terms of Eq. (5.1) and its absolute value, the multiplication of paired charges

with dielectric and its absolute value, the multiplication of paired charges and its ab-

solute value, and 6 rigidity indices involving both Lorentz and exponential functions

with ν = 5 and κ = 5 respectively, along with their products affecting change val-

ues and magnitude. We use the BornRadius code [94] developed by Onufriev’s group,

integrated with Python scripts, to generate these features.

• Protein features (51): area (7), charge (7), absolute charge (7), van der Waals force (15),

Coulomb force (15). These features are categorized based on atom groups, comprising

the following 7 types: {C, N, O, S, H, CNOS, CNOSH}. Each feature represents the

sum of atoms belonging to the respective atom group.

• Environment features (31): volume (6), hydropathy (6), area (6), weight (6), pharma

(6), sum of charge (1). These features are computed based on associated residue groups:

hydro, polarall, polaruncharged, polarposcharged, polarnegcharged, and specialcase.

For each type of environmental feature, we calculate the sum of atoms belonging to

the respective residue group.

• Features from graph theory representation (45): Exponential and Lorentz kernels (15×

3 kernels). In this work, we use MWCS centrality µk,σ,τ,ν,w to construct a mathematical

81

representation of biomolecular electrostatics. In our pursuit of an intrinsically low-

dimensional representation of electrostatic solvation free energies for a large set of

proteins, we examine both the exponential kernel (σ = E) and the Lorentz kernel

(σ = L). Each kernel is parameterized with rigidity (w = 1) and charge (w = q)

weight selections. We set the powers of the exponential kernel to ν = 2 and the Lorentz

kernel to ν = 3. We consider atomic features with 15 types of element partitions (Pk,

k = 1, 2, . . . , 15).

5.2.2. Graph Theory Representation

In conjunction with machine learning algorithms, the multiscale weighted colored sub-

graph (MWCS) method has shown superior performance compared to many other approaches

in representing complex biomolecular structures [95,96]. Initially, we adopt the weighted col-

ored subgraph (WCS) to elucidate electrostatic interactions within a protein composed of N

atoms. This method integrates kernels to delineate pairwise distance-weighted atomic corre-

lations, categorizing interactions based on element types and generating colored subgraphs.

To apply WCS for analyzing protein electrostatic interactions, we represent all atoms and

their pairwise interactions as a weighted graph G(V,E), where vertices V are defined as:

V = {(ri, αi)|ri ∈ R3, αi ∈ C, i = 1, 2, . . . , N}, (5.3)

where ri represents the position of the ith atom, and C = {C,N,O, S,H} denotes com-

monly occurring element types in proteins, which may be adjusted for different biomolecular

systems.

To represent pairwise interactions between atoms in a protein, we define a colored set

P = {αβ} where α, β ∈ C. For each subset of element pairs Pk, k = 1, 2, . . . , 15, a set of

involved vertices VPk
is a subset of V that includes all atoms belonging to the pair in Pk. For

82

instance, a partition P2 = {CN} contains all pairs of atoms in the protein where one atom

is carbon and the other is nitrogen. Based on this setting, all edges in such WCS describing

pairwise atomic interactions are defined as follows:

Eσ,τ,ζ
Pk

= {Φσ
τ,ζ(∥ri − rj∥)|αiβj ∈ Pk; i, j = 1, . . . , N}, (5.4)

where ∥ri−rj∥ represents the Euclidean distance between the i-th and j-th atoms, σ denotes

the type of radial basis functions (e.g., σ = L for Lorentz kernel, σ = E for exponential

kernel), τ is a scale distance factor between two atoms, and ζ is a parameter of power in the

kernel (i.e., ζ = κ when σ = E, ζ = ν when σ = L). The kernel Φσ
τ,ζ characterizes a pairwise

correlation satisfying the following conditions:

Φσ
τ,ζ(∥ri − rj∥) =

0 as ∥ri − rj∥→ 0,

1 as ∥ri − rj∥→ ∞.

(5.5)

Commonly used radial basis functions include generalized exponential functions:

ΦE
τ,κ(∥ri − rj∥) = e−(∥ri−rj∥/τ(ri+rj))

κ

, κ > 0, (5.6)

and generalized Lorentz functions:

ΦL
τ,ν(∥ri − rj∥) =

1

1 + (∥ri − rj∥/τ(ri + rj))ν
, ν > 0, (5.7)

where ri and rj are the van der Waals radii of the ith and jth atoms, respectively.

Centrality is a fundamental concept in graph theory and network analysis, providing

insights into the significance of nodes within a network [97]. It encompasses measures like

closeness and harmonic centralities, which are defined as 1/
∑

j∥ri − rj∥ and
∑

j 1/∥ri − rj∥,

respectively. The degree of centrality simply counts the number of edges upon a node. Our

83

atomic centrality for the ith atom can be viewed as an extension of the harmonic formulation:

µk,σ,τ,ν,w
i =

|VPk
|∑

j=1

wijΦ
σ
τ,ν(∥ri − rj∥),

αiβj ∈ Pk, ∀i = 1, 2, . . . , |VPk
|, (5.8)

where wij denotes a weight function assigned to each atomic pair, with wij = 1 for atomic

rigidity or wij = qj for atomic charge.

To quantify centrality for the entire MWCS G(VPk
, Eσ,τ,ζ

Pk
), we aggregate the atomic

centralities as follows:

µk,σ,τ,ν,w =

|VPk
|∑

i=1

µk,σ,τ,ν,w
i . (5.9)

This subgraph centrality ensures that partitions like {CN} are equivalent to {NC}. Given

the 15 options for the set of weighted colored edges Pk, we derive 15 corresponding subgraph

centralities µk,σ,τ,ν,w. By adjusting kernel parameters (σ, τ, ν, w), we can attain multiscale

centralities for multiscale weighted colored subgraphs (MWCS) [95]. For a two-scale WCS,

this yields a total of 60 descriptors for a protein. The collection of all edges E = {Eσ,τ,ζ
Pk

|k =

1, 2, . . . , 15}, together with vertices V , forms a weighted graph G(V,E). However, G(V,E)

alone has limited descriptive power in machine learning prediction. In this work, we utilize

MWCSs G(VPk
, Eσ,τ,ζ

Pk
) and their centralities µk,σ,τ,ν,w to characterize protein electrostatics.

5.3. Machine Learning Algorithms

Various machine learning algorithms, such as linear regression (LR), random forest (RF),

gradient boosting decision tree (GBDT), and deep neural network (DNN), can be employed to

predict the electrostatic free energy of the PB model. LR offers a straightforward approach

for approximating the mapping linearly. RF and GBDT are ensemble methods based on

decision trees. RF constructs numerous uncorrelated trees and employs bootstrapping and

84

aggregation (i.e., bagging). GBDT utilizes gradient descent along with boosting, sequentially

introducing weak learners to compensate for the errors of existing learners. DNN methods

are powerful as they correct neural weights by backprapagation. However, DNN methods

typically involve many weights and are prone to overfitting. They may not provide improved

predictions unless the training data size is sufficiently large.

5.3.1. Generalized-Born based Gradient Boosting Decision Tree

The core principle behind the GBDT model involves leveraging initial data features and

labels to construct a primary decision tree that generates initial label predictions. Following

this, the residual between the actual labels and these initial predictions is used in conjunction

with the original data features to create a subsequent decision tree. This tree then provides a

new set of label predictions. This iterative process, which employs the residuals from previous

predictions as the new labels for subsequent trees, continues recursively. The aggregate of the

predictions from all the trees constitutes the final predicted labels. The model is optimized

by minimizing the cost function, which measures the disparity between the initial labels and

their corresponding predicted values, utilizing the gradient descent method.

In general, the predicted model for the data {(x(i), y(i))}Mi=1 based on K consecutive

decision trees is

ŷ
(i)
K =

K∑
k=1

pk(x
(i)), i = 1, 2, · · · ,M. (5.10)

This is the so called boosting tree procedure. We setup a loss function

Lk =
M∑
i=1

lk

(
y(i) − ŷ

(i)
k

)
=

M∑
i=1

1

2

(
y(i) − ŷ

(i)
k

)2
, (5.11)

to minimize the loss via the gradient descent optimization of decision trees.

85

In our GB-based GBDT framework, the initial decision tree is the GB model, with its

solvation energy serving as the first predicted labels corresponding to the PB-model based

solvation energy. Subsequent decision trees are constructed using MWCS features. The loss

function is influenced by various factors including the number and structure of trees and

MWCS features.

5.3.2. Generalized-Born based Deep Neural Network

For our DNN model, we utilize 367 features for each protein as inputs during training,

testing, and prediction phases. During prediction, we have ∆ĜPB
i = ∆GGB

i + ŷ(i), where ŷ(i)

represents the predicted value from the DNN. The value of ∆GPB
i is obtained as training

or testing data by solving the PB equation with MIB-PB at a refined mesh (e.g., h = 0.2).

The DNN comprises multiple layers, and the network’s weights are determined via back-

propagation. We optimize the network parameters by sampling the parameter space to

obtain an optimized combination of parameters for achieving the best prediction accuracy.

5.4. Results

In this section, we initially validate the selection of the MIB-PB solver [85] for label

generation by comparing it with well-known PB solvers like Amber [98] and DelPhi [99]. We

then demonstrate the accuracy and efficiency of the proposed PBML model in predicting

electrostatic solvation free energies. The numerical computations using MIB-PB, Amber,

and DelPhi are performed on an “Intel Xeon E5-2670v2” processor provided by the HPCC

at Michigan State University (MSU). The machine learning computations using the “scikit-

learn” Python package are performed on an “AMD EPYC 7763” processor provided by the

HPC at Southern Methodist University (SMU). The electrostatic solvation free energies are

computed at room temperature (T = 298.15 K) with dielectric constants ϵ1 = 1 and ϵ2 = 80.

86

5.4.1. Evaluation Metrics

Throughout this paper, we utilize the mean absolute percentage error (MAPE) and abso-

lute relative error (ARE) to assess prediction accuracy. These metrics are defined as follows:

EMAPE =
100%

M

M∑
i=1

∣∣∣∣∣y(i) − ŷ(i)

y(i)

∣∣∣∣∣, EARE =

∣∣∣∣∣y(i) − ŷ(i)

y(i)

∣∣∣∣∣, (5.12)

where y(i) represents the ith label, i.e., the PB electrostatic solvation free energy of the ith

molecule, and ŷ(i) is the corresponding predicted value. These metrics provide insights into

the accuracy of the predictions.

5.4.2. Convergence Comparison of the PB Solvers

We begin by conducting a convergence analysis of three PB solvers using a test set

comprising 195 proteins. The aim is to determine the suitability of the MIB-PB solver for

generating accurate electrostatic solvation energy labels. Note this comparison is under the

assumption of a linear PB model with infinitely sharp dielectric boundary and point charges.

For each protein, we compute their electrostatic solvation free energies at ten different mesh

sizes, ranging from 0.2 Å to 1.1 Å. The results obtained at the finest mesh size of 0.2 Å for

each PB solver serve as references to evaluate the relative errors for other mesh sizes. As

shown in Fig. 5.1(a), the MAPEs using Amber and DelPhi are less than 1.5 %, but that

from MIB-PB is less than 0.5% at all mesh sizes.

We next examine the electrostatic solvation free energies computed by the three PB

solvers on two sampled proteins, 3gnw and 3owj, as illustrated in Fig. 5.1(b-c). It is ob-

served that the energies obtained by MIB-PB do not vary significantly over the mesh refine-

ment, whereas those computed by Amber and DelPhi exhibit more pronounced variations.

Additionally, we observed that energies obtained by Amber and DelPhi approach those of

87

MIB-PB as the mesh is refined. These tests confirm MIB-PB as the most accurate method

among these three PB solvers for computing labels for the ML models.

(a) 195 proteins

0.2 0.4 0.6 0.8 1

Grid Size

0

0.5

1

1.5

M
e

a
n

 A
b

s
.

P
e

r.
 E

rr
.

