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Abstract 

Development and Analysis of Tinker-OpenMM as a GPU-based Free 

Energy Perturbation Engine 

Matthew  Thomas Harger, PhD 

The University of Texas at Austin, 2019 

Supervisor:  Pengyu Ren and Kevin Dalby 

The utilization of computational technologies for the lead optimization process is 

one of the biggest challenges in the computational chemistry field. In this dissertation, I 

describe the addition of GPU-based absolute and relative free energy calculation methods 

using polarizable force field AMOEBA to Tinker-OpenMM. I then proceed to test the 

capabilities of this platform by studying the binding free energy and binding structures of 

derivatives of the MELK inhibitor IN17. Also, I present the implementation of virial-

based pressure control to the Tinker-OpenMM platform that is needed for performing 

isobaric simulations.   
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INTRODUCTION 

One of the principal goals of the computational chemistry field has been the 

prediction of the binding affinity of small molecules to proteins1. Such capabilities would 

allow scientists to make actionable decisions in drug design before undergoing chemical 

synthesis and experimental testing. This would accelerate drug discovery, limit waste, 

and allow for a more significant structural understanding early in the drug optimization 

process.  Current techniques are, however, often not accurate enough to achieve sub-

kcal/mol accuracy in binding affinity prediction consistently2. This thesis chronicles my 

contributions to the efforts to achieve accurate protein-ligand binding predictions using 

the AMOEBA forcefield on GPUs, combining accuracy and speed. 

High-level ab initio quantum mechanics (QM) calculations in principle could provide 

the ideal solution to the protein-ligand binding problem. However, given the prohibitive 

computational cost of quantum mechanics calculations on large systems of hundreds and 

thousands of atoms, computational chemistry is currently separated into fundamentally 

distinct techniques for different computational problems3. While pure quantum chemical 

calculations inform many of these approaches, approximations of molecular interactions 

are necessary for computational efficiency. The extent of these approximations defines 

the various subfields of computational chemistry. In this introduction, I will include a 

broad overview of the computational field as a whole, including docking, QM methods, 

machine learning methods, and an emphasized section on classical molecular mechanics-
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based molecular dynamics (MD) approaches. This will be followed by an overview of 

GPU computation and the Tinker-OpenMM package for molecular dynamics simulations 

on GPU.  

Docking 

The basics of docking consist of a basic scoring function and a search algorithm 

for predicting optimal protein-ligand binding pose and affinity. Molecular docking is an 

approach that has been designed to identify possible small molecule binders of a target 

structural site on a protein or other macromolecule such as DNA 4. Docking software 

requires only the input 3d structure of the target receptor, and a 3d structure of the ligand 

to be docked. The docking approach then attempts to find the lowest energy protein-

ligand pose for a given protein and ligand pair. This pose is then assigned a score based 

on the predicted interaction strength5. The approach and scoring functions vary 

depending on the computational approach. The main two approaches used to generate 

low energy poses are molecular mechanics-based minimization using a relatively 

inexpensive and versatile forcefield (as used by GLIDE6) and genetic algorithms( like 

used in GOLD7). 

The scoring function of a docking approach constitutes a simpler model of ligand-

host interactions than even the most basic classical mechanics forcefields. Since bonded 

interactions (other than torsions) are assumed to be virtually identical across poses, 

bonded terms are excluded from scoring. Also, in order to improve upon computational 

throughput, scoring functions often use a simplified model of electrostatics. Instead of 
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calculating actual interaction energy, electrostatics interactions are often treated as 

hydrogen bonds with a score function related to distance and angle. This change in 

electrostatics is a necessary approximation, as most docking approaches do not take 

account of the solvent effect explicitly (though most packages allow for the utilization of 

crystallographic waters8). These crude approximations allow for efficient throughput, 

though this comes at a distinct cost of accuracy. 

As a whole, docking approaches are successful at what they have been designed 

to do - namely, identify (enrich) possible ligand hits in large libraries of compounds 

consisting of millions of compounds9. However, docking approaches are ineffective in 

later-stage lead optimization, where chemical (sub kcal/mol) accuracy is necessary. Even 

the most accurate docking approaches struggle to obtain significantly better than a 

2.5kcal/mol accuracy in binding free energy prediction10-11. The low accuracy of docking 

approaches can be attributed to several factors, most prominently the crude electrostatic 

model, entropy calculation, solved effect, and lack of system dynamics and induced fit 

effects. Also, most docking approaches assume that the host and ligand are static entities. 

In reality, both molecules are flexible, and the protein adjusts in pose due to the presence 

of a ligand, an adjustment known as induced fit. Also, it is the distribution of interaction 

energies that results in the experimentally observed potency, not the energy of an 

individual pose. Most docking packages enable the inclusion of sidechain torsional 

degrees of freedom in the pose optimization process12. This does capture some induced-

fit effects, though it ignores basic backbone motions and secondary structural changes 

required during ligand binding. Approaches have been developed that allow for some 
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backbone flexibility, though this comes at a non-insignificant increase in system degrees 

of freedom, reducing performance13-14. Therefore, for docking to be most effective, the 

input protein pose must be in a state conducive to ligand binding.  Ideally, this would 

consist of a co-crystal structure of the protein target with a related ligand in the binding 

pocket. The presence of a ligand allows for protein target to be in a more “relevant” state 

relative to an apo-protein, and thus more likely to be accommodating of a bound ligand. 

When utilized correctly, docking is a useful lead discovery tool.  However, in later stages 

of drug discovery where higher accuracy is required, docking is mostly ineffective.  

Machine Learning 

Another increasingly popular class of computational chemistry methodology is 

machine learning approaches15. While the other classes of discussed techniques utilize the 

3d structure of ligands, most machine learning approaches treat ligands as 2d atomic 

structures. While there has been increasing interest in the utilization of machine learning 

combined with 3d structural information to enable dynamics simulations16, these 

approaches will not be discussed here. In this section, I will discuss the basics of machine 

learning, give an overview of its applications in computational chemistry, and discuss the 

advantages and disadvantages of these approaches.  

 Machine learning approaches often treat ligand structures like strings, such as 

SMILES strings17. For example, benzene in SMILES format is c1ccccc1, with the 

lowercase c representing an aromatic carbon atom, and the 1 indicating ring connections. 

The advantage of treating molecules as simple strings is the ability to gain access to the 
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diverse set of string analysis algorithms while ignoring a large number of 3-dimensional 

degrees of freedom. This utilization of atomic topology (atomic type plus connections) 

alone can result in a simplification of the amount of data needed in an analysis. For 

example, molecular toxicity is a combination of the interaction of ligands with many off-

target proteins. In theory, one could design a 3d structural approach to predict toxicity 

based upon predicted binding to these off-target proteins. However, this approach would 

be computationally inefficient and require accurate binding predictions for each of the 

off-target proteins. In contrast, a machine learning model input would merely require an 

input library of compounds with associated properties. Using this mapping of input 

molecules to output properties, machine learning approaches attempt to generate a model 

that takes molecular features (such as topology, or other, provided precomputed metrics) 

as inputs and predicts the properties of interest. 

Once a useful machine learning model has been generated, predictions could be 

made orders of magnitude faster than the binding free energy-based approaches. 

However, as the name implies, machine learning requires a sufficient training set of 

material inputs in order to generate a predictive model. For example, in the case of 

molecular toxicity prediction, this training set would consist of a series of molecules with 

known toxicity data. The learning method then attempts to create a series of equation 

constants that results in a predictive model that most closely reproduces the input training 

data. Without a large input training set, a useful (predictive) machine learning model 

cannot be generated. This creates problems for chemical property prediction, where 

obtaining a well-curated, sufficiently comprehensive dataset can prove challenging. 
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Despite these limitations, machine learning models have proven to be valuable in 

the drug discovery process and have permeated throughout the field. The most apparent 

utilization of machine learning schemes is in the prediction of ADME-Tox properties18. 

Since these properties are often independent of the protein target, a single, well-trained 

model can be used for aiding the design of ligands to any number of independent protein 

targets.  Machine learning techniques have been used to develop models of excretion19, 

distribution20, drug-drug interactions 21, and more.  Also, machine learning 

methodologies have been used successfully in the prediction of protein-ligand binding 

affinity22-23, and perform well in protein-ligand affinity prediction tests2. However, this 

performance is enabled by the presence of the preexisting large amount of protein-ligand 

binding data, something most often lacking in new drug discovery projects. The most 

fruitful utilization of machine learning approaches in drug discovery has been 

quantitative structure-activity relationship (QSAR) models that use existing data to 

predicting binding or bioactivity towards already studied classes of proteins. For 

example, machine learning methods have been used to predict antifungal activity24, as 

well as the affinity of inhibitors to HIV-1 protease, trypsin, and carbonic anhydrase25. 

These studies were likely successful due to the depth of data available to these 

extensively studied targets. The later study was also able to pick out features from a 

diverse set of input proteins and predicted the binding affinity of a test set of random 

protein-ligand complexes to within 1.6 kcal/mol. However, this approach was not able to 

reliably outperform traditional docking methods such as SYBYL:: ChemScore. While it 

is possible (if not likely) that machine learning methods will be utilized to inform and 
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improve traditional docking approaches22; machine learning is unlikely to obtain the 

accuracy needed for lead optimization studies. 

The main advantage (as well as one of the most significant weaknesses) of 

machine learning approaches to molecular property prediction is the lack of a need for a 

solid mechanistic understanding of the process involved. Given enough input data, 

machine learning approaches will generate a predictive model, even in cases where the 

exact mechanism is not solidly understood. This is especially important in drug 

discovery, where most properties of interest are a combination of a myriad of factors, 

some of which may not be understood well enough to program into a predictive model 

directly. However, this advantage also means that it can be difficult, if not impossible, to 

interrogate a machine learning model to gain mechanistic understanding. A traditionally 

physics-based approach, at least, provides the ability to investigate mathematical and 

process intermediates for trends. For example, when calculating binding free energy 

using a molecular dynamics (MD) based approach, one could identify that a given 

electrostatic interaction is more negative in stronger binding compounds than weaker 

binding compounds, and thus possibly crucial in the mechanism of differential binding; 

or a binding site residue plays a central role in affinity or selectivity.  However, machine 

learning approaches give no such insights. A trained machine learning model merely 

consists of a series of mathematical constants, each of which does not correspond to an 

identifiable physical phenomenon. It is also dangerous to extrapolate an ML model into 

unknown (or untrained) space,  similar to mathematical spline functions that are designed 

to reproduce any complex surface given enough grid points. Therefore, while machine 
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learning approaches may be useful tools, deriving a better biophysical understanding 

using most machine learning processes is a largely non-viable process. 

Quantum Mechanics 

As the name implies, Quantum mechanics calculations depend on the calculation 

of the energy and wavefunction using the Schrödinger equation26 

"
−ℎ%
2𝑚∇) + 𝑉(𝑟)/𝜓(𝑟) = 𝐸𝜓(𝑟) 

These equations allow for analytical calculation of energy for simple systems, like 

the hydrogen atom or helium26. However, approximations need to be made to enable the 

approximate solution to energy for any larger molecular system.  One of the “cheapest” 

methods is Hartree-Fock, the basis for most QM calculation methods27. One of the major 

assumptions made by Hartree-Fock is that electron motions are not correlated. This lack 

of electron correlation leads to some issues in forcefield development, mainly due to the 

lack of London dispersion, an interaction critical to the description of van der Waals 

(vdW) forces. Therefore, more expensive methods that make fewer assumptions have 

been developed, such as MP228 and CCSD(T)29. Also, the accuracy is defined by the 

basis set used, which describes the number of (often gaussian) functions that describe 

each electron distribution. The methodology and basis set size both contribute massively 

to overall computational cost. This is critical, as quantum calculations scale with the 

number of electrons on the order of O(N4) for standard methods like Hartree-Fock to 

O(N7) for expensive methods like MP4 30, meaning that a doubling in the number of 
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electrons results in at least a 16 fold decrease in performance. This lack of scalability 

means that QM methodologies are limited in overall system size, making the most 

expensive methods inaccessible for biopolymers such as proteins or nucleic acids. 

Despite limitations in the performance of QM methodologies, QM has proven 

essential to the computational chemistry community31 given the “ab initio” nature. QM 

tools constitute the most definitive approach to the determination of the strength of 

individual interactions. Experimental observables (even single-molecule techniques) are 

results of a combination of many individual interaction components such as electrostatic, 

repulsion, and dispersion. Since forcefields need to be parameterized to individual 

interaction components, QM calculations are thus the de facto standard for forcefield 

development32. In addition to calculating overall interaction strengths, software known as 

SAPT33 has been developed to decompose intermolecular interactions into specific terms, 

such as electrostatics, induction, exchange, and dispersion. This allows for a forcefield to 

be developed with accurate separation of total energy into terms that more closely relate 

to the desired physical interaction, a property that, in theory, leads to better transferability 

of the general force field parameters. 

 In addition to forcefield parameterization, there have been many efforts to fuse 

quantum mechanics calculations in an approach referred to as QM/MM. In QM/MM, the 

forces on a small region of the system (often an active site, or another region of interest) 

are calculated using QM, while the forces for the rest of the system are calculated using a 

simple classical forcefield (with corrections for interactions between the QM and MM 

regions)34. In theory, QM-MM attempts to improve upon the accuracy of pure MM based 
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methods at limited cost and also offer the ability to study chemical reactions where the 

chemical bonds break and form, something typical classical force fields can not treat. The 

current best utilization of FEP approaches in protein-ligand binding prediction to an 

accuracy of around 0.1kcal/mol35 for sample host-guest systems, significantly more 

accurate than current classical MD based approaches. However, this improvement comes 

with significant reductions in performance. Therefore, in order for these approaches to 

become viable, substantial improvements to QM/MM methodologies need to be made. 

Molecular Dynamics 

Molecular dynamics-based simulations can be derived from Newton's second law 

of motion, namely that force equals mass times acceleration. Such simulations provide a 

statistical ensemble of molecules, from which we can then compute physical and 

thermodynamic properties such as binding free energy. What differentiates between 

different molecular dynamics methods is mainly how force is calculated and how the 

resulting acceleration is integrated.  I will begin a discussion of molecular dynamics with 

the design of various integration schemes, as well as a discussion on temperature and 

pressure control needed to different ensembles. I will then proceed to discuss the 

differences between different classical forcefield descriptions of molecular interactions. I 

will then conclude with an overview of free energy calculation schemes. 

 The core of integration is how one takes a particle (most often a single atom), a 

starting velocity, and a force, and determine atomic position after a small increment of 

time (on the order of 1 or 2 fs). The simplest integration scheme is that of Verlet 
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integration36. In Verlet integration, the positions and velocities at time t+Δt (where Δt is 

the timestep) can be calculated using the following series of equations: 

                                                      v(t+1/2 Δt)=v(t)+1/2 a(t)∆t 

    x(t+∆t)=x(t)+v(t+1/2 ∆t)Δt  

    v(t+∆t)=v(t+1/2 ∆t)+1/2 a(t+∆t)∆t  

While the simple Verlet approach is stable, it does not represent the most efficient 

integration scheme. The nonbonded forces of a system change over timeframes much 

slower than the bonded vibrational frequency. Therefore, the stability of molecular 

dynamics simulations is limited by the stability of bonded integration. Instability in the 

integration of bonded interactions limits the timestep for the Verlet integrator to around 

1.0 fs when hydrogen atoms are involved. Further integrator modifications allow for a 

longer timestep (Δt), and thus greater simulation efficiency. One common approach is 

referred to as a multi-time step (MTS) integrator. An MTS approach breaks each large 

timestep into multiple, smaller timesteps, each of which is integrated similarly to typical 

Verlet-like integration. However, the slow-evolving nonbonded forces are only evaluated 

at the larger, outer timestep. Since the nonbonded forces constitute the majority of 

computational costs, limiting the frequency at which non-bonded forces are updated 

enables an improvement in performance, with timesteps as long as 2fs possible using this 

approach (known as r-RESPA37).  Further increases in timestep are possible by moving 

some of the mass from heavy atoms to the hydrogen, thereby slowing down bond 

vibration38. This improved stability enables timesteps as long as 3fs, while not changing 

resulting thermodynamic properties (although kinetics is altered). 
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The above algorithm, as written, does not include pressure or temperature control. 

These functions are handled by simulation components referred to as a barostat and a 

thermostat, respectively. Barostats attempt to maintain target pressure using either a 

probabilistic approach based on energy (as in the  Monte Carlo barostat), or virial (used 

in barostats such as the Berendsen barostat39, Nose-Hoover40, or the Langevin piston41). 

The virial is a tensor defined as the change in energy concerning volume. Given the 

average of the diagonal of the virial tensor (W) and kinetic energy, an instantaneous 

pressure can be calculated as   𝑃4567 =
8
9∗;

∗ (2 ∗ 𝐾𝐸 −𝑊). Given a target pressure, the 

barostat then scales coordinates and box size to bring the system closer to the target 

pressure. Virial based approaches are often better able to handle systems with densities 

far from equilibrium compared to Monte Carlo methods. It is standard protocol to run 

initial equilibration at constant pressure, and then run production simulations at constant 

volume. A thermostat works by adjusting temperatures by modifying atomic velocities 

and kinetic energy. Examples of popular thermostats include BUSSI42 and the Anderson 

thermostat43. Through the combined use of a thermostat and barostat, one can perform 

simulations under isothermal-isobaric ensemble, or constant pressure and temperature 

(NPT).    

FREE ENERGY FROM MOLECULAR DYNAMICS SIMULATIONS 

In addition to the fundamental knowledge gained during molecular dynamics 

simulations, it is possible to use molecular dynamics approaches to calculate the binding 
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free energy of a ligand to its target protein. This can be accomplished via one of two 

classes of approaches - pulling, or alchemical. 

Pulling approaches to binding free energy calculation attempt to calculate the 

binding free energy using an approach in which the ligand is gradually pulled away from 

the binding site into the surrounding solvent environment using an artificially applied 

force44. The Potential of mean force is then calculated by integrating the applied force 

magnitude vs. the pulling x coordinate. This work integral is then equal to the binding 

free energy. The primary difficulty in the utilization of PMF approaches is in finding a 

useful definition of a pulling coordinate. For some systems, this coordinate is obvious. 

For example, membrane pores have a clear pathway for the ligand to exit (namely 

through the hollow pore). Therefore, a multitude of studies has been performed to study 

channel protein selectivity45. However, this pulling dimension is often challenging to 

define. Most protein-ligand binding pathways are too complex to describe using this 

pulling approach46. Therefore, while a rigorous approach, pulling PMF-based approaches 

cannot always be utilized.  

Much like the alchemists of yore attempted to transform one element into another, 

alchemical approaches to free energy calculation attempt to transform a simulated system 

from one state into another. In the case of binding free energy simulations, this consists 

of transforming the ligand from one that interacts with proteins and water like in the 

“real-world” to one that does not interact with its environment at all47. The energy 

associated with this change is then the complexation energy (if simulated in a protein-

ligand system), or the solvation energy (in the case of a ligand-water environment). The 
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binding free energy can then be calculated as the complexation energy minus the 

solvation energy. While one could theoretically calculate either transformation in a single 

step, converged solutions require that one does this transformation in small perturbations 

over ~10-20 steps. The energy associated with each transformation step can be calculated 

using several methods, including the Bennett acceptance ratio (BAR)48 or thermodynamic 

integration (TI49). Once the energy of each transformation is calculated, one can calculate 

total binding energy by merely summing up the contributions of the each of the 

individual transformations since free energy is a state function that is independent of 

paths. The advantage of alchemical approaches is that unlike pulling approaches, 

alchemical approaches are universally applicable. The disadvantages of these approaches 

are a reliable protein-ligand complex structure is needed as input, and computational 

throughput is relatively low compared to approximated docking, as more individual 

simulations are needed in order to calculate the final, binding free energy. 

Forcefields 

A forcefield is a mathematical description of how simulated atoms in a molecular 

system interact. At the core, most modern forcefields contain similar bonded terms. 

Bonded interactions are described as a simple pairwise bond term, an angle term, and a 

torsional dihedral term. Also, the bending of atoms out of the plane and the distortion of 

pi-bonds are utilized. Where forcefields often differ is in their treatment of the non-

bonded forces. Non-bonded forces are often broken up into two major components, a van 

der Waals term, and an electrostatic term. The van der Waals term attempts to encompass 
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short-range repulsion and the London dispersion force. The vdW energy is 

mathematically described as the difference between an attractive and a repulsive term 

such as 𝐸 = 4𝜀((@
A
)8B − (@

A
)C) with σ representing the separation distance (r) that results 

in zero interaction energy, and ε representing the energy well depth50. There is no 

theoretical basis for the 14th powers (for repulsion) in the above equation. It is common 

to see mathematical forms that use alternative powers (a combination of a 12th and 6th 

power are also often utilized).  

More divergence between forcefields arises from electrostatics. Most forcefields 

represent atomic electrostatics as merely a point charge (monopole). Thus, the 

electrostatic energy is calculated using simple Coulomb's law, namely 𝐹 = 𝑘 FGFH
AH

. This is 

the approach taken by common forcefields such as AMBER51and CHARMM52. Using 

this approach, each interaction is trivial to calculate. However, the number of raw 

calculations needed to calculate each interaction is on the order of the number of particles 

squared, a scaling law that is insurmountable for large solvated protein-sized systems. 

Therefore, an approach referred to as Ewald summation is often used to bring the scaling 

law to NlogN53.  

However, a fixed charge model is too simple to capture electrostatic interactions 

accurately. Comparisons of QM potentials with fixed charged fittings reveal relative 

errors of as high as 16% (depending on molecule) while fitting electrostatics to a model 

containing atomic monopoles, dipoles, and quadrupoles was able to obtain errors of (at 

most) 0.4%54, which are utilized by AMOEBA (the forcefield used in work in this thesis). 
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One example of a type of intermolecular interaction that requires an electrostatic model 

up to the quadrupole is the interactions of aryl halogens with electronegative groups55. 

For example, aryl halogens are often found in protein-ligand crystal structures interacting 

with acidic aspartate and glutamate residues56. This is contradictory to the expectation 

that halogens are electronegative atoms with a partial negative charge. The inductive 

capabilities of the aromatic ring pull charge density away from the plane of the ring, 

leaving a positively charged patch at the “edge” of the halogen atom, in the plane of the 

aromatic ring.  A simple monopole charge model would assign the halogen a negative 

charge, and simulations would not exhibit this experimentally identified interaction. 

However, this electronic distribution can be captured via the dipole and quadrupole terms 

present in AMOEBA57. While this is an extreme example of electronic distributions 

being better captured via higher-order multipole terms, it illustrates how the dipole and 

quadrupole terms allow for the capturing of non-uniform electronic distribution, 

including lone pairs on O and N atoms. 

Another phenomenon captured by more advanced forcefields is the polarization 

effect. Polarization describes the response of electron distribution of molecules to 

external fields.  Given the negative charge of the electron, electronic distribution moves 

away from other negatively charge sources, and towards positive charge sources. While 

most molecular dynamics methods do not explicitly simulate electronic distribution, there 

have been several approaches to capture the polarization effect on electrostatic 

interactions. One of these is the fluctuating charge model, where atomic charges fluctuate 

depending on external electrostatic environment58-59. This approach is computationally 
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efficient compared to other polarization methods. However, it suffers from similar 

accuracy problems to the monopole model of electrostatics- namely; it treats polarization 

as treating each region of an atom equally, regardless of directionality. Another class of 

approaches is that of the Drude oscillator, which gives each atom an imaginary negatively 

charged particle and a positively charged particle, resulting in the formation of a dipole60-

61. A third polarization method, adopted by AMOEBA, is the induced dipole model. In 

this approach, each atom produces an induced dipole (separate from the permanent 

dipole) in response to the external electric field, as well as neighboring induced dipoles. 

Since induced dipole force is dependent on neighboring induced dipoles, this requires a 

self-consistent iterative approach, where the induced dipole moments, energy and force 

are all converged. This iterative approach, combined with higher-order multipoles, means 

that AMOEBA is as much as 10 times slower than comparable, less complicated 

forcefields such as AMBER and CHARMM.  

GPU Computing 

Given the increased cost associated with higher-order multipoles and polarization, 

it is critical that AMOEBA is implemented in an efficient computation engine. 

Traditional CPU computation can only efficiently compute AMOEBA forcefields with up 

to a few CPU cores, limiting the usefulness of this platform to small systems over a short 

time scale. One solution to accelerate the computational speed is GPU computing. CPU 

computing relies on a relatively small number of cores (often 4-8) running at a high clock 

speed (often 2-4 GHz). This high clock speed is sufficient at serial calculations (i.e., one 
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needs to be computed after another), leading to clock speed is the limiting factor in 

performance. In contrast, GPUs run many more cores (1000+) running at a slower clock 

speed (top of the line RTX 2080 GPUs run at a clock speed of slighter higher than 1.5 

GHz)62. Given a purely serial task, a GPU will be slower than most modern CPUs. 