Amber

DelPhi

MIBPB

(b) protein 3gnw

0.2 0.4 0.6 0.8 1
Grid Size

-7650

-7600

-7550

-7500

-7450

S
o

l.
 E

n
e

rg
y
 (

k
a

c
l/
m

o
l)

Amber

DelPhi

MIBPB

(c) protein 3owj

0.2 0.4 0.6 0.8 1
Grid Size

-4800

-4750

-4700

-4650

S
o

l.
 E

n
e

rg
y
 (

k
a

c
l/
m

o
l)

Amber

DelPhi

MIBPB

Figure 5.1: Convergence comparison among Amber, DelPhi, and MIB-PB; (a) MAPEs at
ten grid sizes for Amber, DelPhi, and MIB-PB in computing the electrostatic solvation free
energies of 195 test proteins. For a protein in each method, the reference value is computed
at the mesh size of 0.2 Å; (b)-(c) Illustration of the electrostatic solvation free energies
obtained by Amber, DelPhi, and MIB-PB at ten different mesh sizes from 0.2 to 1.1Å for
proteins 3gnw and 3owj respectively.

To further investigate the convergence of the three PB solvers, we randomly select 30

proteins from the core set and plot their AREs at two mesh sizes, 0.4 Å (circles) and 0.8

Å (squares), compared with the results at 0.2 Å . These results are illustrated in Fig. 5.2.

88

It is evident that Amber and DelPhi exhibit a similar level of convergence, while MIB-PB

returns significantly smaller errors across the selected proteins. The list of these 30 proteins

is provided below: 2qmj, 3ebp, 2x8z, 3bkk, 1gpk, 1f8b, 3ge7, 3huc, 3pe2, 3mfv, 2qbr, 3imc,

1saq, 3ivg, 3b3w, 3mss, 2v7a, 2zcq, 3utu, 3u9q, 3kwa, 3gbb, 1uto, 2yge, 2iwx, 3bpc, 2pcp,

2gss, 4dew, 3nox.

1 5 10 15 20 25 30
Protein Index

0

0.005

0.01

0.015

0.02

0.025

A
b

s
.

R
e

l.
 E

rr
.

Amber (h=0.8) Amber (h=0.4)

DelPhi (h=0.8) DelPhi (h=0.4)

MIBPB (h=0.8) MIBPB (h=0.4)

Figure 5.2: Convergence comparison among Amber, DelPhi, and MIB-PB. The graph
shows Absolute relative errors of Amber (dashed lines), DelPhi (dash-dot lines), and
MIB-PB (solid lines) at mesh sizes 0.4 Å (cycles) and 0.8 Å (squares) for 30 proteins. For
a protein in each method, the reference value is calculated at the mesh size of 0.2 Å.

5.4.3. Comparison between Different ML models

Table 5.1: MAPEs of LR, RF, GBDT, and DNN for the test set of 195 proteins. For LR
and RF, default parameters were used. For GBDT, parameters were set as follows:
learning rate 0.05, number of estimators 1500, maximum depth 5. The DNN was trained
with about 500 different combinations of parameters, and the final optimized choice uses a
batch size of 400, an adjustable learning rate starting at 0.01, and a training duration of
3300 epochs on an architecture with 127 neurons/features in the input layer, (200, 500,
500, 500) neurons in the four hidden layers, and one neuron in the output layer.

LR RF GBDT DNN

MAPE (Training) 3.0549 0.4929 0.1553 0.1491

MAPE (Test) 1.7652 0.7040 0.4342 0.4300

89

After justifying the use of the MIB-PB solver to generate the labels, we proceed to apply

LR, RF, GBDT, and DNN to produce corresponding learned models using the training

dataset. These learned models are then utilized to predict the solvation energy for the 195

proteins in the test set. The MAPE for each learned model is summarized in Table 5.1. The

results indicate that DNN outperforms the other three methods. Therefore, we choose DNN

as our ML algorithm for further comprehensive training and testing of the PBML model.

5.4.4. Performance of the PBML Model

Our final PBML model is essentially the GB-based DNN model, which uses the GB core

feature with an additional 367 features as outlined earlier. To understand the advantages of

the model and its prediction, we conducted a comparison of its MAPE with those of Amber

and DelPhi at ten mesh sizes in Fig. 5.3. Notably, while the MAPEs of Amber and DelPhi

decrease significantly with mesh refinement, even at the finest mesh resolution of 0.2 Å, these

methods fall short of matching the accuracy achieved by PBML, which remains unaffected

by grid size once the model is trained.

0.2 0.4 0.6 0.8 1

Gird Size

0

0.5

1

1.5

2

2.5

M
e
a
n
 A

b
s
.
P

e
r.

 E
rr

.

Amber

DelPhi

PBML

Figure 5.3: Comparison of the MAPEs of Amber, DelPhi and PBML (use result in
Table 5.1 from DNN model) of the electrostatic solvation free energies of the test set at
ten mesh sizes. The reference values are the results of MIB-PB at the grid size of 0.2 Å.
The DNN is trained with 448 different combinations of parameters and the final optimized
choice uses a batch size of 400, a learning rate of 0.005, and a training duration of 900
epochs on an architecture with 367 neurons in input layer, (500, 500, 500) neurons in the
three hidden layers respectively, and one neuron in the output layer.

90

To further validate the accuracy and efficiency of our PBML model, we evaluate the

solvation energy of 195 test proteins using both the MIB-PB solver with a mesh size of

h = 0.5 and the PBML model trained on the dataset comprising over 4000 proteins as

described before. It is important to note that the PBML model is trained using solvation

energy computed using MIB-PB with a mesh size of h = 0.2. In this test, we consider the

solvation energy results obtained fromMIB-PB with h = 0.2 as benchmark values, comparing

them with the results obtained from MIB-PB with h = 0.5 and those from the PBML model

for the 195 proteins in the test set.

(a)

0 20 40 60 80 100 120 140 160 180 200
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

a
b
s
o
lu

te
 r

e
la

ti
v
e
 e

rr
o
r

PBML model

MIBPB (h=0.5)

MIBPB Average: 0.02786

PBML Average: 0.005327

(b)

0 20 40 60 80 100 120 140 160 180 200

protein index

10
1

10
2

10
3

10
4

10
5

ti
m

e
 (

s
)

PBML model

MIBPB (h=0.5)

PBML average: 236.5s

MIBPB average:1417.4s

Figure 5.4: Accuracy and efficiency comparison on computing solvation energy on 195
proteins whose indices are labeled along horizontal axis using MIB-PB at h = 0.5 and DNN
based PBML model:(a): relative error in solvation energy; (b): time. The average relative
errors for PBML and MIB-PB are 0.005327 and 0.02786. The average time for PBML and
MIB-PB is 236.5s and 1417.4s respectively. Note the time for the PBML includes the time
to generate features but not the training time.

Figure 5.4(a) illustrates the relative error in solvation energy, where both individual

samples and their average demonstrate that the PBML model outperforms the MIB-PB

model at h = 0.5. In Figure 5.4(b), depicting elapsed time, we observe that both at the

91

level of individual samples and in terms of average, the PBML model exhibits significantly

higher efficiency compared to the MIB-PB model at h = 0.5. All figures are plotted on a

logarithmic scale for error and time, considering the substantial variation in results across

different proteins.

5.5. Conclusion

In this chapter, we present the Poisson-Boltzmann based machine learning (PBML) model

designed for predicting electrostatic solvation free energies of biomolecules, offering an effi-

cient approach for electrostatic analysis of new molecules or conformations from molecular

dynamics simulations. Our investigation begins with the selection of the most accurate PB

solver for generating ML labels, identifying the second-order accurate MIB-PB solver as su-

perior in convergence compared to DelPhi and Amber. We then employ multiscale weighted

colored subgraph (MWCS) techniques for ML feature generation, facilitating the creation

of highly effective low-dimensional intrinsic representations of biomolecules. Additionally,

we incorporate a global core feature derived from the generalized Born (GB) model. To

ensure computational efficiency, we evaluate various ML algorithms, ultimately finding that

the PBML model utilizing DNN outperforms traditional grid-based PB solvers in producing

electrostatics. Our numerical analysis confirms that the PBML model achieves comparable

accuracy to traditional PB solvers while significantly reducing computational time.

92

Chapter 6

Software Dissemination

In this chapter, we demonstrate the usage of the PM MIB-PB solver as discussed in

Chapter 2, the CPU-accelerated TABI-PB solver and the GPU-accelerated DSBI-PB solver

as described in Chapter 3, plus the PB-ML solver discussed in Chapter 5.

• PM MIB-PB

The Matched Interface and Boundary Poisson-Boltzmann (MIB-PB) solver coupled

with the Polarizable Multipole source term from the AMOEBA force field is available

on the GitHub main branch at https://github.com/gengwh/rMIB-PB. Users must

utilize the MSMS software [46], or the Eulerian Solvent Excluded Surface (ESES)

software maintained by Dr. Wei’s group at Michigan State University, accessible at

https://github.com/WeilabMSU/ESES, for molecular surface generation.

Additionally, Tinker from https://github.com/TinkerTools/tinker is required to con-

vert a pdb file obtained from the Protein Data Bank (https://www.rcsb.org/) to a

multipolar xyz file using the pdbxyz package in Tinker. The users need to prepare a

.key file, which contains or redirects to the force field information. For instance, it

can be as simple as one line file:

parameters amoebapro04.prm

The AMOEBA force field files, i.e., amoebapro04.prm, can be found under the sub-

directory params on Tinker GitHub. Once files are ready, users can call the program

from Tinker by:

93

https://github.com/gengwh/rMIB-PB
https://github.com/WeilabMSU/ESES
https://github.com/TinkerTools/tinker
https://www.rcsb.org/

pdbxyz name_of_pdb.pdb -key name_of_pdb.key

Then we need to convert the xyz files into files containing the charge positions, charge

radius, and multipole moments. Please note that the code for transferring between the

xyz file and pqr file is still under maintenance, temporarily written in Python scripts

readData.py and tinker_to_xyzr.py, under the subdirectory of src/test_proteins/

on MIB-PB GitHub. For the test proteins analyzed in Chapter 2, users can test them

by first adjusting the first line in usrdata.in file and then directly run the program,

as all files mentioned above has already fully generated.

• DSBI-PB

The GPU-accelerated Direct-Sum Boundary Integral Poisson-Boltzmann solver is a

standalone application written in C and C++, compatible with platforms such as

MacOS and Linux/Unix. To use the solver, the user must have the MSMS software [46]

for molecular surface generation and build the Kokkos library [74] https://github.com/

kokkos/kokkos for parallelism.

To compute the solvation free energy, the user needs to prepare a pqr file, which can

be generated using pdb2pqr with a pdb file obtained from the Protein Data Bank

https://www.rcsb.org/. The solver is on GitHub https://github.com/yangxinsharon/

bimpb-parallelization. User can build the solver using the following command within

the subdirectory of kokkos on the GitHub repository:

cmake . -DKokkosKernels_SOURCE_DIR=$HOME/repos/kokkos-kernels

Once built, the program can be executed using the following command:

./bimpb_kokkos.exe PDBID.pqr den

Here, PDBID represents a four-digit protein ID from the Protein Data Bank, and den

is a parameter used to control the mesh size for boundary integral formulations. More

94

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
https://www.rcsb.org/
https://github.com/yangxinsharon/bimpb-parallelization
https://github.com/yangxinsharon/bimpb-parallelization

details on the usage of the OpenMP and MPI versions of the DSBI-PB solver can be

found in the README.md file on GitHub.

• TABI-PB

The Treecode Accelerated Boundary Integral solver is originated from Dr. Robert

Krasny’s group at University of Michigan. The Fortran version is maintained by

Dr. Geng’s group on GitHub https://github.com/gengwh/TABI-PB. The CPU TABI

solver is compatible with platforms such as MacOS and Linux/Unix. The MPI code for

the TABI-PB solver can be found on https://github.com/elyssasliheet/tabi mpi code,

maintained by SMU graduate student Elyssa Sliheet. Similar to the DSBI-PB solver,

users still require the MSMS software and need to build the MPI library for computa-

tion.

• PBML

The Poisson-Boltzmann based Machine Learning Model can be found on GibHub

github.com/yangxinsharon/PB-ML under subdirectory saved_model. The coefficients

of the DNN are stored in a standard file and a python script, which prepares the fea-

tures, assembles the DNN, and returns the electrostatic solvation energy. The user

also needs to install corresponding packages for generating geometric features and GB

features based on the README.md file. The entire training data can also be shared upon

request.