However, if a task can be split up into small, independent problems, GPUs can have a 

massive performance advantage over GPUs. For example, it would take 1,000,000 clock 

cycles (at minimum, assuming that one addition can be computed in a clock cycle) for a 

single core of a CPU to sum all of the numbers from 1 to 1,000,000). For a CPU running 

at 4Ghz, this amounts out to 0.25 ms.  In contrast, a GPU based parallel approach to this 

algorithm with a clock speed of 1.5 GHz, where adjacent pairs of numbers are added, 

stored, and the process repeated until one cumulative sum is obtained only takes log2(n) 

cycles. This amounts to only 20 clock cycles or approximately 1.3 µs. Even though the 

clock speed is noticeably slower, parallelization can result in orders of magnitude 

improvement in performance. Fortunately, the highest cost of molecular dynamics 

computations is the calculation of the electrostatic force through a process known as 

Ewald summation.53 Parallel implementations of this algorithm have long existed63, 

indicating that the most expensive parts of molecular dynamics can be efficiently 

computed on GPUs. Through the use of parallelization, GPU approaches are capable of 

obtaining a 30x improvement over CPU only (6-12 cores) computations64. 

One of the major platforms for the running of molecular dynamics simulations on 

GPUs is OpenMM65-67. OpenMM was initially developed by members of the Pande 

group and consisted of an open-source molecular dynamics engine for a wide range of 
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forcefields, including AMBER, CHARMM, and OpenMM. OpenMM is coded in 

OpenCL68 and CUDA69 for GPU, as well as for tradition CPU systems.  However, 

especially for calculation using AMOEBA, several prominent features were missing. 

Inclusion of the newest AMOEBA updates was slow, and barostat and free energy 

calculation methods were lacking. Therefore, around 2016, a new branch of OpenMM, 

named Tinker-OpenMM64, was created to focus on solving these lingering AMOEBA 

related issues. Tinker-OpenMM, as its name implies, is a member of the TinkerTools 

family of programs. This C++ codebase has been designed for access through Tinker 

software, dynamic_omm and bar_OMM for dynamics and Bennett acceptance ratio 

(BAR) based free energy, respectively. These Fortran codebases then communicate to 

Tinker-OpenMM, which launches a GPU based simulation that matches the atomic 

coordinates, parameters, and velocities provided by Tinker input. 

Dissertation Overview 

The main push of my Ph.D. consisted of the aiding in the development and 

evaluation of Tinker-OpenMM as a package containing many of the dynamics features 

present in Tinker CPU. First, I will discuss the implementation of free energy 

perturbation methodologies in Tinker-OpenMM. I will then demonstrate the application 

of this technology in the prediction of the binding free energy and structure poses of 

ligands to the protein kinase Maternal Embryonic Leucine Zipper Kinase (MELK). 

Finally, I will describe the implementation of virial-based pressure control into the 

Tinker-OpenMM platform. 
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TINKER-OPENMM: ABSOLUTE AND RELATIVE ALCHEMICAL 
FREE ENERGIES USING AMOEBA ON GPUS64 

Introductory Statements 

During the early stages of my Ph.D. (ca late 2015), GPU computation using 

AMOEBA consisted mostly as a novelty, with limited practical applications. In order to 

achieve large scale binding free energy calculations in any reasonable amount of time, 

one needed to run simulations on a supercomputer. Although the University of Texas has 

one of the best supercomputing centers in the nation in the Texas Advanced Computing 

Center (TACC), access to supercomputing resources was precious, only to be used for 

final, production simulations. It was clear that this manner of performing simulations was 

untenable in the long term if AMOEBA was to evolve into a tool to truly enable drug 

discovery efforts. 

During those times, I was working on using the 4 GPUs we had to run basic 

Molecular Dynamics simulations using the AMOEBA forcefield. This software only 

supported basic molecular dynamics simulation, limiting its usefulness. We realized that 

if this platform could support binding free energy calculations, we could significantly 

enhance the usability of Tinker, and potentially enable ligand-drug binding studies at 

scales previously thought impossible. I then set out to port Tinker's alchemical free 

energy calculation into Tinker-OpenMM. This modification (among others) launched the 

start of a new era in the practical use of the AMOEBA forcefield. Instead of a reliance on 

slow CPU based approaches, or precious supercomputing time, one could perform 
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efficient drug-binding calculations on a GPU architecture that is both high performance 

and affordable.    

Abstract 

The capabilities of the polarizable force fields for alchemical free energy 

calculations have been limited by the high computational cost and complexity of the 

underlying potential energy functions. In this work, we implement a GPU-based general 

alchemical free energy simulation platform for polarizable potential AMOEBA. Tinker-

OpenMM, the OpenMM implementation of the AMOEBA simulation engine has been 

modified to enable both absolute and relative alchemical simulations on GPUs, which 

leads to a ∼200-fold improvement in simulation speed over a single CPU core. We show 

that free energy values calculated using this platform agree with the results of Tinker 

simulations for the hydration of organic compounds and binding of host-guest systems 

within the statistical errors. In addition to absolute binding, we designed a relative 

alchemical approach for computing relative binding affinities of ligands to the same host, 

where a particular path was applied to avoid numerical instability due to polarization 

between the different ligands that bind to the same site. This scheme is general and does 

not require ligands, for which we compute the relative affinity, to have similar scaffolds. 

We show that relative hydration and binding free energy calculated using this approach 

match those computed from the absolute free energy approach. 
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Introduction 

 Free energy is the driving force for spontaneous molecular processes, and 

accurate alchemical free energy calculations can benefit a broad range of chemical and 

biomedical applications70-74. The accurate prediction of the binding affinities for ligands 

to their target proteins has been a significant challenge in the computational drug 

development process47. Today, it is common to utilize empirical docking algorithms in 

the identification of potential lead compounds. However, in order to screen large ligand 

libraries in a short amount of time, empirical docking typically relies on crude and 

inadequate physics models75, and only account for limited system dynamics (such as loop 

flexibility) when predicting ligand affinity76. These limitations result in a lack of the 

accuracy necessary for lead optimization77-78. The calculation of ligand binding free 

energies from elaborated molecular simulations has also been limited by a combination of 

underlying force fields and sampling algorithms79-80. 

One approach for the calculation of binding free energies is the double decoupling 

scheme. In this approach, one includes a parameter (lambda) that controls the interaction 

strength of a ligand with its environment, including electrostatics and van der Waals 

interaction. When gradually transitioning from lambda=1 (full ligand-environment 

interaction) to lambda=0 (no ligand-environment interaction), a ligand's interaction with 

its environment is evaluated over the ensemble generated from molecular dynamics, 

which provides the free energy of alchemical change. Simulations of the system are 

conducted with the solvated ligand and the protein-ligand complex, and the binding free 
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energy is calculated as the complexation energy minus the solvation energy, plus 

standard state and other corrections81. In this methodology, restraints82 are often used to 

keep the ligand bound to the protein complex throughout the decoupling process. The 

magnitude of this restraint term is then analytically corrected for. 

Another primary class of approaches of binding free energy involves the 

calculation of the potential of mean force of pulling ligand away from protein target. In 

these approaches44, one calculates the average force needed to maintain a system in a 

given configuration (e.g., the distance and orientation between a ligand and the active 

site). Free energy is then calculated by calculating the work integral from the starting to 

ending distances. In order to obtain energy data on all relevant distances, a biasing 

process such as steered MD83-84 or umbrella sampling44 is often used. The advantage of 

this technique is that it allows for the collection of free energy profiles, including 

information about the energy barriers to the binding. The main challenge of this approach 

is the difficulty in defining an appropriate reaction coordinate for the biasing process. 

Therefore, this technique has been mostly applied to systems such as channel proteins45, 

85 that have an apparent pulling dimension. However, this technique can also be applied 

to general protein-ligand binding86-87. 

The free energy between the bound and unbound states in either approach can be 

sampled by using various techniques such as free energy perturbation (FEP)72, 

thermodynamic integration (TI)49, metadynamics88-90 or Orthogonal Space Random Walk 

(OSRW)91-92. A standard method for calculating the free energy between neighboring 

states in alchemical perturbation is the Bennett acceptance ratio (BAR)48. The free energy 
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of binding can then be calculated as the difference between the ligand-host interaction 

free energy and the ligand-water interaction free energy. In thermodynamic integration, 

one utilizes lambda much like in setting up a simulation for BAR and calculate the 

numerical integration of <∂H/∂λ)>λ from lambda=0 to lambda=148. Compared to BAR, it 

can be challenging to determine which discrete values of lambda should be used, as 

convergence can be difficult in regions of high curvature of <∂H/∂λ)>λ. Due to this, 

comparison studies93 have suggested that TI simulations may require more states than 

BAR to reach converged free energies. However, TI simulations require less post-

simulation processing than BAR based approaches. 

The second ingredient of free energy simulations is the choice of force field, 

which is used to model the interaction energy. Popular force fields include CHARMM52, 

94-96 and AMBER51, 97-99. More recent advances have resulted in the development of force 

fields with more complex electrostatics models, particularly the incorporation of 

polarization and anisotropic atomic charge distributions. General polarizable force fields 

include polarizable multipole based AMOEBA100-102, polarizable OPLS32, 103-104, 

fluctuating charge59, 105 and Drude-Oscillator106-108 based CHARMM force fields. The 

defining feature of the AMOEBA force field we have been developing is its electrostatic 

model based on permanent atomic multipoles, as well as many-body polarization through 

induced atomic dipoles. These added terms, while computationally expensive, allow for 

more rigorous modeling of ligand-protein electrostatic interaction than is possible using a 

fixed-charge based force field.  
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Previous work using AMOEBA force field has shown an accurate recapitulation 

of experimental free energies in small molecules hydration,109-112 metal ion hydration113-

115, as well as ligand binding in synthetic hosts116, and protein systems102, 117-121. The 

inclusion of a complex electrostatic force leads to increasing computational cost so that 

potentially it can benefit even more from parallel computing of protein-scale systems 

consisting of tens of thousands of atoms (including solvent water). Earlier 

implementations of AMOEBA in Tinker have utilized OpenMP122, which allows for 

limited parallelism on commercially available CPUs. Massively parallel computation 

using AMOEBA is possible on supercomputers using the Tinker-HP package123-124. Also, 

AMOEBA has been previously implemented in OpenMM, enabling massively parallel 

molecular dynamics simulations on Graphics Processing Units (GPUs)66-67. In order to 

enable alchemical free energy calculations in OpenMM on GPU, we have incorporated 

“lambda” into force and energy calculation via a soft-core approach125, which is 

necessary to remove the singularities in vdW interactions that occurs when atoms are in 

close contacts.126 Also, we modified the tinker-OpenMM interface to allow for 

perturbation of the electrostatic force via the scaling of electrostatic parameters. Another 

feature of OpenMM that is now supported by the Tinker-OpenMM interface is the 

addition of support for the CustomCentroidBondForce. This addition enables the 

coupling of two groups of atoms (such as a ligand and its binding site).  

Compared to the state of CPU alchemical free energy calculations, GPU 

alchemical free energy calculations is still in its infancy. It is possible to perform straight 

molecular dynamics (MD) simulations on GPUs using a few software, including 
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AMBER127, NAMD128, and OpenMM66. However, very few GPU platforms have yet 

supported alchemical simulations. In addition to the work with OpenMM-AMOEBA 

described here, the YANK package for the use of OpenMM to simulate AMBER force 

fields is currently in development. Therefore, the AMOEBA force field on GPU 

implementation described here (Tinker-OpenMM) constitutes the first available platform 

for free energy perturbation simulations on GPUs using a polarizable force field. 

It is not always necessary to compute the absolute alchemical free energy, as the 

binding or solvation energies relative to a reference ligand are often sufficient. In those 

cases, it may be advantageous to calculate relative energies in a "perturbative" way, i.e., 

the ligand in the protein binding site morphing from one to another instead of 

disappearing completely. The advantage of relative free energy computation is that the 

host (protein) molecules do not have to go through the apo form, which sometimes may 

involve large changes in conformational state. Many previous relative binding free 

energy calculation uses a "dummy atom" single topology approach129 where a pair of 

ligands are simulated as a common core of atoms connected to a set of atoms sufficient to 

describe both desired molecules. This dummy atom approach has been used to calculate 

several molecular properties, including binding free energies130-133 Previous work with 

the AMOEBA force fields on CPUs, have accurately calculated the relative binding free 

energies of ligands to trypsin using a single topology approach119-120. The application of 

this scheme is, however, not general; it is more suitable for pairs of molecules with 

significant chemical similarity and sharing a common core. A different approach is to use 

a dual topology, where two ligands are always present in the binding pocket, and their 
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interactions with the environment are combined properly: λ*(lig1+pro)+(1- 

λ)*(lig2+pro). Relative complexation free energy is calculated via a path starting in a 

state with full ligand 1-environmental interaction and ending at a state of full ligand 2- 

environmental interaction. Dual topology free energy calculations have been possible in 

CHARMM since the late 80’s134 and have more recently been implemented in 

AMBER127. However, this dual topology scheme is more challenging to implement in a 

polarizable force field due to the complexity of the electrostatics (non-additive 

interactions between the ligands), making it difficult to selectively "scale" the 

polarization between two ligands. By utilizing a pathway where only one ligand has 

polarizability during any perturbation step, we were able to avoid this complication. 

 

Currently, the ability to perform GPU based platform alchemical simulations, 

particularly for polarizable force fields, has been limited. In this work, we created Tinker-

OpenMM, an OpenMM implementation of AMOEBA that enables alchemical free 

energy calculations on GPUs, while also adding the capability to perform dual topology 

simulations to both the Tinker135 and OpenMM66-67 platforms. We then proceed to test the 

GPU based free energy calculations for hydration free energies of aromatic systems136, 

absolute and relative binding free energies of the sampl4 host-guest systems137. 
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IMPLEMENTATION DETAILS 

TINKER-OPENMM INTERFACE 

Tinker-OpenMM is built using an interface to pass tinker coordinates and parameters to 

OpenMM. Tinker reads in the input key and coordinate files and passes the relevant 

variables into a C++ script. This script then uses the OpenMM C API to create the 

relevant OpenMM parameters and forces and initiates GPU Molecular Dynamics 

simulation. Coordinate saving is then managed by occasionally transferring atomic 

coordinates and velocities from the GPU to main system memory. Tinker then saves 

these outputs in Tinker coordinate and velocity files, enabling post-processing by Tinker 

commands (e.g., BAR). This interface was created by Mark Friedrichs, Lee-Ping Wang, 

Kailong Mao, and Chao Lu. 

ABSOLUTE BINDING FREE ENERGY 

In this work, we employ double-decoupling and alchemical perturbation to compute the 

free energy of binding. First, the electrostatic interactions between the ligand and its 

environment (water or protein/water) are scaled from 0 to 100% in a series of 

simulations. With no electrostatic interaction between ligand and surroundings, a series 

of simulations are run where the (softcore) vdW interactions between ligand and 

environment are scaled. The path utilized for absolute complexation simulations is shown 

in Figure 1. This process is also repeated in an aqueous environment to account for 

hydration free energy. 
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After running these simulations, the Bennett Acceptance Ratio (BAR) method is used to 

calculate the free energy difference between the two neighboring states. Since energy is a 

state function, we can calculate the total complexation energy as the sum of many small 

perturbations in ligand-environmental (protein and water) interaction strengths. The same 

process is repeated for the free ligand in water to compute the hydration free energy. The 

binding energy is calculated as the complexation free energy, minus the hydration free 

energy, with the addition of several corrections, explained below. When conducting 

alchemical perturbation, it is necessary to denote which atoms belong to the ligand. In the 

simulation system, the ligand atom indices are identified by using the ligand keyword in 

the key file (e.g. “ligand −1 14” denotes that atoms 1 through 14 belong to a ligand). 

Alteration of the electrostatic interactions between the ligand and its environment is 

accomplished via the scaling of the electrostatic parameters passed from the Tinker 

interface to OpenMM. The atomic charge, dipole, quadrupole, and polarizability of all 

ligand atoms are each multiplied by the current simulation electrostatic lambda value 

(between 0 and 1), which is denoted by the ele-lambda keyword. This results in no 

electrostatic interaction between the ligand and its environment when ele-lambda=0, and 

full interaction strength when ele-lambda=1. This methodology also "turns off" the intra-

ligand electrostatic interactions. When calculating hydration free energy, the intra-

ligand/solute electrostatic contributions are added back by "growing" the electrostatic 

parameters for ligand alone (in the gas phase). However, when calculating binding free 

energy, this contribution is exactly canceled by an equal omission in the ligand-solvent 

interaction.  
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When conducting alchemical perturbation simulations, the change in energy and 

structure that results from each perturbation needs to be relatively small. To avoid the 

numerical instability of the standard vdW function when the ligand-environment 

interaction approaches zero, a softcore buffered 14-7 vdW (energy equation shown 

below) has been used to calculate the energies and forces.120  

𝑈4KLMN = 𝜆4KP 𝜀4K
1.07C

0.7(1 − 𝜆4K)) + (𝜌4K + 0.07))
∗ "

1.12

0.7 ∗ V1 − 𝜆4KW
)
+ 𝜌4K +

− 2/ 

Here 𝜀4K is the well depth, and 𝜌4K  represents the current interatomic distance 

divided by 𝑟X45, the interatomic distance that results in the lowest vdW energy. In order 

to use this softcore vdW force, we need to assign the appropriate value of the lambda 

parameter 𝜆4K. In this implementation, each ligand atom is assigned a lambda value equal 

to the vdW-lambda keyword value in the simulation input key file. Each non-ligand atom 

is assigned a lambda value of 1. When calculating a pairwise vdW interaction, it is 

necessary to have a set of combining rules to convert two atomic vdW lambdas into a 

combined, 𝜆4K. For a pair of atom 𝑖 and 𝑗, 𝜆4K is determined as the lesser of 𝜆4 and 𝜆K. If 

the two lambda values are identical (as is the case in an intra-ligand or water-water 

interaction), 𝜆4K = 1. 

In order to ensure that the ligand stays in the binding pocket even when 

intermolecular interactions are weak, a distance restraint, 𝑘(𝑟	 −	𝑟\)), is applied between 

the centers of mass of the ligand and the center of the binding pocket. The bias 

introduced by the restraint is corrected for at the start and end of our thermodynamic 
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path. The restraint correction at the end of simulation where no intermolecular interaction 

between ligand and environment is given by138 

∆𝐺A_67A`457 = 𝑅𝑇𝑙𝑛 e𝐶\ g
𝜋𝑅𝑇
𝑘 i

9 )⁄

k 

Here, 𝐶\ represents standard state concentration (1 mol/L). In this work, we use a 

force constant (𝑘) of 15 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙/Å), and this correction amounts to 6.25 𝑘𝑐𝑎𝑙/𝑚𝑜𝑙. 

 

To remove the ligand restraint from the system with full ligand-protein 

interaction, we repeat the simulation but with the restraint off. The free energy difference 

between the two simulations is then calculated using BAR. More commonly, one could 

also gradually turn off the restraint while the interaction strength between ligand and 

protein increases so that no additional correction is needed. 

DUAL-TOPOLOGY RELATIVE FREE ENERGY 
 

Relative binding free energy can potentially be calculated more reliably as it 

avoids simulation of the no ligand-bound (apo) form of the protein. In this 

implementation of the calculation of relative binding free energies, we take a 

thermodynamic path where we first reduce ligand 1's electrostatic parameters (including 

atomic polarizability) to zero magnitude. We then proceed to reduce the vdW interactions 

between ligand 1 and the environment, while simultaneously increasing the vdW 

interactions between ligand 2 and environment. Finally, we increase ligand 2's 

electrostatic parameters from zero to full. The path we used to calculate relative 
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complexation energy (ligand binding to the receptor in water) is shown in Figure 2. 

Since the two ligands are never charged at the same perturbation step, ligand 1 and 2 

never interact with each other (the vdW interactions are also turned off via the soft-core 

formula), which requires minimal changes to the electrostatic force in the existing 

OpenMM code. 

To run the simulations in our thermodynamic path, we require independent 

(ligand 1 and ligand 2) keywords to denote the indices of ligand 1 and ligand 2, 

respectively. The electrostatic perturbation segments of our path require that we 

independently control the electrostatic interaction of ligand 1 and ligand 2. This is 

accomplished by having two electrostatic lambda keywords (ele-lambda1 and ele-

lambda2, respectively). The atomic charge, dipole, quadrupole, and polarizability of each 

ligand is multiplied by the appropriate ele-lambda variable. 

When perturbing the vdW force, we need to assign each ligand atom the correct 

lambda value. The vdW-lambda of all ligand 1 atoms is equal to the value specified by 

the vdW-lambda keyword, and vdW-lambda of all ligand 2 atoms is equal to 1 minus 

vdW-lambda. Therefore, changing the vdw-lambda keyword from 1.0 to 0.0 results in 

removing all ligand 1–environment interactions while setting all ligand 2 atoms to full 

vdW interaction with the environment. 

When conducting relative binding simulations or BAR energy calculations, we 

need to ensure that the two ligands do not interact via the vdW force. Therefore, we need 

a way for our vdW force and energy calculations kernels to know which ligand each atom 

belongs to. This is accomplished by adding an internal variable to the vdW force used to 
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designate which ligand (if any) an atom belongs to. This variable is equal to 0 for 

environmental (nonligand) atoms, 1 for ligand 1, and 2 for ligand 2. Each pairwise vdW 

interaction is checked to ensure that ligand 1–ligand 2 interactions are omitted. 

The relative binding free energy is calculated as the relative complexation energy 

minus the relative hydration energy. Note that if one uses the same force constant for 

ligand-receptor restraint for all simulations, the restraint correction discussed above is 

identical for both ligands and drops out in the relative binding free energy. 

Methods 

SIMULATION SETUP 

Before all simulation, the system energy was minimized to avoid close atomic 

contacts. All simulations were run under OpenMM mixed-precision mode. Ewald cutoff 

was set to 7.0 Å, with a 12 Å vdW cutoff in both simulations. All simulations converge 

the root-mean-squared difference in induced atomic dipole moments between iterations to 

<0.00001 D. Sampl4 and aromatic simulations use a cubic box of 40 Å an Ewald grid of 

48 × 48 × 48, while the larger bench7 dataset uses an Ewald grid of 64 × 64 × 64 and a 

cubic box of 62.23 Å.  

MOLECULAR DYNAMICS 

Perturbation steps for absolute binding and solvation simulations were conducted 

with a stepwise reduction of the ele-lambda keyword from 1 to 0, followed by a stepwise 

reduction of the vdw-lambda keyword while keeping ele-lambda at 0. MD used a RESPA 

integrator and a BUSSI thermostat.  
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Relative binding and solvation simulations were conducted starting with the ele-

lambda1 and vdw-lambda keywords at 1.0, and the ele-lambda2 keyword at 0.0. In a 

series of simulations, the ele-lambda1 keyword is then gradually reduced from to 0.0. 

Simulations follow this with a stepwise reduction of vdw-lambda1 to 0.0, then a stepwise 

increase of ele-lambda2 from 0 to 1.0. 

All CPU simulations were conducted using Tinker program “dynamic” for 1ns 

with a 2fs time step and snapshots saved every 1 ps. Each GPU perturbation simulation 

was conducted using “dynamic_omm” for 5 ns, with a 2 fs time-step and snapshots saved 

every 2 ps (except for relative free energy simulations, where snapshots were saved every 

1 ps). All simulations were conducted at 298 K. 

BENNETT ACCEPTANCE RATIO 

The free energy between steps was computed using Tinker's BAR program. This 

program iterates between the two equations below until convergence: 

𝑒rs∆t =
〈𝑓(𝛽(𝑈) − 𝑈8 − 𝐶〉8
〈𝑓(𝛽(𝑈8 − 𝑈) + 𝐶〉)

 

   𝐶 = ∆𝐹 

where	𝑓(𝑥) =
1

1 + 𝑒~ 

Typically frames of the initial period of equilibration (~500ps) were ignored.                           

HYDRATION OF AROMATIC COMPOUNDS 
Parameters for the molecules were previously generated.136 Structures of the 10 

compounds are shown in Figure 3. Initial simulation systems were generated by 



 

 36 

solvating each ligand in water boxes using the Tinker commands solvate and crystal. 

Initial structures for relative hydration free energy (HFE) simulations were generated by 

concatenating ligand 2's coordinates to the solvated ligand 1 pose. To calculate the 

absolute hydration free energy, it is necessary to correct for the contribution of 

intramolecular electrostatics as we scale the solute electrostatic parameters in 

"disappearing" or "growing" the solute molecule. To correct this intrasolute electrostatic 

interaction, each molecule was simulated alone in a nonperiodic system (gas-phase) at 

ele-lambda values of 0, 0.1, … and 1.0. Stochastic dynamics simulations were run for 1ns 

using a time step of 0.1 fs, with structures saved every 0.5 ps at 298 K. The intrasolute 

electrostatic free energy was then calculated using BAR. 