95

https://github.com/gengwh/TABI-PB
https://github.com/elyssasliheet/tabi_mpi_code
github.com/yangxinsharon/PB-ML

Chapter 7

Summary of Contributions and Future Work

7.1. Dissertation Contributions

The main contributions of this dissertation are outlined as follows.

• In Chapter 2, we introduce a Polarizable Multipole Poisson-Boltzmann (PM-PB) model,

which merges the AMOEBA force field with a linear PB equation. To handle inter-

face conditions effectively, we integrate this PM-PB model with a regularized Matched

Interface and Boundary PB (MIB-PB) solver. We implement the boundary condi-

tions, numerical approaches incorporating surface potential gradients, and Kirkwood

analytical solutions within the MIB-PB solver framework. This combined approach

yields improved PB simulation outcomes with a more precise and realistic source term.

Additionally, we propose a sophisticated PM polarizable multipole nonlinear PB (PM-

NPB) model for a future study, given that PM source models enhance electrostatic

interactions, leading to significant nonlinear effects in the Boltzmann term. Overall,

these methodologies serve as a valuable tool for simulating biomolecules accurately,

especially given their capability to capture the potent dielectric effects arising from the

multipolar and polarizable charge density distribution.

• In Chapter 3, we introduce two parallelized solvers for solving the Boundary Integral

Poisson-Boltzmann (BI-PB) equations: the Direct-Sum Boundary Integral (DSBI) PB

solver, developed using KOKKOS on GPUs, and the Treecode-Accelerated Boundary

Integral (TABI) PB solver, developed by our collaborators using the Message Passing

Interface (MPI) on CPUs. These solvers are evaluated for their parallel performance in

96

solving the BI-PB equations on selected proteins critical in the context of COVID-19

transmission, treatment, and prevention. The parallelization schemes implemented in

this chapter substantially enhance computational efficiency for macromolecular simu-

lations. Additionally, we determine a threshold value, denoted as nb = 250, 000, under

current hardware conditions on ManeFrameIII, provided by O’Donnell Data Science

and Research Computing Institute at Southern Methodist University, which serves as

a guideline for selecting the appropriate solver. Based on this threshold, we provide

optimization recommendations: the GPU-accelerated DSBI solver is preferable when

the number of boundary elements is below 250,000, while the MPI-based TABI solver

is more suitable for problems exceeding this threshold. These solvers offer the oppor-

tunity to handle various types of biomolecules more efficiently.

• In Chapter 4, we delve into the distinctive features of the Eulerian Solvent Excluded

Surface (ESES) software for generating both Eulerian and Lagrangian surfaces. We

conduct a comprehensive numerical evaluation of the surface discretization quality

under both frameworks using two recently developed Poisson-Boltzmann (PB) solvers:

a Cartesian-based MIB-PB solver and a Lagrangian TABI-PB solver. Our numerical

analysis reveals that, facilitated by ESES, both solvers achieve the desired convergence

when utilizing the Eulerian and Lagrangian representations of the molecular surface

generated by ESES. As a valuable tool for generating two types of meshes, ESES

enhances the effectiveness of both finite difference based and boundary element based

PB solvers.

• In Chapter 5, we introduce a Poisson-Boltzmann based Machine Learning (PB-ML)

model aimed at predicting electrostatic solvation free energies of biomolecules. We

meticulously evaluate various PB solvers to pinpoint the most accurate one, e.g.,

MIB-PB for generating ML labels. Leveraging the Multiscale Weighted Colored Sub-

graph (MWCS) technique and the Generalized Born (GB) model, we generate ML

97

features. We test several ML algorithms, including Linear Regression (LR), Random

Forest (RF), Gradient Boosting Decision Tree (GBDT), and Deep Neural Network

(DNN). The culmination of our efforts results in a PBML model, trained on over

4000 biomolecules using the DNN architecture, which exhibits superior efficiency and

accuracy in electrostatics prediction compared to traditional grid-based PB solvers.

This approach provides an efficient ML-based tool that attains a comparable level of

accuracy in solving the PB equation while significantly reducing computation time.

The contents of this dissertation are primarily drawn from the following publications:

• Yang, X., Sliheet, E., Iriye, R., Reynolds, D., and Geng, W. Optimized parallelization

of boundary integral Poisson-Boltzmann solvers. Computer Physics Communications

(2024), 299, 109125.

• Chen, J., Xu, Y., Yang, X., Cang, Z., Geng, W. and Wei, G. W. Poisson-Boltzmann

based machine learning (PBML) model for electrostatic analysis. Biophysical Journal

(2024), S0006—3495(24)00107—3.

• Ullah, S. A., Yang, X., Jones, B., Zhao, S., Geng, W. and Wei, G. W. Bridging Eule-

rian and Lagrangian Poisson–Boltzmann solvers by ESES. Journal of Computational

Chemistry (2024), 45(6), 306-320.

• Yang, X., Zhao, S. and Geng, W. A regularized matched interface and boundary

method (MIB) for solving polarizable multipole Poisson-Boltzmann model. In prepa-

ration (2024).

7.2. Future Work

• As explored in Chapter 2, even though our PM-PB model is promising, it is not yet fully

established. Our near-future endeavors involve determining the radius parameter a for

98

setting boundary conditions. Looking further ahead, our long-term plans encompass

the development of the PM-NPB model. Once one of these solvers reaches full fruition,

we can leverage this updated MIB-PB solver, coupled with the AMOEBA force field

PM source term, to generate more accurate labels for training our new PBML model.

• As detailed in Chapter 3, regarding the DSBI solver, we have effectively incorporated

the preconditioning scheme. Nonetheless, the recurring LU decomposition on GPU

presents a challenge in parallel computing applications. Our ongoing endeavors revolve

around exploring this aspect using Kokkos within our implementation.

• As confirmed in Chapter 4, ESES offers a bridge between finite difference based PB

solvers and boundary element based PB solvers. Given the complexity of addressing

the NPB equation within the boundary element framework, the only existing nonlinear

boundary element approach is a hybrid method that tackles the nonlinear term through

finite difference discretization on 3D meshes [100]. Leveraging our validated ESES, we

can proceed to develop such a hybrid PB solver.

• As presented in Chapter 5, we did not initially prioritize feature engineering, which

could impact the efficiency of our trained model due to the wide range of values these

features can assume, ranging from less than 1 to over a million. Our future work involve

studying and using the features more thoroughly to optimize model performance. One

of near-future approaches is to apply the Kernel-Independent Treecode (KITC) based

on barycentric Lagrange interpolation [101] to generate electrostatic features.

99

Appendix A

Appendix

A.1. Differentiation with respect to Cartesian coordinates

Scalar fields and the components of vector fields are functions that rely on spatial coordi-

nates and are liable to be differentiated concerning these coordinates. A practical means of

consolidating the results of such differentiation processes is symbolized by the vector operator

∇ (nabla), which is formally treated as a vector. Within a Cartesian coordinate framework,

the definition of the nabla operator is as follows:

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (1.1)

where i,j, and k are the unit vectors along the x-, y-, and z-axes, respectively. When

restricting to scalar and vector fields, we encounter three potential types of differentiations

utilizing this nabla operator:

∇ϕ = ∇ϕ, (1.2)

∇ ·A = divA, (1.3)

∇×A = curlA, (1.4)

where ϕ is a scalar field and A is a vector field. The gradient and the curl or rotation are

vector fields, the divergence is a scalar field. These equations can be written explicitly as:

∇ϕ = i
∂ϕ

∂x
+ j

∂ϕ

∂y
+ k

∂ϕ

∂z
, (1.5)

100

∇ ·A =
∂

∂x
(A · i) + ∂

∂y
(A · j) + ∂

∂z
(A · k) = ∂

∂x
Ax +

∂

∂y
Ay +

∂

∂z
Az, (1.6)

∇×A = i

(
∂

∂y
Az −

∂

∂z
Ay

)
+ j

(
∂

∂z
Ax −

∂

∂x
Az

)
+ k

(
∂

∂x
Ay −

∂

∂y
Ax

)
. (1.7)

The operator ∇ ·∇ is commonly referred to as the del operator or the Laplace operator. In

a Cartesian coordinate system, it is expressed as:

∆ϕ =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
ϕ. (1.8)

When applying the gradient operation to a function dependent on the distance between

two points or the radius vector r, it’s important to specify which endpoint of the vector the

differentiation occurs at. This distinction can be illustrated by considering r as the distance

between two points P and Q with radius vectors rP and rQ, where r points from P to Q.

In this scenario, we have:

r = rQ − rP . (1.9)

Differentiating a function f(r), where f(r) is any differentiable function of r, leads to:

∇f(r) = ∇f(|r|) = ∇f (|rQ − rP |) , (1.10)

or:

∇f(r) = ∇Qf(r), (1.11)

where the subscript Q indicates that the differentiation occurs at the endpoint Q of the

vector r. However, in certain situations, differentiation must be performed at the point P .

Since we can express:

∂

∂xQ
|rQ − rP | = − ∂

∂xP
|rQ − rP | , (1.12)

101

and analogous equations for the derivatives with respect to y and z, we have:

∇Qf(r) = −∇Pf(r). (1.13)

This formula is applicable when transforming the solution of Poisson’s equation, which pro-

vides the potential at the origin, to the potential at an arbitrary point. Additionally, applying

the gradient to the function ϕ = rn, where r2 = x2 + y2 + z2, yields:

∇rn = nrn−1∇r = nrn−2r. (1.14)

A specific application of this general equation for n = −1 is:

∇1

r
= − 1

r3
r. (1.15)

When the nabla operator is applied to a product ϕA · B, we utilize Leibniz’ rule for

differentiating products to obtain:

∇ (ϕA ·B) = (A ·B)∇ϕ+ ϕ∇(A ·B). (1.16)

For the specific scenario where B = r, the radius vector of each point, and A = m, a

constant vector, the last term of Eq. (1.16) can be further simplified:

∇m · r = i
∂

∂x
(mxx) + j

∂

∂y
(myy) + k

∂

∂z
(mzz) , (1.17)

where mx, my, and mz represent the three components of m in the x, y, and z directions.

As the constant factors remain unaffected by differentiation, we have:

∇m · r = imx + jmy + kmz = m. (1.18)

102

Another differentiation of a product is utilized:

div (ϕA) =
∂

∂x
(ϕAx) +

∂

∂y
(ϕAy) +

∂

∂z
(ϕAz) , (1.19)

and consequently:

div (ϕA) = ϕ

{
∂

∂x
Ax +

∂

∂y
Ay +

∂

∂z
Az

}
+ Ax

∂ϕ

∂x
+ Ay

∂ϕ

∂y
+ Az

∂ϕ

∂z
, (1.20)

or:

div (ϕA) = ϕ divA+A · ∇ϕ. (1.21)

A.2. Differentiation with respect to spherical coordinates

In many problems of electrostatics it is advantageous to use spherical coordinates r, θ, φ

instead of the Cartesian coordinates x, y, z used so far. The transformation rules from

spherical to Cartesian coordinates are derived easily from geometrical considerations:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

, (1.22)

with 0 ⩽ r <∞, 0 ⩽ θ ⩽ π, 0 ⩽ φ < 2π. The inverse transformation is:

r2 = x2 + y2 + z2

tg θ = 1
z

√
x2 + y2

tgφ = y/x

. (1.23)

103

The unit vectors er, eθ, and eφ in the spherical coordinate system are found by considering

the planes of constant r, of constant θ, and of constant φ. They are represented as:

er = sin θ cosφi+ sin θ sinφj + cos θk

eθ = cos θ cosφi+ cos θ sinφj − sin θk

eφ = − sinφi + cosφj

. (1.24)

and for the inverse transformation:

i = sin θ cosφer + cos θ cosφeθ − sinφeφ

j = sin θ sinφer + cos θ sinφeθ + cosφeφ

k = cos θer − sin θeθ

. (1.25)

An example of the use of spherical coordinates is the following. Given that:

E =
e

r3
r,

we need to calculate
‚

E · dS for an arbitrary surface enclosing the charge e. Considering

the surface of a sphere with radius R, we have:

‹
E · dS =

ˆ 2π

0

ˆ π

0

e

R3
R · (R dθeθ)× (R sin θdφeφ) =

ˆ 2π

0

ˆ π

0

e sin θer · eθ × eφdθdφ,

(1.26)

or: ‹
E · dS = e

ˆ 2ππ

0

ˆ π

0

sin θdθdφ = 2πe

ˆ π

0

sin θdθ = 4πe. (1.27)

104

For the gradient of ϕ in the direction of er, eθ, and eφ, respectively, we derive:

(∇ϕ)r = (∇ϕ) · er =
∂ϕ
∂r

(∇ϕ)θ = (∇ϕ) · eθ =
1
r
∂ϕ
∂θ

(∇ϕ)φ = (∇ϕ) · eφ = 1
r sin θ

∂ϕ
∂φ

. (1.28)

Then, the Laplacian of ϕ is:

∆ϕ =

(
∂

∂r
+

2

r

)
∂ϕ

∂r
+

1

r2

(
∂

∂θ
+ cot θ

)
∂ϕ

∂θ
+

1

r2 sin2 θ

∂2ϕ

∂φ2
, (1.29)

The first term of this Laplacian expression can also be written as:

(
∂

∂r
+

2

r

)
∂ϕ

∂r
=

1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
=

1

r

∂2

∂r2
(rϕ), (1.30)

An analogous form of the second term is:

1

r2

(
∂

∂θ
+ cotg θ

)
∂ϕ

∂θ
=

1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
. (1.31)

A.3. Tensor multiplications

The summation of elements along the principal diagonal corresponds to the inner product

of two vectorsw and v. This operation is also known as the contraction of the tensor product.