SAMPL4 HOST-GUEST BINDING SIMULATIONS 
Parameters and starting pose for 12 ligand molecules of the sampl4 dataset were 

generated as described previously116. Structures of the sampl4 ligands utilized in this 

study are shown in Figure 4. The final absolute binding energy was calculated as ΔG of 

complexation (from no interaction to full interaction) – ΔG of solvation (from no 

interaction to full interaction) + ΔG of going from no restraint to full restraint at 0 

interaction lambda + ΔG of removing the restraint at full interaction energy. 

The latest version of Tinker is available at https://github.com/jayponder/tinker. 

Tinker-OpenMM is available at https://github.com/pren/tinker-openmm. Note that Tinker 

only works using the modified Tinker-OpenMM, not the main OpenMM release. 
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Results 

FORCE AGREEMENT 

Accurate simulation of molecular systems requires an accurate calculation of both 

force and energy. However, since energy is only utilized by Tinker in the BAR process, 

and is not used during OpenMM molecular dynamics, we focused our initial analysis of 

Tinker-OpenMM on the agreement of OpenMM forces with those of Tinker. To ensure 

that lambda was working in the Tinker-OpenMM implementation, we tested molecule 1 

of the sampl4 dataset bound to the host at a range of lambda values and compared the 

resulting static forces to those of Tinker. The Tinker-OpenMM platform was able to 

match that of Tinker for all tested lambda values closely, with a root mean squared error 

of approximately 8.6 × 10−4 kcal/mol/Å, and a maximal atomic force deviation of 

approximately 4.7 × 10−3 kcal/mol/Å (Table 1). These degrees of deviation are negligible 

when considering that the RMS force is 31 kcal/mol/Å. The force deviation is partially 

due to the single-precision used in GPU force evaluation. 

COMPUTATIONAL EFFICIENCY 

To test the speed and scalability of the Tinker-OpenMM platform, we ran 1000 

steps of MD on sampl4 system containing molecule 1 (6417 atoms), and the bench7 test 

case distributed with Tinker (a protein system of 23,558 atoms). For both test systems, 

the NVidia GTX1070 and GTX 970 were approximately 66-fold and 40-fold faster than 

an eight-core CPU simulation, respectively (Table 2). A single CPU core is 

approximately 200-fold slower than simulation on a GTX1070 due to the poor core 

scalability of Tinker utilizing OpenMP. The GPU platform shows better than linear 

scaling concerning system size, with a 3.7-fold increase in particle number resulting in a 

2.4-fold or 2.5-fold decrease in speed on the GTX1070 and GTX970 platforms, 
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respectively. This better than linear scaling is likely a result of the smaller sampl4 

systems being unable to saturate GPU core utilization, as verified by profiling GPU core 

utilization during simulations. The change of the vdW force to the softcore 14–7 force 

resulted in no observable difference in speed compared to the kernel used in OpenMM. 

This was confirmed by running simulations using a version of Tinker-OpenMM that had 

been modified to utilize a standard, non-softcore 14–7 vdW force without the presence of 

the lambda parameter in the codebase. 

To test the cost of utilization of softcore vdW, tests were run on bench7 with the 

relative vdW activated by using two water molecules (atoms 9000–9002 and 9003–9005) 

as "ligands" for the alchemical dual topology process. Both of these waters had their ele-

lambda values set at 0.0, with a vdW-lambda of 1.0. This allowed for the activation of 

dual topology kernels without introducing extra costs. This system was minimized, and a 

speed test was run as above. This resulted in a speed of 4.68 ns/day on a GTX 970, an 

approximately 2.5% speed reduction when compared to the absolute simulations. This 

small cost is only present when doing relative free energy calculations; when no ligand 2 

parameter is set, the cheaper absolute vdW kernel is used for force and energy 

calculation. 

Tinker-OpenMM defaults to a utilizing a "mixed" precision mode in all 

calculations. This mixed-precision mode uses 32-bit floating point calculation for all 

forces and integrates using 64-bit floating point precision. Due to the poor double 

floating-point calculation of the consumer GeForce line of graphics cards, the use of 

double-precision for both integration and force calculation results in an 18.1-fold 

reduction in performance on a GTX 970.  
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GPU/CPU ABSOLUTE FREE ENERGY AGREEMENT 

As a test of the ability of the Tinker-OpenMM platform to reproduce the results of 

the Tinker CPU implementation, we performed hydration free energy calculation on a 

dataset of 10 aromatic compounds, as well as binding free energies on 12 ligands of the 

sampl4 dataset. Both the solvation (Fig. 5) and sampl4 binding datasets (Fig. 6) show 

agreement within the uncertainty of BAR, with R2 values of (0.9924) and (0.9987), 

respectively. This, along with the static force calculations, provides strong evidence that 

the GPU and CPU implementations of the AMOEBA force field produce comparable 

results. The fact that a high degree of agreement is possible even though the GPU 

simulations were run for 5 times longer (5 ns vs. 1ns at each perturbation step) is an 

indication that the tested systems converge relatively rapidly. 

GPU/CPU RELATIVE FREE ENERGY AGREEMENT 

We then proceeded to test the capability of the dual-topology-based relative free 

energy platform by computing the relative solvation values for the aromatic dataset. For 

all tested aromatic molecule pairs, the relative hydration free energy values computed 

from the dual-topology approach and the difference of two absolute HFE simulations 

showed an agreement within 0.3 Kcal/mol, with an R2 value of 0.999 (Table 3). The 

observed deviation is likely a result of random, nonsystematic statistical error. 

Finally, we tested the relative binding prediction of two pairs of sampl4 

compounds. The first set of compounds, mol05 and mol06 share similar scaffolds and 

show agreement in both complexation and solvation to within the uncertainty of BAR 

(Table 4). 

The relative binding between molecules 9 and 10 constitutes a more challenging 

case that cannot be handled using the dummy Atom-based approach due to the lack of a 
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shared scaffold. Also, this dissimilarity between the ligands may theoretically make 

convergence more difficult in the intermediate vdW transitions. Nonetheless, the relative 

binding platform was still able to agree with the absolute platform to within 0.3 Kcal/mol, 

demonstrating the advantage of the dual-topology platform. 

Discussion and Conclusions 

This work reports a GPU implementation of alchemical free energy simulation for 

polarizable force field AMOEBA. The enhanced speed of GPU over CPU will be 

valuable for applications such as lead optimization. We have shown that the Tinker-

OpenMM GPU platform is capable of reproducing the results of Tinker CPU platform, 

with an approximately 200-fold improvement in computational performance over what is 

possible on a single CPU core. This usage of GPU computation significantly improved 

sampling, which should allow for accounting for slow dynamics such as induced fit 

effects and other local changes in protein structure. Therefore, we expect the better 

sampling afforded by the GPU-based platform will potentially lead to improved accuracy 

in ligand binding free energy prediction. 

In addition to raw performance, one of the biggest challenges facing the free 

energy calculation field is the application of techniques to improve sampling of flexible 

systems to enable convergence with lesser simulation times. One methodology to achieve 

this increase in sampling efficiency is the calculation of relative binding free energies. 

Unlike previously utilized dummy atom-based approaches129-133, the framework 

presented here is general and does not require a shared scaffold (set of common atoms) 

between ligands to be utilized effectively. A particular path has been designed to avoid 

unstable ligand–ligand polarization in the dual-topology approach. We expect that for 
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flexible protein systems, the dual-topology approach will be more efficient and reduce 

the time needed for convergence in comparison with absolute free energy approaches. 

Concluding remarks 

 This study constituted an essential advance in the utilization of AMOEBA on 

GPUs and acted as the public introduction of the Tinker-OpenMM branch. The 

foundations of AMOEBA were already present in OpenMM; however, binding free 

energy calculation via alchemical coupling was not present in OpenMM (or indeed, most 

GPU platforms). Therefore, this work established an effective way to perform polarizable 

AMOEBA force field-based dynamics simulations and free energy calculations utilizing 

GPUs. 

  The new relative binding free energy scheme presented above has not received 

extensive testing. While it does produce mathematically consistent results for host-guest 

binding and small molecule solvation, the real advantage of this platform has not been 

tested.  Ideally, we would want to show that this method reaches either more accurate or 

faster results than the default absolute binding free energy approach. In theory, this 

method should enable enhanced convergence when performing simple molecular 

substitutions (such as what occurs during synthetic substitution studies). However, such 

an advantage has yet to be shown. I would expect this advantage to occur in more 

dynamic systems, such as in protein-ligand binding. The simple cyclical hosts tested in 

this study are likely to be too simple to demonstrate this advantage. 
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Tables 

TABLE 1. FORCE COMPARISON BETWEEN THE TINKER CPU AND TINKER-OPENMM 
GPU PLATFORMS FOR SAMPL4 MOLECULE 1 AT A RANGE OF LAMBDA VALUES.  

VDW lambda/ele-
lambda 

RMSE force (10–4 
Kcal/mol/Å) 

Max force deviation (10–3 
Kcal/mol/Å) 

1/1 8.58 4.69 
1/0.5 8.59 4.66 
1/0.0 8.58 4.71 
0.5/0.0 8.58 4.72 
0.0/0.0 8.58 4.72 
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TABLE 2. PERFORMANCE OF TINKER-OPENMM ON NVIDIA GTX1070 AND GTX970 
GPUS, WITHOUT THE MODIFICATION FOR RELATIVE BINDING CALCULATIONS, 
COMPARED TO TINKER CPU RUNNING ON 8 OPENMP THREADS (4X OF SINGLE CPU 
SPEED).  
 

GTX1070 GTX970 CPU 
mol01(6417 atoms) 20.0 12.2 0.3 
bench7(23558 atoms) 8.3 4.8 0.16 

Values are in nanoseconds/day.  
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TABLE 3. COMPARISON BETWEEN THE TINKER-OPENMM ABSOLUTE AND RELATIVE 
PLATFORM CALCULATION OF THE SOLVATION ENERGY BETWEEN PAIRS OF AROMATIC 
COMPOUNDS.  
 

Relative from Dual-
Topology 

Difference from 
Absolute 

Aniline/Benzene 4.2 ± 0.1 4.0 ± 0.1 
Adenine/Pyrrole 11.4 ± 0.1 11.3 ± 0.1 
Aniline/Adenine −10.2 ± 0.1 −10.2 ± 0.1 
Benzene/3-
Methylimidizole 

−9.0 ± 0.1 −8.7 ± 0.1 

3-Methylpyridine/pyridine −0.1 ± 0.1 0.0 ± 0.1 
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TABLE 4. COMPARISON BETWEEN THE TINKER-OPENMM (GPU) ABSOLUTE AND 
RELATIVE PLATFORM CALCULATIONS OF THE RELATIVE BINDING FREE ENERGY 
BETWEEN PAIRS OF SAMPL4 COMPOUNDS.  
 

mol05-mol06 mol09-mol10  
Relative 
from 
absolute  

Relative from 
dual topology 

Relative from 
absolute  

Relative from 
dual topology 

Complexation 
energy 

44.3 ± 0.1 44.3 ± 0.1 −56.3 ± 0.1 −56.0 ± 0.1 

solvation 
energy 

47.3 ± 0.1 47.3 ± 0.1 −68.0 ± 0.1 −68.0 ± 0.1 

total ΔΔG −2.9 ± 0.1 −2.9 ± 0.1 10.4 ± 0.2 10.7 ± 0.1 
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Figures 

 

FIGURE 1: THERMODYNAMIC PATH USED TO CALCULATE THE ABSOLUTE 
COMPLEXATION FREE ENERGY OF A LIGAND USING A DOUBLE-DECOUPLING APPROACH. 
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FIGURE 2: PATH USED TO DETERMINE THE RELATIVE COMPLEXATION FREE ENERGY OF 
TWO LIGANDS USING A DUAL TOPOLOGICAL APPROACH 
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FIGURE 3: STRUCTURES OF THE 12 SAMPL4 MOLECULES UTILIZED IN THIS STUDY. 
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FIGURE 4: STRUCTURES OF THE 10 AROMATIC COMPOUNDS USED IN THIS STUDY. 
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FIGURE 5: COMPARISON BETWEEN THE SAMPL4 BINDING FREE ENERGIES OF 12 SAMPL4 
COMPOUNDS COMPUTED BY THE TINKER-OPENMM GPU AND TINKER CPU 
PLATFORMS. GPU SIMULATIONS WERE RUN FOR 5 NS AT EACH PERTURBATION STEP, 
WHILE CPU SIMULATIONS WERE RUN FOR 1 NS.  
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FIGURE 6: COMPARISON BETWEEN THE CALCULATED SOLVATION FREE ENERGIES FOR 
THE 10-MOLECULE AROMATIC COMPOUND DATASET ON THE TINKER-OPENMM GPU 
AND TINKER CPU PLATFORMS. 
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COMPUTATIONAL INSIGHTS INTO THE BINDING OF IN17 
INHIBITORS TO MELK139 

Abstract 

The protein kinase MELK is essential in cell signaling and has shown to be a 

promising anti-cancer target. Recent work has resulted in a novel small molecule scaffold 

targeting MELK, IN17. However, there has been little structural information or physical 

understanding of MELK-IN17 interactions. Using Tinker-OpenMM on GPUs, we have 

performed free energy simulations on MELK binding with IN17 and eleven derivatives.  