Generally, contraction is represented by a dot between the involved symbols, resulting in a

summation over the adjacent indices. For two vectors, this is expressed as:

w · v =
∑
i

wivi, (1.32)

105

and for a tensor and a vector:

(T · v)i =
∑
j

tijvj. (1.33)

Similarly, for two tensors T and S:

(T · S)ik =
∑
j

tijsjk, (1.34)

and:

T : S =
∑
ij

tijsji, (1.35)

as after the initial contraction, i and k become adjacent indices.

A.4. Electric dipoles and multipoles

In this context, we briefly introduce the dipole moment and the quadrupole moment as

detailed in the study by Böttcher [63].

To begin with, the electric moment of a system of point charges ei relative to a fixed

origin is defined as:

m =
∑
i

eiri, (1.36)

where each ri is the radius vector from the origin to each ei. When the origin is displaced

over a distance r0, the change in m is given by:

∆m = −
∑
i

eir0 = −r0
∑
i

ei. (1.37)

106

In this scenario, Eq. (1.36) can be expressed differently. Introducing the electric centers of

gravity for the positive and negative charges, the centers are defined by:

∑
positive

eiri = rp
∑

positive

ei = rpe,

∑
negative

eiri = rn
∑

negative

ei = −rne,

(1.38)

where rp and rn are the radius vectors from the origin to these centers of gravity respectively,

and e is the total positive charge. Thus, for a net zero charge system, Eq. (1.36) can be

written as:

m = (rp − rn)e = le, (1.39)

where the difference rp−rn is the distance between centers of gravity, represented by a vector

l pointing from the negative center to the positive center, as shown in Fig. 1.1.

Figure 1.1: A simple electric dipole consisting of one positive charge and one negative
charge at a distance l.

In pyhsical sense, a simple system consisting of only one positive charge +e and one

negative charge −e at a distance l, is called an electric dipole, and its moment is le. Hence,

the “electric moment” of a system of zero net charge is generally referred to as the “electric

dipole moment” of the system. In mathematical abstraction, the “ideal dipole”, often referred

to as the “point dipole”, can be derived by substituting l with l/n and e with en, and letting

n approach to infinity.

107

Many neutral molecules exhibit non-ideal electric dipole moments because the centers

of positive and negative charge distributions do not align. In addition to these permanent

dipole moments, an induced dipole moment arises when a particle is exposed to an external

electric field. This external field causes the positive and negative charges within the particle

to separate, resulting in “polarization” of the particle. Generally, induced dipoles can be

treated as ideal; however, permanent dipoles may not be treated as ideal, especially when

calculating the field at molecular distances.

Figure 1.2: Electric multipoles.

To characterize the potential resulting from a charge distribution, it is beneficial to

expand upon the notion of a dipole to encompass the broader concept of a multipole. As

illustrated in Fig. 1.2, the configuration of two equal dipoles, aligned along the same axis but

oriented oppositely, is called an axial quadrupole. Likewise, an axial octupole is formed as a

combination of two quadrupoles etc. The quadrupole strength is determined by the product

of the dipole momentm along a specific axis, denoted as a scalerm, and the distance between

the dipoles. Therefore, similar to the definition of an ideal dipole, an ideal axial quadrupole

is obtained by replacing the dipole moment m by mn and the distance s = |l2| by s/n as n

approaches to infinity.

108

Figure 1.3: Potential at P outside a sphere encompassing all the charges, i.e., r ≫ ri.

Our analysis extends beyond charge distributions with axial symmetry. Consider a system

of point charges ei at distances ri(xi, yi, zi) from an origin O. We compute the potential

generated by this system at a point P with coordinates x, y, z, as shown in Fig. 1.3. It

is assumed that the position P is outside a sphere encompassing all the charges. Let si

represent the distance of a charge ei to P . Then, the potential at P due to this charge

system is expressed as:

ϕ(P) =
∑
i

ei
si
. (1.40)

We expand 1/si in a Taylor series where the differentiations at the origin O:

1

si
=

1

r
+ xi

∂

∂x

(
1

r

)
+ yi

∂

∂y

(
1

r

)
+ zi

∂

∂z

(
1

r

)
+

+
1

2

[
x2i

∂2

∂x2

(
1

r

)
+ 2xiyi

∂2

∂x∂y

(
1

r

)
+ · · ·

]
+ · · · .

(1.41)

Thus, when the differentiations are made at P (see Appendix A.1):

ϕ(P) =
∑
i

ei
r
−
∑
i

[
eixi

∂

∂x

(
1

r

)
+ eiyi

∂

∂y

(
1

r

)
+ eizi

∂

∂z

(
1

r

)]
+

+
1

2

∑
i

[
eix

2
i

∂2

∂x2

(
1

r

)
+ 2eixiyi

∂2

∂x∂y

(
1

r

)
+ · · ·

]
− · · · .

(1.42)

109

The first term of this series represents the potential induced at point P by a single charge

e =
∑

i ei located at the origin, and the second term represents the potential at P caused by

a point dipole m =
∑

i eiri. Similar to how the vectorial dipole moment m is defined, the

quadrupole moment Q is defined as a tensor:

Q =
1

2!

∑
i

eiriri, (1.43)

and the octupole moment U is defined as a tensor of the third degree:

U =
1

3!

∑
i

eiririri. (1.44)

Hence, Eq. (1.42) can be written in terms of the multipole moments:

ϕ(P) = e
1

r
−m · ∇1

r
+Q : ∇∇1

r
−U

...∇∇∇1

r
+ · · · . (1.45)

It has been demonstrated that the potential resulting from an ideal multipole exhibits the

same structure as the corresponding term in the general multipole expansion for the potential

expressed by Eq. (1.45) [63].

A.5. Electric potential and energy for multipoles

In this context, we present the derivation of the potential and energy associated with a

multipole up to quadrupole moments [63] [102].

In order to compare the quadrupole moments of diverse charge distributions, such as

molecules, it is imperative to standardize them in advance. This standardization process

guarantees a uniform basis for comparison across different systems. The common normal-

110

ization defines a traceless quadrupole moment as:

Qnorm =
1

2

∑
i

ei
(
3riri − r2i I

)
, (1.46)

where I is the identity tensor and r2i = x2i + y2i + z2i , such that Tr (Qnorm) = 0. This

quadrupole moment tensor comprises nine components, yet it exhibits symmetry, and,

along with the traceless property, this implies that there are only five independent non-zero

quadrupole components. When this traceless quadrupole is used, denoted as Q = Qnorm ,

the quadrupole contribution to the potential in Eq. (1.45) is updated to 1
3
Q : ∇∇1

r
. Thus,

our potential becomes:

ϕ(P) = e
1

r
−m · ∇1

r
+

1

3
Q : ∇∇1

r
. (1.47)

To establish an expression for the potential energy of an arbitrary charge distribution

within an external field in terms of the multipole moments of this charge distribution, we

can designate a volume enclosing the charge distribution and denote the potential due to

the charges outside this volume by ϕ. Inside the volume, the potential ϕ satisfies Laplace’s

equation, given that its sources reside exclusively outside the designated volume. As the

potential is defined as the potential energy of a unit charge in the field, the potential energy

of the system of n charges ei is then given by:

V =
n∑

i=1

eiϕ (ri) , (1.48)

where ri is the point at which the i-th charge ei is situated. Similarly, all potentials ϕ (ri)

can now be developed in a Taylor series around the origin O. This leads to:

V =
n∑

i=1

ei

[
ϕ(O) + ri · ∇ϕ(O) +

1

2
riri : ∇∇ϕ(O) + · · ·

]
, (1.49)

111

where the gradients are taken at the origin. The coefficients associated with ϕ(O) and its

subsequent gradients now correspond to the multipole moments of the charge distribution,

delineated in Eq. (1.36) and (1.43). Combined with the fact using the traceless quadrupole

moment in Eq. (1.46), the potential energy corresponding to Eq. (1.47) at point P (see

Appendix A.1) is thus:

V = eϕ(P)−m · ∇ϕ(P) + 1

3
Q : ∇∇ϕ(P). (1.50)

So far, it becomes evident that the same set of multipole moments, initially introduced to

represent the potential due to a particular arrangement of charges, can be effectively utilized

to depict the potential energy of these charges when influenced by an external field.

A.6. The general solution of Laplace’s equation in spherical coordinates for the

case of axial symmetry

Laplace’s equation for the potential ϕ, ∇2ϕ = 0, holds true in regions devoid of any true

or apparent charge. Generally, within a charge-free region, the potential is determined by

its values (or its normal derivative) at the region’s boundary. Consequently, the solution

of Laplace’s equation for a specific region can be derived from the general solution and the

potential values at the boundary, dictated by the problem’s conditions. If the region extends

to infinity, the behavior for large distances should be specified.

For many problems in the theory of electric polarization, a spherical coordinate system (r,

θ, ϕ) proves to be appropriate. This system is particularly advantageous when the problem

exhibits axial symmetry (also known as cylindrical symmetry) or spherical symmetry. In

the case of axial symmetry, ∂
∂ϕ

= 0, and in the case of spherical symmetry, both ∂
∂θ

= 0 and

∂
∂ϕ

= 0.

112

The Laplace’s equation in spherical coordinates for the case of at least axial symmetry

simplifies to:

∆ϕ =

(
∂

∂r
+

2

r

)
∂ϕ

∂r
+

1

r2

(
∂

∂θ
+ cot θ

)
∂ϕ

∂θ
= 0. (1.51)

This partial differential equation can be reduced to two ordinary differential equations using

the method of separation of variables. We assume ϕ as:

ϕ(r, θ) = U(r)V (θ). (1.52)

Substituting Eq. (1.52) into Eq. (1.51) and multiplying by r2/ϕ yields:

r2

U(r)

(
∂

∂r
+

2

r

)
∂U(r)

∂r
+

1

V (θ)

(
∂

∂θ
+ cot θ

)
∂V (θ)

∂θ
= 0. (1.53)

The left-hand side comprises an r-dependent and an r-independent term, equating to a

constant value of 0. Therefore, the first term’s value remains constant with r. By setting

this term equal to C, the separation constant, we can express it as:

r2
d2U

dr2
+ 2r

dU

dr
− CU = 0, (1.54)

and:

d2V

dθ2
+ cot(θ)

dV

dθ
+ CV = 0. (1.55)

Both differential equations can be straightforwardly solved. Assuming U to follow the form:

U(r) = rα, (1.56)

we substitute it into Eq. (1.54) to obtain:

α(α− 1) + 2α− C = 0, (1.57)

113

provided r does not reach the values 0 or ∞. Eq. (1.57) becomes a quadratic equation in α

with solutions α1 and α2. Thus, we find:

U(r) = arα1 + brα2 , (1.58)

where a and b are arbitrary constants. Eq. (1.58) represents the general solution of Eq.