This series of studies provide structural insights into how substitution on IN17 leads to 

differences in complex structure and binding thermodynamics. Also, this study serves as 

an assessment of the current capabilities of the AMOEBA forcefield, accelerated by GPU 

computing, to serve as an examination of a molecular dynamics based free energy 

simulation platform for lead optimization. 

 

Introductory Statements 

Many promising anti-cancer targets are protein kinases, enzymes that catalyze the 

addition of phosphate groups to other proteins140. This addition of phosphate causes 

chemical changes that can have several effects. Firstly, phosphate modification may 

cause structural changes that result in the activation or deactivation of catalytic or 

regulatory activity, and thus directly alter cellular behavior. Secondly, this modification 

target could be a protein kinase itself. Indeed, many protein kinases are interlinked in 

complex activation and inhibitory networks. This network complexity does several things 

for a cell. First, it allows for the complex integration of multiple signals. For example, the 

decision for a cell to divide is dependent on factors such as metabolic state141, extent, and 
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integrity of DNA replication142, and the presence of growth factors143. The complexity of 

these kinase networks allows for the cell to make complex, logic-based decisions, based 

on any inhibitory and activating signals present.  

Also, this complexity makes it hard for the network to be interrupted. 

Interruptions in proper signaling activity could occur because of the inherent stochasticity 

of molecular processes, or due to a "bad actor" mutated protein sending wrong signals. 

When a network is highly dependent on one signal, erroneous behavior is more likely 

than in an interconnected network in which multiple kinases inform a cellular decision. 

Therefore, the complexity of kinase signaling cascades acts like a nuclear weapons 

turnkey; signals from multiple sources need to agree in order to initiate critical cellular 

events, like division or programmed cell death (apoptosis).   

The cancerous state often results from the disruption and rewiring of the cellular 

kinase network in a way that leads to an activation of processes that lead to cellular 

division and proliferation, as well as inhibition of cellular apoptotic processes. Given that 

(at least initially in cancer cell progression), multiple network perturbations are unlikely, 

it is often the case that cancer is "addicted" to the presence or absence of one cellular 

signal. For example, proteins in the RAS pathway are mutated in 25-30% of all 

cancers144. This RAS pathway takes extracellular growth factors and transduces as a 

signal through a kinase signaling network that eventually activates cellular processes 

needed for growth and proliferation145. Mutations in this pathway either cause activation 

in the absence of appropriate growth signals or ignoring of signals that inhibit signaling. 

Members of pathways such as the RAS signaling represent promising anti-cancer 

therapeutic targets. Killing a cancer cell is an easy process. One would need to inhibit a 

vital cellular component (say, RNA polymerase). The difficulty in anti-cancer drug 

design is finding a compound that is highly toxic to cancer cells while being minimally 
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toxic to normal cells. Proteins that cancer is addicted to are enticing targets because of 

their high expression and importance relative to that in normal cells. This provides the 

possibility of creating a drug with an excellent therapeutic window that consists of a high 

enough dosage to harm cancerous cells while still being low enough to have minimal 

effects of off-target cells. 

One such protein that has garnered much interest in recent years is Maternal 

Embryonic Leucine Zipper Kinase (MELK)146. Studies of MELK have revealed that it is 

highly expressed in many cancers, and its expression is correlated with poor prognosis147-

149. Due to this these biological studies, a MELK-targeting drug OTSSP167 entered 

clinical trials. This compound has shown promise as an anti-cancer therapeutic150-152. 

However, further studies reveal that OTSSP167 also targets Aurora B and haspin, two 

kinases critical for the initiation of mitosis153. Inhibition of these kinases would likely 

lead to some inhibition of cancer proliferation. While OTSSP167 might represent a 

promising cancer therapeutic, a better understanding of the role of MELK in cancer 

would require a more specific small-molecule inhibitor.  

 The IN17 scaffold was discovered by the Dalby lab during an assay of known 

kinase inhibitors against MELK. During this assay, nintedanib was found to inhibit 

MELK with a Ki of 5.6 nM, and by merely moving carboxyl tail, the Ki was further 

improved to 0.39 nM. This is the point at which we started computational efforts to 

improve upon the structure and knowledge of IN17.  

When this project started, no crystal structure of IN17 or a related MELK-ligand 

complex existed (indeed, a structure of IN17 bound to MELK is still not available). A 

structure of nintedanib bound to MELK was released several months into this project. 

While this acted as a valuable opportunity to confirm that the structure of our simulations 

was correct, it still left many questions about the structure of the IN17-MELK complex 
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unanswered. The isomeric state of the carboxyl tail, the importance of the interaction of 

piperazine with E15 residue and the possibility of the interference of HEPES (buffer). 

These issues stymied a reliable interpretation of computational results. Despite this 

limitation, this study encompasses a powerful demonstration of the capabilities of the 

Tinker-OpenMM GPU computing engine, raised various relevant questions that could 

have been neglected without the modeling effort. Through a retrospective analysis of the 

results of MELK derivative binding, we show that Tinker-OpenMM is capable of 

providing 1 kcal/mol accuracy in ligand binding free-energy prediction while also 

revealing valuable structural insights.  

 

Introduction 
The protein kinase maternal embryonic leucine zipper kinase (MELK) has 

received interest as a potential therapeutic target for cancer. MELK is reported to activate 

the cancer-promoting transcription factors FOXM1154 and c-JUN155 directly and 

upregulate the expression of the anti-apoptotic protein MCl1 through eIF4B signaling 

pathway156. MELK expression is upregulated in many types of cancer cell cultures and 

tumor samples147-149. Overexpression of MELK is a correlate of poor prognosis in many 

cancer types, including triple-negative breast cancer157-158, prostate cancer159, lung 

adenocarcinoma148, and acute myeloid leukemia160.  

 Given its potential as a therapeutic target, several inhibitors of MELK have been 

developed, most prominently OTSSP167150-152. However, OTSSP167 exhibits significant 

off-target binding and has been found to inhibit the mitotic kinases BUB1 and Haspin, as 

well as Aurora B kinase153. Given the importance of these kinases in initiating mitosis161-
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163, likely, at least some of the therapeutic effects of OTSSP167 are not a result of MELK 

inhibition. This has made probing the actual role of MELK in cancer progression 

difficult. 

 In an attempt to create a more specific chemical inhibitor of MELK, the IN17 

scaffold was developed146. This scaffold is present in the clinically approved drug 

nintedanib164 and was slightly modified by moving the carboxymethyl ester from C29 to 

C28 to form IN17 (Figure 1). IN17 has been shown to bind MELK with a sub-nanomolar 

Ki, as well as to suppress cellular proliferation in cultured Triple Negative Breast Cancer 

cell lines146.  However, binding structural information is lacking for this compound and 

its derivatives, limiting the potential development of further improved compounds. In this 

paper, we use molecular dynamics and free energy methods to analyze the binding 

mechanism of IN17, and related derivatives, to MELK.  

 There has been a recent revival of interest in the toolkit of protein-ligand binding 

free energy calculations165. The long simulation runs necessary to calculate binding free 

energy has long been possible in fixed point charge based forcefields such as AMBER51, 

97-99and CHARMM52, 94-96.  However, these forcefields have not been able to reliably 

modeling highly charged compounds (like IN17), or accurately predicting binding free 

energy consistently2. This suggests that much work on improvements to forcefield and 

sampling schemes is needed for physics-based simulation to reach its full potential. 

 One approach to improve upon the accuracy of fixed charge models is to utilize 

polarizable force fields such as AMOEBA100-101, 166. The AMOEBA forcefield is 

characterized by the inclusion of electrostatic polarization via induced dipoles, as well as 
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the addition of atomic dipole, and quadrupole electrostatic terms. Previous studies have 

utilized the AMOEBA forcefield to calculate the hydration free energy of small 

molecules110-112 and metal ions113-115, in addition to ligand binding free energy to 

synthetic hosts116 and proteins117-121, 166.   However, until recently, the computational 

speed of AMOEBA has been a limiting factor for ligand throughput and sampling. The 

recently developed Tinker-OpenMM platform enables a 200 fold enhancement over what 

is possible in a single CPU processor through the use of GPU computation64. In this 

study, we have utilized the Tinker-OpenMM platform to perform protein-ligand binding 

studies at a scale that was infeasible using previous CPU approaches. Given the large size 

and highly charged nature of the IN17 ligands, we expect the polarization, dipoles, and 

quadrupoles present in AMOEBA are necessary for accurate modeling. 

Methods: 

LIGAND PARAMETERIZATION 
 Initial parameters for IN17 and Nintedinib were generated using POLTYPE101. 

Torsion parameters for all rotatable bonds were derived by fitting to Gaussian 09167 QM 

energy at MP2/6-31G* in the gas phase. These rotatable bonds were entered into the 

valence.py file provided in POLTYPE, enabling the parameterization of IN17 derivatives 

without recalculating these torsional parameters. The IN17 derivatives were then 

parameterized using POLTYPE with this new torsional dictionary. In order to speed up 

the structural optimization of IN17 and derivatives, POLTYPE was modified to run 

initial structural optimization at wB97XD/6-31G*. 
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SIMULATION PARAMETERS 
 Unless otherwise noted, all simulations were run using a 3.0 fs time step with the 

heavy-hydrogen option in order to increase stability at this longer time step. This 

keyword moves some of the mass from the heavy atom to the hydrogen38. MD Frames 

written out every 2ps. All simulations used the r-RESPA integrator and the BUSSI 

thermostat (298K). All constant pressure simulations were conducted using the Monte 

Carlo barostat. All binding simulations utilize a harmonic restraint between the G2 

moiety to the centroid of a group consisting of I16 and Y87, which is turned on gradually 

as the interactions between ligand and surrounding is decoupled (more details in binding 

free energy simulation discussion). The restraint uses a reference distance of 4.7 Å and 

maximal restraint constant of 15 kcal/mol/Angstrom (see SI).  

COMPLEX STRUCTURE GENERATION: 

 The initial guess for the MELK structure with bound nintedanib was generated 

using 4BXY, docking nintedanib into the binding pocket using  GOLD168 at default 

settings.  The resulting complex was minimized to 10.0 kcal/mol/Å with polarization off 

to resolve clashes, and again at 1.0 kcal/mol/Å with polarization back on. We then ran 

simulations for 0.3 ns at each temperature from 25-298K under 1 atm pressure, with 

temperature increasing at 25K intervals, followed by 10ns at 298K with constant box size 

to equilibrate the system. After the release of the PDB ID 5MAF crystal structure of the 

complex, we prepared this structure for simulation in a similar manner. 5MAF has a gap 

in crystal density between Residues 146-177. Therefore the crystal structure PDB ID 

4IXP169 was used to help resolve this extended loop gap between residues 156 and 171 of 
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5MAF using MODDELER170. The MELK-IN17 complex system was solvated in an 

84.8Å x 65.2 Å x 65.2Å box of water using the Tinker “xyzedit” command. 2 Mg+ ions, 

41 Cl- ions, and 22 K+ ions were added to the water box at random locations to match 

experimental conditions. This loop was then heated as described above, with all atoms 

frozen except the modeled loop. This structure was then heated again as above without 

these added restraints to produce an equilibrated structure. The solvation phase of the 

free/unbound ligand was generated by soaking the ligand in a 59.8 Å x 46.6Å x 46.6Å 

equilibrated box of water using xyzedit, adding 1 Mg+ ion, 10 K+ ions, and 17 Cl ions to 

this box.  