(1.54), as it encompasses two adjustable constants.

Eq. (1.55) can be transformed into Legendre’s differential equation using the substitu-

tions cos(θ) = x and V (θ) = y(x). Utilizing the relations:

d

dθ
= − sin(θ)

d

dx
, and

d2

dθ2
= − cos(θ)

d

dx
+ sin2(θ)

d2

dx2
,

we derive:

(1− x2)
d2y

dx2
− 2x

dy

dx
+ Cy = 0. (1.59)

The general solution of this equation is presented as:

y(x) = APv(x) +BQv(x), (1.60)

where Pv and Qv represent the Legendre functions of the first and second kind, respectively.

The index v is defined by C = v(v+1), and A and B denote arbitrary constants. The general

solution provided in Eq. (1.60) is applicable in scenarios where the z-axis (cos(θ) = x = ±1)

is excluded from the region where the potential needs evaluation. Given that singularities are

permissible at x = ±1, as neither Pv(x) nor Qv(x) for all v values are finite and continuous

at these points, we can utilize the general solution:

y(x) = APn(x), (1.61)

114

where n represents an integer and Pn denotes a Legendre polynomial. Consequently, we also

have:

C = n(n+ 1), (1.62)

leading to the subsequent solution of Eq. (1.57):

α1 = n, α2 = −(n+ 1). (1.63)

Combining our findings from Eq. (1.58), (1.61), and (1.63), we can express:

ϕn(r, θ) = UV = (anr
n + bnr

−(n+1))Pn(cos(θ)). (1.64)

Here, an = Aa and bn = Ab; the index n is appended to underscore that this solution

corresponds to a specific choice for the integer n.

Given the linearity and homogeneity of Eq. (1.51), the solutions are linearly independent.

Consequently, any linear combination of solutions akin to Eq. (1.64) will likewise serve as a

solution, adhering to the continuity requisites.

Therefore, the general solution may be established as a linear combination of solutions

in the form Eq. (1.64) with undetermined coefficients an and bn:

ϕ(r, θ) =
∞∑
n=0

(anr
n + bnr

−(n+1))Pn(cos(θ)). (1.65)

The determination of coefficients an and bn arises from the potential values at the boundary,

or as applicable, from the asymptotic behavior at infinity.

115

A.7. Legendre polynomials

The Legendre polynomials Pn(cos θ) are defined by the equation:

F (x, z) =
1√

1− 2xz + z2
=

∞∑
n=0

Pn(x)z
n, (1.66)

where x = cos θ and 0 < z < 1. The function F (x, z) is referred to as the generating function.

When a polynomial of high order n is required, it is more convenient to use the Rodrigues’

equation:

Pn(x) =
1

2nn!

dn

dxn
(
x2 − 1

)n
. (1.67)

The results of the computations for the first eight polynomials are presented in the following

table:

P0(x) = 1

P1(x) = x

P2(x) =
1

2

(
3x2 − 1

)
P3(x) =

1

2

(
5x3 − 3x

)
P4(x) =

1

8

(
35x4 − 30x2 + 3

)
P5(x) =

1

8

(
63x5 − 70x3 + 15x

)
P6(x) =

1

16

(
231x6 − 315x4 + 105x2 − 5

)
P7(x) =

1

16

(
429x7 − 693x5 + 315x3 − 35x

)

(1.68)

A.8. The solution of Laplace’s equation due to a point dipole

In many instances, it is recommended to choose a value for a that is approximately

equivalent to what is commonly defined as the “molecular radius”. Onsager [103] used the

relation

4

3
πNa3 = 1. (1.69)

116

In order to compute the reaction field, it is essential to determine the potential within

the cavity resulting from both the dipole itself and the interaction of the dipole with the

surrounding dielectric. Here, the spherical polar coordinates r, θ, and φ is used here by

taking the center of the dipole as the origin of a coordinate system, and aligning the z-axis

in the direction of the dipole vector. In the case of symmetry about the z-axis, the general

solution of Laplace’s equation is:

ϕoutside =
∞∑
n=0

(
Anr

n +
Bn

rn+1

)
Pn(cos θ), (1.70a)

ϕinside =
∞∑
n=0

(
Cnr

n +
Dn

rn+1

)
Pn(cos θ). (1.70b)

The boundary conditions are:

(ϕoutside)r→∞ = 0, (1.71)

(ϕoutside)r=a = (ϕinside)r=a , (1.72)

ϵ1

(
∂ϕoutside

∂r

)
r=a

= ϵ2

(
∂ϕinside

∂r

)
r=a

. (1.73)

The terms Dn

rn+1Pn(cos θ) in ϕinside are due to charges within the cavity. In this case, the only

source of field lines within the cavity is the permanent dipole µ. The potential of it along

the z-axis is:

ϕ =
µ

r2
cos θ. (1.74)

Thus all coefficients Dn are zero except D1, which has the value D1 = µ, so we have:

ϕinside =
∞∑
n=0

Cnr
nPn(cos θ) +

µ

r2
cos θ. (1.75)

117

Because of Eq. (1.71), and the fact that the Legendre functions are linearly independent, all

coefficients An are zero. Thus,

ϕoutside =
∞∑
n=0

Bn

rn+1
Pn(cos θ). (1.76)

Applying Eq. (1.72), and Eq. (1.73), for all values except n ̸= 1:

Bn

an+1
= Cna

n, (1.77a)

−ϵ1(n+ 1)
Bn

an+2
= ϵ2nCna

n−1, (1.77b)

which is only possible if for n ̸= 1:

Bn = 0, (1.78a)

Cn = 0. (1.78b)

For n = 1:

B1

a2
= C1a+

µ

a2
, (1.79a)

−2ϵ1
B1

a3
= ϵ2C1 − 2ϵ2

µ

a3
. (1.79b)

By solving these two equations, we get:

B1 =
3ϵ2

2ϵ1 + ϵ2
µ, (1.80a)

C1 = −2(ϵ1 − ϵ2)

2ϵ1 + ϵ2

µ

a3
, (1.80b)

118

Therefore,

ϕoutside =
3ϵ2

2ϵ1 + ϵ2

µ

r2
cos θ, (1.81a)

ϕinside =
µ

r2
cos θ − 2(ϵ1 − ϵ2)

2ϵ1 + ϵ2

µ

a3
r cos θ, (1.81b)

along the z-axis. Considering the 3D space:

ϕoutside =
3ϵ2

2ϵ1 + ϵ2

1

r3
µ · r,

ϕinside =

[
1

r3
− 2(ϵ1 − ϵ2)

2ϵ1 + ϵ2

1

a3

]
µ · r.

(1.82)

A.9. The solution of Laplace’s equation due to a point quadrupole

Similar to the above derivation, as the ideal quadrupole potential along the z-axis is:

ϕ =
q

r3
(
3 cos2 θ − 1

)
, (1.83)

and all An = 0 plus all Dn = 0 except D2 = 2q. Thus,

ϕout =
∞∑
n=0

Bn

rn+1
Pn(cos θ), (1.84a)

ϕin =
∞∑
n=0

Cnr
n Pn(cos θ) +

q

r3
(
3 cos2 θ − 1

)
. (1.84b)

For the case when n = 2,

B2

a3
= C2a

2 +
2q

a3
, (1.85a)

−3ϵ1 ·
B2

a4
= 2ϵ2C2a− 3ϵ2

2q

a4
. (1.85b)

119

By solving the equation we get:

B2 =
10qϵ2

3ϵ1 + 2ϵ2
, (1.86a)

C2 = −2q
3(ϵ1 − ϵ2)

(3ϵ1 + 2ϵ2) a5
. (1.86b)

Therefore, we have:

ϕout =
10qϵ2

(3ϵ1 + 2ϵ2) 2 · r3
(
3 cos2 θ − 1

)
=

5ϵ2
3ϵ1 + 2ϵ2

q

r3
(
3 cos2 θ − 1

)
, (1.87a)

ϕin = −2q
3(ϵ1 − ϵ2)

(3ϵ1 + 2ϵ2) a5
r2 · 1

2

(
3 cos2 θ − 1

)
+

q

r3
(
3 cos2 θ − 1

)
(1.87b)

=

[
− 3 (ϵ1 − ϵ2)

(3ϵ1 + 2ϵ2)

r5

a5
+ 1

]
q

r3
(
3 cos2 θ − 1

)
. (1.87c)

Considering the 3D domain:

ϕout =
5ϵ2

3ϵ1 + 2ϵ2

3

r5
Θ : rr, (1.88a)

ϕin = −2q
3(ϵ1 − ϵ2)

(3ϵ1 + 2ϵ2) a5
r2 · 1

2

(
3 cos2 θ − 1

)
+

q

r3
(
3 cos2 θ − 1

)
(1.88b)

=

[
− 3 (ϵ1 − ϵ2)

(3ϵ1 + 2ϵ2)

r5

a5
+ 1

]
3

r5
Θ : rr, (1.88c)

where Θ denotes the quadrupole moment.

A.10. The dipole theory of dielectrics

In this context, we discuss the concepts of polarization due to the electric moment, the

cavity field and the reaction field, as identified by Onsager [103].

According to Debye’s dipole theory [104], the “internal field” that polarizes a molecule

in the dielectric is equal to the external field, augmented by 4πr
3

times the electric moment

induced in a unit volume of the dielectric. Debye’s implicit assumption is that the force-

couple, which tends to orient an electrically asymmetric molecule in a polarized dielectric,

120

is proportional to the same internal field. This assumption leads to Debye’s well-known

formula for the dielectric constant ϵ:

ϵ− 1

ϵ+ 2
=

4π

3

∑
N

(
α +

d2

3kT

)
, (1.89)

where α denotes the polarizability of the molecule, d its permanent electric moment, kT the

energy of thermal agitation, N the concentration (molecules/cm3), and the summation is

extended over all species of molecules present.

The molecular shape influences the outcome, but we limit our discussion to “spheres”,

denoted by the radius a, which raises another open question regarding the appropriate choice

of a in Section A.11. Other relevant properties of a molecule include its polarizability α,

which is associated with an “internal refractive index” n as follows:

α =
n2 − 1

n2 + 2
a3. (1.90)

and a permanent dipole moment d (in vacuum). In an electric field F, the total electric

moment p is the vector sum of the permanent and the induced dipole moments such that

p = dd+ αF, (1.91)

where d denotes a unit vector in the direction of the dipole axis.

The field exerted on a molecule within a polarized dielectric can be separated into two

components: a “cavity field”, denoted as G, determined by the molecular shape and propor-

tional to the external field intensity, derived from a homogeneous field E due to an empty

spherical cavity; and a “reaction field”, denoted as R, which is proportional to the total

electric moment and influenced by the moment’s instantaneous orientation, derived from a

dipole with moment p placed at the center of the spherical cavity and immersed into an

121

unpolarized medium with a dielectric constant ϵ. They are formulated as:

G =
3ϵ

2ϵ+ 1
E, (1.92)

R =
2(ϵ− 1)

2ϵ+ 1

p

a3
. (1.93)

For a neutral, spherical molecule with an arbitrary charge distribution, these relationships

remain valid, therefore the total field F exerted on a spherical molecule in a polarized

dielectric is

F = G+R =
3ϵ

2ϵ+ 1
E+

2(ϵ− 1)

(2ϵ+ 1)a3
p. (1.94)

The average orientation of a molecule is governed by the orienting force-couple exerted by

the cavity field G on the electric moment of the molecule, with R never exerting torque to

the molecule. As all real molecules possess electrically deformable properties, the reaction

field R will amplify the electric moment of any molecule submerged in a dielectric. Simi-

larly, the induced moment resulting from the cavity field G will also be augmented by the

corresponding component of R.

A.11. Boundary conditions of the PMPB model

In this context, we adopt notation introduced by Schnieders [62] to discuss the boundary

conditions for the PMPB model.

For a solvent described by a simplified Linearized Poisson-Boltzmann Equation (LPBE),

∇2ϕ(r) = κ̄2ϕ(r), (1.95)

122

the potential at r due to a symmetric, traceless multipole in a homogeneous dielectric ϵ1 is

ϕ (rij) = (T)t Mj

=

1

−∂/∂x

−∂/∂y

−∂/∂z

(1/3) (∂2/∂x∂x)

...