BINDING FREE ENERGY SIMULATIONS 
 To generate initial structures of MELK-IN17 derivatives, the structure of IN17 

generated above was manually derivatized using Avogadro171 by editing the IN17 ligand. 

Avogadro maintains rotational and translational frames, enabling the superposition of the 

generated derivatives onto apo-MELK. The structures of derivatives were put back into 

both the protein-solvent system with the water box generated above to produce initial 

structures of the complex and solvation systems for all the derivatives. The simulation 

systems were minimized to resolve steric clashes. These complexes were then simulated 

for 3ns at a constant volume and temperature at 298K in a series of simulations with 

electrostatic lambda, which scales the electrostatic parameters of the ligand, gradually 

from 1.0 to 0.0, followed by a series of simulations with vdW-lambda, which scales the 

vdW interactions between ligand and surrounding using a softcore approach, from 1.0 to 
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0.0. The exact lambda values for binding phase simulations and solvation phase 

simulations are available in SI of the publication. The change in free energy, entropy, and 

enthalpy for neighboring steps was calculated post-MD using Tinker “bar” program, 

using frames 150 to 1500.  The correction due to the distance restraint and standard 

concentration was calculated using Tinker “freefix” program, which equals 1.38 

kcal/mol. The binding free energy was then calculated as ΔG of complexation - ΔG of 

solvation + the correction described above.  

IN17 SOLVENT PHASE CRYSTAL STRUCTURE 

MELK-In-17 was dissolved in 5% methanol in dichloromethane in a vial. The vial was 

wrapped with aluminum foil; small holes were made to the foil. The solution was allowed 

to sit for 3 days to give crystals suitable for X-ray crystallography. Crystals grew as long, 

colorless needles by slow evaporation of methanol in dichloromethane. The data crystal 

was cut from a larger crystal and had approximate dimensions; 0.27 x 0.05 x 0.05 mm. 

The data were collected on an Agilent Technologies SuperNova Dual Source 

diffractometer using an µ-focus Cu Ka radiation source (l = 1.5418Å) with collimating 

mirror monochromators.  A total of 583 frames of data were collected using with a scan 

range of 1° and a counting time of 23 seconds per frame with a detector offset of +/- 

42.4° and 70 seconds per frame with a detector offset of +/- 110.4°.  The data were 

collected at 100 K using an Oxford 700 Cryostream low-temperature device. 
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Results/Discussion 

ARYL-CARBONYL ISOMERISM 

During initial structural studies of IN17, we realized the possibility that the C28-

C30 bond (Figure 1) of nintedanib (as well as IN17) has a partial double bond character. 

Thus, there is a possibility of two distinct conformational isomers (cis vs. trans) due to 

the rotation around this bound, likely leading to different net binding energies. Indeed, 

simulations predict an approximately 1kcal/mol difference in binding free energy 

between the two carboxyl isomers.  In order to determine if these two isomers can readily 

interconvert, we calculated the quantum mechanical rotation barrier of the C28-C30 bond 

of IN17. QM calculations predict an 8 kcal/mol barrier of rotation in solvent (using 

polarizable continuum method or PCM172), and a 14 kcal/mol in the gas phase (Figure 2). 

This barrier would be largely inaccessible at room temperatures, indicating that once 

synthesized, this group is unlikely to swap between the two carboxyl isomers. In order to 

determine the most likely isomeric state of the carboxyl tail, a solvent phase crystal 

structure of IN17 was determined (see SI section of publication). This crystal structure 

displays a well-resolved carboxyl tail, indicative of only one isomer being formed in 

solution. Similar isomerism may exist in other drug compounds, limiting potency. Further 

research is required in order to test this hypothesis.  

MELK-NINTEDANIB COMPLEX STRUCTURAL PREDICTION 

 To date, no crystal structure of the MELK-IN17 complex exists. On the other 

hand, nintedanib is a well-studied MELK inhibitor 173-174 that differs from IN17 only in 
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the location of the carboxyl tail on the indole ring (in nintedanib the carboxyl tail is 

attached to C29 in Figure 1). We first modeled the MELK-nintedanib complex structures 

by using virtual docking and Tinker-OpenMM molecular dynamics simulations. Using 

GOLD, nintedanib was docked into the only ligand-bound crystal structure of MELK 

available at the time (PDB ID 4BKY175), which was then used as a starting point for 10 

ns of MD simulations, as described in the methods section. A MELK-nintedanib structure 

(PDB ID 5MAF176) was released after our initial simulations. In this crystal structure, the 

nintedanib carboxyl ester exists in a configurational state consistent with one of the 

isomers discussed above. The structure of MELK in 5MAF is in good agreement with the 

end state from Tinker-OpenMM simulation, with a C𝛼 RMSD of 1.5 Å (Figure 3a). 

Overall, the ligand and binding site residues from simulations adopted poses similar to 

those in crystal structure 5MAF (Figure 3b). This is an indication that the AMOEBA 

forcefield can capture realistic protein-ligand complex structures for this class of 

compounds. However, one significant discrepancy was observed between the modeled 

nintedanib-MELK complex and the newly released crystal structure 5MAF. N1 of the 

piperazine moiety of nintedanib, rather than being free in solution as predicted by 

docking and MD simulations based on 4BKY, was bound to residue Glu14 in the 5MAF. 

This interaction was missed in the initial modeling, as this N-terminal region was not 

resolved in the 4BKY crystal structure. While 5MAF shows that the piperazine of 

nintedanib is interacting with Glu14 residue in the crystal, the relevance of this 

interaction in solution, where the buffer and solvent conditions are different, has not been 

established. Further discussion of this interaction is presented below. 
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ABSOLUTE BINDING FREE ENERGY OF MELK WITH IN17 
Predicting the absolute binding free energy computationally is more challenging 

than predicting the relative affinities, where stronger error cancellation often occurs. 

First, we wanted to determine this pipeline’s capabilities in predicting the absolute 

binding affinity of IN17. Initially, before the release of the crystal structure of the 

MELK-nintedanib complex, we utilized a MELK-IN17 complex structure, predicted 

using docking to MELK as a starting point for molecular dynamics and free energy 

simulation. Simulations based on PDB 4BKY lacked the first 20 residues, including 

Glu14. This series of simulations resulted in binding free energy of -12.4±0.1 kcal/mol, 

in reasonable agreement with experiment (-13.3 kcal/mol).  

When a crystal structure of the MELK-nintedanib complex (PDB ID 5MAF) was 

released, this structure was used to generate a MELK-IN17 complex by removing the 

carboxyl tail and manually adding the carboxyl methyl ester to the C28 position.  The 

predicted MELK-IN17 complex was then used as a starting point for free energy 

simulation.  The main difference is an additional interaction between the positively 

charged piperazine group of the ligand and the negatively charged Glu14, observed in the 

crystal structure.  One uncertainty is the protonation state of the piperazine moiety. The 

nitrogen near the terminal of the ligand (N1 in Figure 1) is more likely to be protonated 

due to the inductive effects of the carbonyl group (C7=O1). Simulations of the MELK-

IN17 complex in this charge state results in strong Glu14-IN17 interaction and binding 

free energy of -18.3±0.2 kcal/mol, 5 kcal/mol more negative than the experimental result 

of -13.3±0.1 kcal/mol. On the other hand, if the piperazine is deprotonated at the N2 
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position, this interaction between piperazine and Glu14 virtually disappears, giving 

binding free energy of -13.7±0.2 kcal/mol, in good agreement with experiment ( -

13.3±0.1 kcal/mol).  There is a possibility that the Glu14-piperazine salt-bridge 

interaction may not be essential or present in solution, as opposed to in the crystal lattice.  

Also, the experimental measurement was performed at very high buffer 

concentration (50mM vs. 10nM for protein concentration), which can affect the 

interaction of this pair due to buffer agent (HEPES) being able to bind in the protein 

pocket177. Note that the HEPES or 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, 

also contains the same piperazine moiety. It is therefore expected to compete with the 

piperazine group in IN17 when binding to Glu14, especially given the buffer agent 

concentration is several orders of magnitudes higher than that of the ligand.  We 

computed the binding free energy of HEPES to Glu14 to be -8.4±0.2 kcal/mol.  The 

calculated absolute binding free would be in agreement with experimental measurement 

if we take into account the protonation state and/or buffer competition. Nonetheless, for 

the relative affinities among IN17 and its derivatives, the contribution of this piperazine 

group cancels and becomes irrelevant. Also, this overprediction of affinity could be due 

to modeling too much average charge on the piperazine nitrogen, or due to misprediction 

of the protonation state of the piperazine group. 

IN17 BINDING MODE 
Most of the close interactions present in the IN17 binding mode (≤0.3 nm in 

Figure 7) are also observed across all derivatives in our simulations. The protein-ligand 
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contacts are mostly between hydrophobic groups, with the relative positioning of Ile16, 

Gly17, Ala37, and Leu138 serving to provide a tight groove for IN17 binding (Figure 4). 

Other than the Glu14 interaction described above as a potential point of electrostatic 

contact, few strong electrostatic contacts are present. Cys88 forms hydrogen bonds with 

the ligand atoms O2 and N4, constraining the relative orientation of the G2 and G3 of the 

ligand. HN5 of the indole group in IN17 forms a hydrogen bond with the backbone 

carbonyl of Asp86, but this interaction is unlikely to add specificity. The ester carbonyl 

tail (COOC) mainly interacts with Lys39, with some hydrophobic interaction with Val24. 

RELATIVE BINDING FREE ENERGY OF IN17 DERIVATIVES 
 After gaining an understanding of IN17’s binding mode, we wanted to determine 

the effects of compound derivatizations (chemical modifications) on ligand binding. In 

order to attempt to add electrostatic contacts and potentially improve affinity and 

selectivity, electronegative groups were added to the central polar benzene moiety (R1 

and R2 in Table 1). Since the meta and para positions of the central benzene ring (G2 in 

Figure 1) are pointed towards the protein and did not appear to have severe steric 

constraints, the meta and para positions on this ring were chosen for derivitization. Also, 

the importance of the carboxyl tail in IN17 (R3 in Table 1) was not well understood, so 

we performed studies where the carboxyl tail was removed or lengthened. Since it was 

uncertain if the piperazine ring was binding E14, the arbitrary decision to proceed with 

calculations as if this interaction was occurring was made. Since all substitutions were at 
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positions of IN17 far away from the piperazine group, binding energy relative to IN17 

should be unaffected by this decision.  

  Overall, experimental affinities relative to IN17 were predicted with an optimal 

RMSD of 0.8 kcal/mol, a raw RMSD of 1.1 kcal/mol (Table 2), and an R2 value of 0.75 

(Figure 5). The Kendall's tau (a measure of the relative rank order of compounds) was 

0.50. This level of accuracy is sufficient to determine which compounds are unlikely to 

bind effectively to a target protein, such as in compounds 22 and 23. This ability to 

predict non-binding compounds would potentially allow for prediction of compound 

selectivity across a range of related proteins. 

THE N-TERMINAL LOOP STRUCTURE IS ALTERED BY SUBSTITUTION ON THE BENZENE 
(G2) OFFSHOOT 

Substitution at the central benzene ring (G2 in Figure 1) can result in alterations 

in a neighboring beta-sheet structure near the binding pocket (Figure 6). In IN17 

simulations, this beta-sheet is shortened by a bulge that results in hydrophobic packing 

against the exposed edge of the G2 benzene ring.  Interestingly, in the nintedanib 

structure (PDB ID 5MAF), this loop bulging is not observed, suggesting that the crystal 

structure of nintedanib provides an inaccurate representation of certain aspects of loop 

dynamics for IN17. Another explanation is that the lack of loop bulging in 5MAF could 

be a result of cross-crystal contacts (this loop is surface exposed). When electronegative 

groups are added directly to atom C21, as in derivatives 18a, 18e, 18g, 18i and 18p, this 

region forms a beta-sheet, with interactions occurring between the electronegative atom 

and HN of Thr18 (Figure 6).  When a carboxyl ester is added to the C21 position (as in 
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ligand 18d), the beta-sheet structure distorts into a loop to form interactions with the 

carbonyl oxygen of the carboxyl methyl ester substitution group. The observation that a 

beta-sheet is not formed in the 18d complex is likely due to rigid structural requirements 

for the formation of this beta sheet-ligand interaction. The protein beta-sheet structure is 

rigidly defined, as is the relative positioning of C21 and the neighboring indole group. 

This rigidity results in not enough backbone or ligand flexibility to form this backbone-

ligand interaction unless the para carbon (C21) is directly connected to an electronegative 

atom. This rigid structural element combined with the knowledge of this alternative beta-

sheet form should result in improved ability to predict the structural effects of 

substitution on this ring. 