1/ϵ1rij

t

qj

µx,j

µy,j

µz,j

Θxx,j

...

,
(1.96)

where rij = ri − sj represents the difference between a grid location and a multipole site,

the superscript t denotes the transpose, and Mj represents the multipole moments of j-th

charge. The potential inside the spherical cavity is the superposition of the homogeneous

potential and the reaction potential:

ϕin (rij) = [(I+Rin)T]tMj, (1.97)

where I is the identity matrix, Rin is a diagonal matrix with diagonal elements:

[cin(0), cin(1), cin(1), cin(1), cin(2), . . .], (1.98)

based on coefficients for multipoles of order n, determined by the boundary conditions:

cin(n) = βn

(rij
a

)2n+1

. (1.99)

123

Similarly, the potential outside the cavity is given by:

ϕout(rij) = (RT
outT)tMj, (1.100)

where Rout is a diagonal matrix with diagonal elements:

[cout(0), cout(1), cout(1), cout(1), cout(2), . . .], (1.101)

based on a second set of coefficients for multipoles of order n also determined by the boundary

conditions:

cout(n) =
ϵ1
ϵ2
κrijαnkn(κrij)

(rij
a

)n
, (1.102)

where kn(x) is the modified spherical Bessel function of the third kind given by:

kn(x) =
πe−x

2x

n∑
i=0

(n+ i)!

i! (n− i)! (2x)i
. (1.103)

Kirkwood [105] determined αn and βn as:

αn =
(2n+ 1)/(κa)

nkn(κa)/ϵ̂− κak′n(κa)
, (1.104)

and

βn =
(n+ 1)kn(κa)/ϵ̂+ κak′n(κa)

kn(κa)/ϵ̂− κak′n(κa)
, (1.105)

where k′n(x) is the derivative of kn(x) and ϵ̂ is the ratio of the permittivity in solvent to

that inside the sphere, ϵ2/ϵ1. We only require the potential outside the cavity to construct

SDH and MDH boundary conditions, and therefore, we provide specific values of n and

kn through quadrupole order, as shown in Table 1.1. As the ionic strength goes to zero,

the Laplace equation is obeyed in solvent. For multipoles through quadrupole order, the

difference between the LPBE and Laplace potentials outside the cavity is summarized in

Table 1.2.

124

Table 1.1: Explicit values for the functions αn(x) and kn(x) up to quadrupole order.

n αn(x)/(2 exp(x)/π) kn(x)/(π/(2 exp(x)))

0 1/(1 + x) 1/x

1 3ϵ̂x/[1 + x+ ϵ̂ (2 + 2x+ x2)] (1 + x)/x2

2 5ϵ̂x2/[2 (3 + 3x+ x2) + ϵ̂ (9 + 9x+ 4x2 + x3)] (3 + 3x+ x2) /x3

Table 1.2: Explicit values of the coefficients used to calculate the potential at the grid
boundary of LPBE and Poisson equation calculations, respectively, under the SDH or
MDH approximation. The LPBE coefficients reduce to the Poisson equation coefficients as
salt concentration goes to zero.

n κrαn(κa)kn(κr)(r/a)
n limκ→0 [κrαn(κa)kn(κr)(r/a)

n]

0 exp(κ(a− r))/[1 + κa] 1

1 3ϵ̂ exp(κ(a− r))(1 + κr)/[1 + κa+ ϵ̂ (2 + 2κa+ (κa)2)] 3ϵ̂/(1 + 2ϵ̂)

2 5ϵ̂ exp(κ(a− r)) (3 + 3κr + (κr)2) /[2 (3 + 3κa+ (κa)2) + ϵ̂(9 5ϵ̂/(2 + 3ϵ̂)

+9κa+ 4(κa)2 + (κa)3)]

A.12. Units of PB equation

This section describes the units of PB equation. The Debye-Hückel parameter κ is

defined κ2 =
8πNAe2C

1000ϵ2kBT
IS where NA = 6.022045 × 1023 is the Avagadro’s number, ec =

4.8032424 × 10−10esu = 1.60217646 × 10−19C is the Fundamental charge, kB = 1.380662 ×

10−16erg/K = 1.380662×10−23 J/K is Boltzmann’s constant, T is the absolution temperature

in K, Is = 1
2

∑Ni

i=1 ciz
2
i is the ionic strength with Ni the number of different types of ions,

and ci the molar concentration of ion type i with charge qi = ziec. In simulation, we have

κ2 = 8.430325455 ∗ IS/ε2 for T = 300K.

The solution ϕ of the PB model is the electrostatic potential, whose units could be

various depending on which units system is applied. In our numerical implementation, unit

for the length is Å and the unit of the potential ϕ is ec/Å. After computing ϕ, one needs

to multiply it with a factor 332.0716 to convert it to the unit of kcal/mol/ec for free energy

calculations. The reader can refer to [106,107] for more details about definition and units of

these coefficients.

125

BIBLIOGRAPHY

[1] J. Warwicker and H. C. Watson, Calculation of the electric potential in the active site
cleft due to alpha-helix dipoles, Journal of Molecular Biology 157 (1982) 671–9. 1

[2] C. Holm, P. Kékicheff and R. Podgornik, Electrostatic effects in soft matter and
biophysics, vol. 46. Springer Science & Business Media, 2001. 1

[3] B. Honig and A. Nicholls, Classical electrostatics in biology and chemistry, Science 268
(1995) 1144–9. 1, 3, 13

[4] M. E. Davis and J. A. McCammon, Electrostatics in biomolecular structure and
dynamics, Chem. Rev. 94 (1990) 509–21. 1

[5] J. Gu and P. E. Bourne, Structural bioinformatics, vol. 44. John Wiley & Sons, 2009. 1

[6] N. Huang, Y. Chelliah, Y. Shan, C. A. Taylor, S.-H. Yoo, C. Partch et al., Crystal
structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex,
Science 337 (2012) 189–194,
[http://www.sciencemag.org/content/337/6091/189.full.pdf]. 2

[7] D. A. Beard and T. Schlick, Modeling salt-mediated electrostatics of macromolecules: the
discrete surface charge optimization algorithm and its application to the nucleosome,
Biopolymers 58 (2001) 106–115. 2

[8] E. Alexov, E. L. Mehler, N. Baker, A. M. Baptista, Y. Huang, F. Milletti et al., Progress
in the prediction of pka values in proteins., Proteins 79 (Dec, 2011) 3260–3275. 2

[9] J. Hu, S. Zhao and W. Geng, Accurate pka computation using matched interface and
boundary (MIB) method based Poisson-Boltzmann solver, Communication in
Computational Physics 2 (2018) 520–539. 2

[10] J. Chen, J. Hu, Y. Xu, R. Krasny and W. Geng, Computing protein pKas using the
TABI Poisson-Boltzmann solver, J. Comput. Biophys. Chem. 20 (2021) 175–187. 2,
40, 41, 42, 66

[11] Y. C. Zhou, B. Lu and A. A. Gorfe, Continuum electromechanical modeling of
protein-membrane interactions, Phys. Rev. E 82 (Oct, 2010) 041923. 2

[12] D. D. Nguyen, B. Wang and G.-W. Wei, Accurate, robust, and reliable calculations of
Poisson-Boltzmann binding energies, Journal of Computational Chemistry 38 (2017)
941–948. 2

126

http://dx.doi.org/http://dx.doi.org/10.1021/cr00101a005
http://dx.doi.org/10.1126/science.1222804
https://arxiv.org/abs/http://www.sciencemag.org/content/337/6091/189.full.pdf
http://dx.doi.org/10.1002/prot.23189
http://dx.doi.org/10.1142/S2737416520420065
http://dx.doi.org/10.1103/PhysRevE.82.041923
http://dx.doi.org/10.1002/jcc.24757
http://dx.doi.org/10.1002/jcc.24757

[13] J. A. Wagoner and N. A. Baker, Assessing implicit models for nonpolar mean solvation
forces: The importance of dispersion and volume terms, Proceedings of the National
Academy of Sciences 103 (2006) 8331–8336,
[http://www.pnas.org/content/103/22/8331.full.pdf]. 2

[14] N. Unwin, Refined structure of the nicotinic acetylcholine receptor at 4Å resolution,
Journal of Molecular Biology 346 (2005) 967 – 989. 2

[15] W. C. Still, A. Tempczyk, R. C. Hawley and T. Hendrickson, Semianalytical treatment of
solvation for molecular mechanics and dynamics, Journal of the American Chemical
Society 112 (1990) 6127–6129. 2

[16] N. A. Baker, Poisson-Boltzmann methods for biomolecular electrostatics, Methods
Enzymol. 383 (2004) 94–118. 3, 6, 9

[17] Q. Lu and R. Luo, A Poisson-Boltzmann dynamics method with nonperiodic boundary
condition, Journal of Chemical Physics 119 (2003) 11035–11047. 3

[18] R. Luo, L. David and M. K. Gilson, Accelerated Poisson-Boltzmann calculations for static
and dynamic systems, Journal of Computational Chemistry 23 (2002) 1244–53. 3

[19] W. Im, D. Beglov and B. Roux, Continuum solvation model: electrostatic forces from
numerical solutions to the Poisson-Boltzmann equation, Computer Physics
Communications 111 (1998) 59–75. 3

[20] W. Rocchia, S. Sridharan, A. Nicholls, E. Alexov, A. Chiabrera and B. Honig, Rapid
grid-based construction of the molecular surface and the use of induced surface charge
to calculate reaction field energies: Applications to the molecular systems and
geometric objects, Journal of Computational Chemistry 23 (2002) 128–137. 3, 70

[21] Z. Qiao, Z. Li and T. Tang, Finite difference scheme for solving the nonlinear
poisson-boltzmann equation modeling charged spheres, Journal of Computational
Mathematics 24 (04, 2006) . 3

[22] S. Yu, W. Geng and G. W. Wei, Treatment of geometric singularities in implicit solvent
models, Journal of Chemical Physics 126 (2007) 244108. 3, 69

[23] R. Egan and F. Gibou, Geometric discretization of the multidimensional Dirac delta
distribution – Application to the Poisson equation with singular source terms, Journal
of Computational Physics 346 (2017) 71 – 90. 3

[24] W. Geng, S. Yu and G. W. Wei, Treatment of charge singularities in implicit solvent
models, J. Chem. Phys. 127 (2007) 114106. 3, 4, 68, 78

[25] Q. Cai, J. Wang, H.-K. Zhao and R. Luo, On removal of charge singularity in
Poisson-Boltzmann equation, The Journal of Chemical Physics 130 (2009) . 3, 30, 32

[26] W. Geng and S. Zhao, A two-component matched interface and boundary (mib)
regularization for charge singularity in implicit solvation, J. Comput. Phys. 351
(2017) 25–39. xvii, 3, 12, 23, 30, 36, 68, 75, 76

[27] A. Lee, W. Geng and S. Zhao, Regularization methods for the Poisson-Boltzmann
equation: comparison and accuracy recovery, J. Comput. Phys. 426 (2020) 109958. 3,
36

127

http://dx.doi.org/10.1073/pnas.0600118103
http://dx.doi.org/10.1073/pnas.0600118103
https://arxiv.org/abs/http://www.pnas.org/content/103/22/8331.full.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.jmb.2004.12.031
http://dx.doi.org/10.1002/jcc.1161
http://dx.doi.org/http://dx.doi.org/10.1063/1.3099708

[28] R. J. Zauhar and R. S. Morgan, A new method for computing the macromolecular electric
potential, Journal of Molecular Biology 186 (1985) 815–20. 3

[29] A. Juffer, B. E., B. van Keulen, A. van der Ploeg and H. Berendsen, The electric
potential of a macromolecule in a solvent: a fundamental approach, J. Comput. Phys.
97 (1991) 144–171. 3, 43, 44, 45, 46

[30] J. Liang and S. Subranmaniam, Computation of molecular electrostatics with boundary
element methods, Biophys. J. 73 (1997) 1830–1841. 3

[31] A. H. Boschitsch, M. O. Fenley and H.-X. Zhou, Fast boundary element method for the
linear Poisson-Boltzmann equation, The Journal of Physical Chemistry B 106 (2002)
2741–2754, [http://dx.doi.org/10.1021/jp013607q]. 3

[32] B. Lu, X. Cheng and J. A. McCammon, A new-version-fast-multipole-method-accelerated
electrostatic calculations in biomolecular systems, Journal of Computational Physics
226 (2007) 1348 – 1366. 3

[33] M. D. Altman, J. P. Bardhan, J. K. White and B. Tidor, Accurate solution of multi-region
continuum biomolecule electrostatic problems using the linearized Poisson–Boltzmann
equation with curved boundary elements, J. Comput. Chem. 30 (2009) 132–153. 3

[34] L. Greengard, D. Gueyffier, P.-G. Martinsson and V. Rokhlin, Fast direct solvers for
integral equations in complex three-dimensional domains, Acta Numerica 18 (005,
2009) 243–275. 3

[35] C. Bajaj, S.-C. Chen and A. Rand, An efficient higher-order fast multipole boundary
element solution for Poisson-Boltzmann-based molecular electrostatics, SIAM Journal
on Scientific Computing 33 (2011) 826–848,
[http://dx.doi.org/10.1137/090764645]. 3

[36] B. Zhang, B. Lu, X. Cheng, J. Huang, N. P. Pitsianis, X. Sun et al., Mathematical and
numerical aspects of the adaptive fast multipole Poisson-Boltzmann solver,
Communications in Computational Physics 13 (001, 2013) 107–128. 3

[37] W. Geng and R. Krasny, A treecode-accelerated boundary integral Poisson-Boltzmann
solver for electrostatics of solvated biomolecules, Journal of Computational Physics
247 (2013) 62 – 78. xvii, 3, 41, 43, 45, 46, 47, 48, 68, 72, 75, 76

[38] Q. Sun, E. Klaseboer and D. Y. C. Chan, A robust and accurate formulation of molecular
and colloidal electrostatics, The Journal of Chemical Physics 145 (2016) 054106,
[https://doi.org/10.1063/1.4960033]. 3

[39] Y. Zhong, K. Ren and R. Tsai, An implicit boundary integral method for computing
electric potential of macromolecules in solvent, Journal of Computational Physics
359 (2018) 199 – 215. 3

[40] B. J. Yoon and A. M. Lenhoff, A boundary element method for molecular electrostatics
with electrolyte effects, Journal of Computational Chemistry 11 (1990) 1080–1086. 3

[41] L. F. Greengard and J. Huang, A new version of the fast multipole method for screened
coulomb interactions in three dimensions, J. Comput. Phys. 180 (2002) 642 – 658. 3

128

http://dx.doi.org/10.1021/jp013607q
http://dx.doi.org/10.1021/jp013607q
https://arxiv.org/abs/http://dx.doi.org/10.1021/jp013607q
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2007.05.026
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2007.05.026
http://dx.doi.org/10.1002/jcc.21027
http://dx.doi.org/10.1017/S0962492906410011
http://dx.doi.org/10.1017/S0962492906410011
http://dx.doi.org/10.1137/090764645
http://dx.doi.org/10.1137/090764645
https://arxiv.org/abs/http://dx.doi.org/10.1137/090764645
http://dx.doi.org/10.4208/cicp.210711.111111s
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2013.03.056
http://dx.doi.org/http://dx.doi.org/10.1016/j.jcp.2013.03.056
http://dx.doi.org/10.1063/1.4960033
https://arxiv.org/abs/https://doi.org/10.1063/1.4960033
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.01.021
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2018.01.021
http://dx.doi.org/10.1002/jcc.540110911
http://dx.doi.org/http://dx.doi.org/10.1006/jcph.2002.7110

[42] P. Li, H. Johnston and R. Krasny, A Cartesian treecode for screened Coulomb
interactions, J. Comput. Phys. 228 (2009) 3858–3868. 3, 40, 47, 48, 49

[43] S. Wang, A. Lee, E. Alexov and S. Zhao, A regularization approach for solving poisson’s
equation with singular charge sources and diffuse interfaces, Applied Mathematics
Letters 102 (2020) 106144. 3

[44] J. Chen and W. Geng, On preconditioning the treecode-accelerated boundary integral
(TABI) Poisson-Boltzmann solver, J Comput Phys 373 (2018) 750–762. 4, 42, 49, 74

[45] M. Born, Volumen und Hydratationswärme der Ionen, Zeitschrift fur Physik 1 (Feb.,
1920) 45–48. 8

[46] M. F. Sanner, A. J. Olson and J. C. Spehner, Reduced surface: An efficient way to
compute molecular surfaces, Biopolymers 38 (1996) 305–320. xvi, 10, 46, 62, 70, 74,
93, 94

[47] K. A. Sharp and B. Honig, Electrostatic interactions in macromolecules - theory and
applications, Annual Review of Biophysics and Biophysical Chemistry 19 (1990)
301–332. 13

[48] J. W. Ponder, C. J. Wu, P. Y. Ren, V. S. Pande, J. D. Chodera, M. J. Schnieders et al.,
Current status of the AMOEBA polarizable force field, J. Phys. Chem. B 114 (2010)
2549. 13

[49] A. J. Stone, The Theory of Intermolecular Forces. Oxford University Press, 2013. 13

[50] C. Sagui, L. G. Pedersen and T. A. Darden, Towards an accurate representation of
electrostatics in classical force fields: Efficient implementation of multipolar
interactions in biomolecular simulations, The Journal of Chemical Physics 120
(2004) 73–87. 13, 15

[51] P. Ren and J. W. Ponder, Polarizable atomic multipole water model for molecular
mechanics simulation, The Journal of Physical Chemistry B 107 (2003) 5933–5947,
[http://dx.doi.org/10.1021/jp027815+]. 13, 14, 15

[52] P. Ren, C. Wu and J. W. Ponder, Polarizable atomic multipole-based molecular
mechanics for organic molecules, Journal of Chemical Theory and Computation 7
(2011) 3143–3161, [http://dx.doi.org/10.1021/ct200304d]. 13, 15

[53] Y. Shi, Z. Xia, J. Zhang, R. Best, C. Wu, J. W. Ponder et al., Polarizable atomic
multipole-based amoeba force field for proteins, Journal of Chemical Theory and
Computation 9 (2013) 4046–4063, [http://dx.doi.org/10.1021/ct4003702]. 13,
14, 15

[54] J. W. Ponder and F. M. Richards, An efficient newton-like method for molecular
mechanics energy minimization of large molecules, Journal of computational
chemistry 8 (1987) 1016–1024. 13

[55] C. E. Kundrot, J. W. Ponder and F. M. Richards, Algorithms for calculating excluded
volume and its derivatives as a function of molecular conformation and their use in
energy minimization, Journal of computational chemistry 12 (1991) 402–409. 13

[56] R. V. Pappu, R. K. Hart and J. W. Ponder, Analysis and application of potential energy
smoothing and search methods for global optimization, The Journal of Physical
Chemistry B 102 (1998) 9725–9742. 13

129

http://dx.doi.org/10.1016/j.jcp.2009.02.022
http://dx.doi.org/https://doi.org/10.1016/j.aml.2019.106144
http://dx.doi.org/https://doi.org/10.1016/j.aml.2019.106144
http://dx.doi.org/10.1007/BF01881023
http://dx.doi.org/10.1007/BF01881023
http://dx.doi.org/http://dx.doi.org/10.1063/1.1630791
http://dx.doi.org/http://dx.doi.org/10.1063/1.1630791
http://dx.doi.org/10.1021/jp027815+
https://arxiv.org/abs/http://dx.doi.org/10.1021/jp027815+
http://dx.doi.org/10.1021/ct200304d
http://dx.doi.org/10.1021/ct200304d
https://arxiv.org/abs/http://dx.doi.org/10.1021/ct200304d
http://dx.doi.org/10.1021/ct4003702
http://dx.doi.org/10.1021/ct4003702
https://arxiv.org/abs/http://dx.doi.org/10.1021/ct4003702

[57] M. S. Friedrichs, P. Eastman, V. Vaidyanathan, M. Houston, S. Legrand, A. L. Beberg
et al., Accelerating molecular dynamic simulation on graphics processing units,
Journal of computational chemistry 30 (2009) 864–872. 13

[58] D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. M. Merz Jr et al.,
The amber biomolecular simulation programs, Journal of computational chemistry 26
(2005) 1668–1688. 13

[59] C. Zhang, C. Lu, Z. Jing, C. Wu, J.-P. Piquemal, J. W. Ponder et al., Amoeba polarizable
atomic multipole force field for nucleic acids, Journal of Chemical Theory and
Computation 14 (04, 2018) 2084–2108. 14, 35

[60] D. J. Tannor, B. Marten, R. Murphy, R. A. Friesner, D. Sitkoff, A. Nicholls et al.,
Accurate first principles calculation of molecular charge distributions and solvation
energies from ab initio quantum mechanics and continuum dielectric theory, Journal
of the American Chemical Society 116 (12, 1994) 11875–11882. 14

[61] Y. Mei, C. Ji and J. Z. H. Zhang, A new quantum method for electrostatic solvation
energy of protein, The Journal of Chemical Physics 125 (2006) 094906,
[https://doi.org/10.1063/1.2345201]. 14

[62] M. J. Schnieders, N. A. Baker, P. Ren and J. W. Ponder, Polarizable atomic multipole
solutes in a Poisson–Boltzmann continuum, The Journal of Chemical Physics 126
(2007) . 17, 20, 122

[63] C. J. F. BOTTCHER, Chapter i electric dipoles and multipoles, Theroy of Electric
Polarization (Second Edition) (1973) . xiii, 21, 22, 106, 110

[64] W. Geng, S. Yu and G. W. Wei, Treatment of charge singularities in implicit solvent
models, J. Chem. Phys. 127 (2007) 114106. 30

[65] M. Holst, J. McCammon, Z. Yu, Y. Zhou and Y. Zhu, Adaptive finite element modeling
techniques for the Poisson-Boltzmann equation, Communication in Computational
Physics 11 (2012) 179–214. 31

[66] A. Nicholls and B. Honig, A rapid finite difference algorithm, utilizing successive
over-relaxation to solve the poissonâboltzmann equation, Journal of Computational
Chemistry 12 (1991) 435–445,
[https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.540120405]. 37

[67] C. Li, M. McGowan, E. Alexov and S. Zhao, A newton-like iterative method implemented
in the delphi for solving the nonlinear poisson-boltzmann equation, Mathematical
Biosciences and Engineering 17 (2020) 6259. 37

[68] L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of
Computational Physics 73 (1987) 325 – 348. 40

[69] B. Zhang, B. Peng, J. Huang, N. P. Pitsianis, X. Sun and B. Lu, Parallel {AFMPB}
solver with automatic surface meshing for calculation of molecular solvation free
energy, Computer Physics Communications 190 (2015) 173 – 181. 40

[70] J. K. Salmon, M. S. Warren and G. S. Winckelmans, Fast parallel tree codes for
gravitational and fluid dynamical n-body problems, Int. J. Supercomputer Appl 8
(1986) 129–142. 41, 42, 66

130

http://dx.doi.org/10.1021/acs.jctc.7b01169
http://dx.doi.org/10.1021/acs.jctc.7b01169
http://dx.doi.org/10.1021/ja00105a030
http://dx.doi.org/10.1021/ja00105a030
http://dx.doi.org/10.1063/1.2345201
https://arxiv.org/abs/https://doi.org/10.1063/1.2345201
http://dx.doi.org/http://dx.doi.org/10.1063/1.2714528
http://dx.doi.org/http://dx.doi.org/10.1063/1.2714528
http://dx.doi.org/10.1002/jcc.540120405
http://dx.doi.org/10.1002/jcc.540120405
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.540120405
http://dx.doi.org/http://dx.doi.org/10.3934/mbe.2020331
http://dx.doi.org/http://dx.doi.org/10.3934/mbe.2020331
http://dx.doi.org/http://dx.doi.org/10.1016/0021-9991(87)90140-9
http://dx.doi.org/http://dx.doi.org/10.1016/0021-9991(87)90140-9
http://dx.doi.org/http://dx.doi.org/10.1016/j.cpc.2014.12.022

[71] T. Hamada, K. Nitadori, K. Benkrid, Y. Ohno, G. Morimoto, T. Masada et al., A novel
multiple-walk parallel algorithm for the barnes–hut treecode on gpus – towards cost
effective, high performance n-body simulation, Computer Science - Research and
Development 24 (Sep, 2009) 21–31. 41

[72] J. Bédorf, E. Gaburov and S. Portegies Zwart, A sparse octree gravitational N-body code
that runs entirely on the GPU processor, Journal of Computational Physics 231
(2012) 2825–2839. 41

[73] M. Burtscher and K. Pingali, An efficient CUDA implementation of the tree-based
Barnes-Hut N-body algorithm, pp. 75–92. Elsevier Inc., 12, 2011.
10.1016/B978-0-12-384988-5.00006-1. 41

[74] H. C. Edwards, C. R. Trott and D. Sunderland, Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns, Journal of Parallel and
Distributed Computing 74 (2014) 3202 – 3216. 43, 57, 94

[75] Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM Journal on Scientific and Statistical Computing
7 (1986) 856–869, [http://dx.doi.org/10.1137/0907058]. 47

[76] L. Wilson and R. Krasny, Comparison of the MSMS and NanoShaper molecular surface
triangulation codes in the TABI Poisson–Boltzmann solver, Journal of Computational
Chemistry 42 (2021) 1552–1560. 47, 66

[77] J. Barnes and P. Hut, A hierarchical O(N log N) force-calculation algorithm, Nature 324
(12, 1986) 446–449. 47, 48

[78] Z.-H. Duan and R. Krasny, An adaptive treecode for computing nonbonded potential
energy in classical molecular systems, J. Comput. Chem. 22 (2001) 184–195. 47

[79] K. Lindsay and R. Krasny, A particle method and adaptive treecode for vortex sheet
motion in three-dimensional flow, Journal of Computational Physics 172 (2001) 879
– 907. 47

[80] J. Chen, W. Geng and D. Reynolds, Cyclically paralleled treecode for fast computing
electrostatic interactions on molecular surfaces, Comput. Phys. Commun. 260 (2021)
107742. 54

[81] W. Humphrey, A. Dalke and K. Schulten, VMD – visual molecular dynamics, Journal of
Molecular Graphics 14 (1996) 33–38. xiv, 65

[82] N. Vaughn, L. Wilson and R. Krasny, A GPU-accelerated barycentric Lagrange treecode,
in 2020 IEEE International Parallel and Distributed Processing Symposium
Workshop (IPDPSW), pp. 701–710, 2020. 66

[83] L. Wilson, W. Geng and R. Krasny, TABI-PB 2.0: An Improved Version of the
Treecode-Accelerated Boundary Integral Poisson-Boltzmann Solver, The Journal of
Physical Chemistry B 126 (09, 2022) 7104–7113. 66

[84] B. Liu, B. Wang, R. Zhao, Y. Tong and G.-W. Wei, ESES: Software for Eulerian solvent
excluded surface, Journal of Computational Chemistry 38 (2017) 446–466. 67, 68, 72,
74, 76

131

http://dx.doi.org/10.1007/s00450-009-0089-1
http://dx.doi.org/10.1007/s00450-009-0089-1
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2014.07.003
http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1137/0907058
https://arxiv.org/abs/http://dx.doi.org/10.1137/0907058
http://dx.doi.org/10.1002/1096-987X(20010130)22:2<184::AID-JCC6>3.0.CO;2-7
http://dx.doi.org/http://dx.doi.org/10.1006/jcph.2001.6862
http://dx.doi.org/http://dx.doi.org/10.1006/jcph.2001.6862
http://dx.doi.org/10.1021/acs.jpcb.2c04604
http://dx.doi.org/10.1021/acs.jpcb.2c04604
http://dx.doi.org/10.1002/jcc.24682

[85] D. Chen, Z. Chen, C. Chen, W. Geng and G. W. Wei, MIBPB: A software package for
electrostatic analysis, J. Comput. Chem. 32 (2011) 657 – 670. 68, 75, 86

[86] B. Lee and F. M. Richards, The interpretation of protein structures: estimation of static
accessibility, J Mol Biol 55 (1971) 379–400. 69

[87] M. L. Connolly, Depth buffer algorithms for molecular modeling, J. Mol. Graphics 3
(1985) 19–24. 70, 71

[88] S. Decherchi and W. Rocchia, A general and robust ray-casting-based algorithm for
triangulating surfaces at the nanoscale, PLOS ONE 8 (04, 2013) 1–15. 70, 72, 73

[89] L. WE, Marching cubes: A high resolution 3d surface construction algorithm, Computer
graphics 21 (1987) 7–12. 70, 71

[90] L. Wilson and R. Krasny, Comparison of the msms and nanoshaper molecular surface
triangulation codes in the tabi poisson-boltzmann solver., J Comput Chem 42 (Aug,
2021) 1552–1560. 70

[91] Y. Zhou, Matched interface and boundary (MIB) method and its applications to implicit
solvent modeling of biomolecules. PhD thesis, Michigan State University, 2006. 70

[92] Y. C. Zhou and G. W. Wei, On the fictitious-domain and interpolation formulations of
the matched interface and boundary (MIB) method, J. Comput. Phys. 219 (2006)
228–246. 74

[93] Z. Liu, Y. Li, L. Han, J. Liu, Z. Zhao, W. Nie et al., PDB-wide collection of binding data:
current status of the PDBbind database, Bioinformatics 31 (2015) 405–412. 79

[94] A. Onufriev, D. Bashford and D. A. Case, Modification of the generalized Born model
suitable for macromolecules, Journal of Physical Chemistry B 104 (2000) 3712–3720.
81

[95] D. Bramer and G.-W. Wei, Multiscale weighted colored graphs for protein flexibility and
rigidity analysis, The Journal of chemical physics 148 (2018) 054103. 82, 84

[96] D. D. Nguyen, Z. Cang, K. Wu, M. Wang, Y. Cao and G.-W. Wei, Mathematical deep
learning for pose and binding affinity prediction and ranking in d3r grand challenges,
Journal of Computer Aided Molecular Design 33 (2019) 71–82. 82

[97] S. P. Borgatti, Centrality and network flow, Social networks 27 (2005) 55–71. 83

[98] Q. Cai, M. J. Hsieh, J. Wang and R. Luo, Performance of nonlinear finite-difference
Poisson-Boltzmann solvers, Journal of Chemical Theory and Computation 6(1)
(2009) 203–211. 86

[99] L. Li, C. Li, S. Sarkar, J. Zhang, S. Witham, Z. Zhang et al., Delphi: a comprehensive
suite for delphi software and associated resources, BMC Biophysics 5:9 (2012)
2046–1682. 86

[100] A. H. Boschitsch and M. O. Fenley, Hybrid boundary element and finite difference method
for solving the nonlinear Poisson-Boltzmann equation, J. Comput. Chem. 25 (2004)
935–955. 99

[101] L. Wang, R. Krasny and S. Tlupova, A kernel-independent treecode based on barycentric
lagrange interpolation, Commun. Comput. Phys. 28 (2020) 1415–1436. 99

132

http://dx.doi.org/10.1371/journal.pone.0059744
http://dx.doi.org/10.1016/j.jcp.2006.03.027
http://dx.doi.org/10.1016/j.jcp.2006.03.027

[102] A. J. Stone, The Theory of Intermolecular Forces. Clarendon, Oxford, 1996. 110

[103] L. Onsager, Electric moments of molecules in liquids, Journal of the American Chemical
Society 58 (1936) 1486–1493, [https://doi.org/10.1021/ja01299a050]. 116, 120

[104] P. Debye, Einige resultate einer kinetischen theorie der isolatoren, Physik Z. 13 (1912)
97. 120

[105] J. G. Kirkwood, Theory of solution of molecules containing widely separated charges with
special application to zwitterions, J. Comput. Phys. 7 (1934) 351 – 361. 124

[106] W. Geng, A boundary integral Poisson–Boltzmann solvers package for solvated
bimolecular simulations, Computational and Mathematical Biophysics 3 (2015)
43–58. 125

[107] M. J. Holst, The Poisson-Boltzmann Equation: Analysis and Multilevel Numerical
Solution. PhD thesis, UIUC, 1994. 125

133

http://dx.doi.org/10.1021/ja01299a050
http://dx.doi.org/10.1021/ja01299a050
https://arxiv.org/abs/https://doi.org/10.1021/ja01299a050

	Tools for Biomolecular Modeling and Simulation
	Recommended Citation

	 LIST OF FIGURES
	 LIST OF TABLES
	1 Introduction
	1.1. Implicit Solvent Models
	1.1.1. Poisson-Boltzmann Model
	1.1.2. Generalized Born Model

	1.2. Motivation

	2 A Regularized Matched Interface and Boundary Poisson-Boltzmann Solver with Polarizable Force Fields
	2.1. Introduction
	2.2. Polarizable Multipole Poisson-Boltzmann Model
	2.2.1. Polarizable Multipole Sources of the AMOEBA
	2.2.2. Polarization in the Vacuum Phase
	2.2.3. Polarization in the Solvated Phase
	2.2.4. Boundary Conditions of the PMPB Model
	2.2.5. Analytical Solutions for A Spherical Cavity

	2.3. Matched Interface and Boundary Method
	2.4. A Two-Component Regularization of MIB
	2.5. Preliminary Results
	2.6. Proposed Polarizable Multipole Nonlinear Poisson-Boltzmann Model
	2.6.1. A New Regularization Formulation
	2.6.2. Linearized Iterative Algorithm for Self-Consistent Mutual Polarization

	2.7. Conclusion

	3 Optimized Parallelization of Boundary Integral Poisson-Boltzmann Solvers
	3.1. Introduction
	3.2. Boundary Integral Poisson-Boltzmann Solvers
	3.2.1. Boundary Integral Formulation of Poisson-Boltzmann Equation
	3.2.2. Discretization of Boundary Integral Equations
	3.2.3. Treecode
	3.2.4. Preconditioning

	3.3. Parallelization Schemes
	3.3.1. MPI-based Treecode Accelerated Boundary Integral Solver
	3.3.2. GPU-accelerated Direct-Sum Boundary Integral Solver

	3.4. Numerical Results
	3.4.1. Parallel Efficiency of MPI-based Computing
	3.4.2. MPI-based TABI solver vs GPU-accelerated DSBI solver

	3.5. Conclusion

	4 Bridging Eulerian and Lagrangian Poisson-Boltzmann Solvers by ESES
	4.1. Background
	4.2. Molecular Surface Definitions and Generators
	4.3. Results and Discussions of ESES Performance
	4.3.1. TABI using Lagrangian ESES vs TABI using NanoShaper
	4.3.2. MIB using Eulerian ESES vs MIB using Eulerian MSMS
	4.3.3. MIB using Eulerian ESES vs TABI using Lagrangian ESES

	4.4. Conclusion

	5 Poisson-Boltzmann based Machine Learning Model
	5.1. Introduction
	5.2. Data Preparation
	5.2.1. Feature Description
	5.2.2. Graph Theory Representation

	5.3. Machine Learning Algorithms
	5.3.1. Generalized-Born based Gradient Boosting Decision Tree
	5.3.2. Generalized-Born based Deep Neural Network

	5.4. Results
	5.4.1. Evaluation Metrics
	5.4.2. Convergence Comparison of the PB Solvers
	5.4.3. Comparison between Different ML models
	5.4.4. Performance of the PBML Model

	5.5. Conclusion

	6 Software Dissemination
	7 Summary of Contributions and Future Work
	7.1. Dissertation Contributions
	7.2. Future Work

	A Appendix
	A.1. Differentiation with respect to Cartesian coordinates
	A.2. Differentiation with respect to spherical coordinates
	A.3. Tensor multiplications
	A.4. Electric dipoles and multipoles
	A.5. Electric potential and energy for multipoles
	A.6. The general solution of Laplace's equation in spherical coordinates for the case of axial symmetry
	A.7. Legendre polynomials
	A.8. The solution of Laplace's equation due to a point dipole
	A.9. The solution of Laplace's equation due to a point quadrupole
	A.10. The dipole theory of dielectrics
	A.11. Boundary conditions of the PMPB model
	A.12. Units of PB equation

	BIBLIOGRAPHY