EFFECTS OF SUBSTITUTION ON THE BINDING MODE  
Compared to IN17, the substitutions mainly resulted in only minor changes in 

contact distance, with most interactions being maintained across all derivatives (Figure 

7). The exceptions to this are mostly residues Gly17 and Gly91, both of which maintain 

close contacts in IN17, but not in many of the tested derivatives. Interestingly, the 

neighboring Ile16 is a strictly maintained interaction, indicating that the alteration of the 

structure of the loop containing Gly17 is minor, and indicating that interactions between 

the ligand and Ile16 are likely essential for IN17 and derivative binding. Gly91 is 

proximal to the derivatized C28, so alterations in structure in this region is expected. This 

is consistent with the substitutions at this group leading to alterations to the first shell of 

contacts around this ring, but only minor alterations occurring at other interaction sites. 
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Any induced fit effects are likely to occur at timescales longer than effectively simulated 

using the AMOEBA forcefield. 

USE OF RESTRAINED EQUILIBRATION TO IMPROVE PREDICTION 
Compound 18g represents a case were Tinker-OpenMM poorly predicted the 

binding free energy, with a relative prediction of 2.1±0.2 kcal/mol, significantly weaker 

than the experimental -0.5±0.1  kcal/mol. We hypothesized that this error was because 

the equilibration procedure was unable to capture the induced-fit effects involved in the 

fitting a methyl ether at the meta position, and thus resulted in an unstable pose. If this is 

the case, further restraining the ligand within the protein pocket and then running a more 

extended equilibration simulation may result in a more stable starting configuration for 

free energy calculation.   

In order to test the hypothesis, the 18g starting point was equilibrated for 4ns with 

a 3.0 kcal/mol/angstrom restraint between the terminal methyl carbon of Ala37 and O2 of 

18g, as well as between the nearest terminal methyl carbon of Val24 and C15.  Both of 

the restraint distances were set to 3.5 Angstroms. Since the indole moiety of this ligand is 

tightly bound, and both of these ligand atoms are nearby the R1 substitution point, this 

region of the ligand is closest to the system instability that resulted from R1 substitution.  

This end-state was then used as a starting point for free energy simulation, with a gradual 

reduction of these restraints in the first 6 simulation steps, as well as a 2-step reduction of 

restraints at full interaction strength (ele and vdw-lambda=1). Thus, the overall 

simulation end-states are identical to before, while the intermediate states now utilize 
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additional contact restraints. This series of simulations resulted in a reduction of error in 

the relative binding free energy from 2.6 kcal/mol to 1.6 kcal/mol, suggesting that 

additional equilibration with contact restraints can improve prediction for derivatives 

with strong perturbations. This study illustrates the importance of starting structures for 

free energy simulations due to the limitation of sampling capability. Further research is 

necessary on the general applications of contact restrain in free energy perturbation. 

ENTROPY-ENTHALPY COMPENSATION 
 Post-processing analysis of the free energy calculations enables an estimation of the 

enthalpic and entropic components of binding and solvation energies. Both binding and 

solvation entropies and enthalpies displayed a wide range of absolute values across the 

derivative series (Supplementary Table S2 in publication), indicating that even these 

small changes to ligand structure can result in massive changes to both entropy and 

enthalpy components, even if the final, binding free energy has limited changes. This 

entropy-enthalpy compensation analysis also provides insight into why compounds with 

extended carboxy tails like compound 22 display relatively weak binding. The 

electronegative tail results in strong enthalpic interactions with MELK, indeed, the -

150.8k±43.6cal/mol binding enthalpy is 56 kcal/mol more negative than IN17 and shows 

unfavorable enthalpic interactions with water (only -34.8±31.3 kcal/mol). However, the 

entropy losses associated with binding are significantly more negative than that of IN17, 

resulting in a ΔG that is less favorable than that of IN17.  



70

 Also, the relative entropy-enthalpy differences between IN17 (with the carboxyl tail) and 

compound 16 (without the tail) reveals significant thermodynamics contributions of this 

carboxyl tail to the binding. Unexpectedly, the entropy change of binding (𝑇Δ𝑆)	is much 

more significant for compound 16 (-76.4 kcal/mol vs. -23.0 kcal/mol for IN17). This 

cannot be easily explained by ligand entropy alone; one would expect constraining a 

large group would result in a more significant entropy decrease. As expected, the 

presence of a carboxyl-ester tail in IN17 results in a significant change in solvation 

entropy relative to compound 16 (-115.1 vs. -77.4 kcal/mol 𝑇𝛥𝑆), due to the presence of 

hydrophobic groups. Comparing IN17 to ligand 16, the 40 kcal/mol increase in 𝑇𝛥𝑆 

almost precisely cancels the 37 kcal/mol increase in solvation enthalpy, and thus the 

overall binding free energy remains similar.  The importance of interfacial waters is 

emphasized in the apo-MELK crystal structure(5TWU), which contains many structural 

waters in this pocket, indicating that this pocket is solvent-exposed. Another interesting 

question is why IN17 displays a much lesser binding enthalpy than compound 16 (-

94.87±32.9 kcal/mol vs. -149.8±32.8 kcal/mol). IN17 likely disturbs the apo residue 

contact network, resulting in a loss of protein-protein contacts that is greater than the gain 

in protein-ligand contacts. For example, as explained above, the N-terminal beta-sheet is 

disrupted, causing a loss of protein hydrogen bonds without regaining strong electrostatic 

interactions. Thus, due to the entropic effects of binding and solvation, as well as 

disruption of the native protein contact network, the carboxyl group of IN17 causes little 

improvement in binding affinity vs. compound 16.   
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 This series of simulations provide insight into the importance of entropy-enthalpy 

compensation. An increase in binding enthalpy is often, although not always, countered 

by a corresponding decrease in binding entropy. These simulation results illustrate that 

the exact magnitude of this change is incredibly challenging to predict based on 

chemistry/structure alone.  While one can estimate potential enthalpic interactions, 

without dynamics information, predicting significant entropic effects is difficult, as are 

the effects of ligand binding on protein interaction networks. Computational predictions 

such as those performed in this study allow for an analysis of these effects in a way that 

cannot be easily assessed by experiment. 

Conclusions 
 The state of computational free energy prediction technologies has reached a point where 

it can serve as a valuable addition to commonly used experimental and crystallographic 

approaches for the study of ligand binding structure and thermodynamics. To crystallize 

the number of derivatives utilized in this study would be highly costly and time 

prohibitive. However, molecular modeling techniques provide the ability to understand 

the structural effects of ligand derivatization of the ligand-protein complex in a matter of 

days. Even in cases where the crystal structure is present, these structures ignore the 

dynamics of the system, which is quickly captured by molecular dynamics. This study 

has found many valuable insights into the binding mode of IN17 to MELK, including the 

importance of carboxyl tail isomerism, and the N-terminal loop/beta-sheet 

interconversion. The application of free energy simulation technology should enable 
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more effective and efficient lead optimization, an application that is difficult and time-

consuming using medicinal chemistry techniques.   
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Concluding Statements 
This paper consists of a robust assessment of the capabilities of AMOEBA on GPU to 

enable drug discovery studies. The accuracy of prediction achieved (tau of 0.5, and R2 

0.75) are unlikely to be matched by other approaches. Studies on the capabilities of 5 

different proteins to predict ligand affinity in the D3R grand challenge2 revealed that 3 of 

5 protein targets had the best-submitted approach with a tau value that was worse than 

that observed in our studies2. Those approaches that scored better than a tau of 0.5 were 

universally machine learning tools. Therefore, these predictions explicitly included data 

in known protein-ligand pairs, and thus would not be usable in the case of authentic de 

novo ligand design.  

The ability of the utilized approach to accurately predict relative ligand binding affinity is 

likely improved by the approach of explicitly fitting all of the IN17 scaffold torsions. 

Under current protocols, torsional assignment by poltype is accomplished via the reading 

in of torsional estimates from a torsional dictionary. These dictionary lookup values are 

only approximate; this approach ignores the effects of the surrounding atomic 
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environment. By specifically parameterizing the IN17 scaffold (and then automatically 

fitting any new torsions introduced in derivatization), we can ensure that all torsions 

closely match the quantum mechanics energy surface. This allows for capturing the 

effects of local ligand environment on torsional fit, which cannot be easily accounted for 

in a dictionary lookup-based approach.  

In order to ensure this degree of torsional fit can be obtained in a rapid, high 

throughput manner, it would be preferable that torsional fitting be a fully automated 

process. Given the number of quantum calculations needed for torsional estimation (at 

least 6, 1 calculation for every 30 degrees), a procedure should be programmed that 

fragments the ligand and calculates each torsion. This fragmentation would allow for 

torsions to be determined in a relatively rapid manner, without the need to simulate parts 

of the ligand that have limited influence on the torsional parameterization. 

 While this study was successful at the prediction of relative binding free energy, several 

issues complicated the analysis, primarily as related to the absolute binding free energies. 

First, the possibility of a HEPES-E15 interaction was never conclusively excluded as a 

possibility. Experiments were done were the HEPES buffer was titrated out for Tris-HCl. 

However, it is still possible that both buffers are interacting at this site. A more 

conclusive study would consist of a series of titration down in buffer concentration and 

extrapolate to buffer free binding 𝐾M.  If HEPES is interfering with IN17 inhibitor 

binding, one would expect to see an increase in the apparent potency of IN17 with a 

reduction in buffer concentration. Another limitation in the presented study is the lack of 

an IN17-MELK co-crystal structure. Without this crystal structure, it is not possible to 
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conclusively determine the isomerization state of the terminal carboxyl group. Therefore, 

for this study, we assumed that IN17 binds in the same conformation as observed in the 

structure of the IN17 solvent phase (non-protein bound) crystal. It is possible that 

multiple crystal forms of IN17 exist, and that some mixture of the two possible isomers is 

produced.  A final concern is the protonation state of the piperazine group. It is highly 

likely that only one of the two piperazine nitrogen atoms is protonated. Based on 

computational evidence, I would hypothesize that this interaction is not critical for 

binding. However, this is not supported by the co-crystal of nintedanib and MELK, which 

has an E15-piperazine interaction. It is possible that this interaction is a crystallization 

artifact, especially given the surface exposed nature of the region. Mutagenesis studied 

may be able to determine if this interaction is essential to the inhibition of IN17.  

Even without possible improvements in the accuracy of the AMOEBA forcefield, 

current relative ligand binding metrics are likely good enough to enable a new application 

- namely the design of selectivity into inhibitors. Human kinases have evolved through a 

series of gene duplication events178. Therefore, for any given target kinase, there are often 

multiple off-target kinases that are also inhibited by a target drug.  This can be an 

advantage, as targeting multiple pathways with one drug can make the acquiring of 

resistance mutants challenging. For example, the anti-cancer drug sunitinib is known to 

target VEGFR1-3, PDGFRα and ϐ, c-kit, FLT3, CSF1R, and RET50, 179. Since these 

kinases are all anti-cancer targets, sunitinib may have anti-cancer activity through 

multiple different mechanisms, increasing potency. However, these off-target inhibitions 

can lead to toxicity. Using sunitinib as an example again, sunitinib is associated with 
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cardiotoxicity due to inhibition of AMPK. 180. In drug development projects, it is 

common to investigate lead compounds with high throughput technologies which identity 

which kinases are inhibited by a compound181. One could then, in theory, use free energy 

computational tools to ensure that new derivatives hit desired kinases, but not off-target 

kinases. This negative design approach has not been extensively utilized in drug 

discovery, as it has not been feasible to predict binding vs. non-binding compounds 

accurately. This binding free energy approach has the accuracy to accomplish negative 

design via the testing of affinity to off-target kinases, an approach that could reduce the 

chances of off-target effects early in the drug discovery process. 
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25 H C(=O)N(CH3)2 H 

18a H C(=O)OCH3 p-NO2 

18b H C(=O)OCH3 p-NH2 

18d H C(=O)OCH3 p-C(=O)OCH3 

18e H C(=O)OCH3 p-OCH3 

18i H C(=O)OCH3 
m-, p-(1,3)-

dioxol 

18g H C(=O)OCH3 m-OCH3 

18p H C(=O)OCH3 m-NO2 

Tables 

TABLE 1:  GROUPS PRESENT AT R1, R2, AND R3 FOR THE DERIVATIVES TESTED. 

Compound R1 R2 R3 

IN17 H C(=O)OCH3 H 

16 H H H 

22 C(=O)NH(CH2)3N(CH3)2 H H 

23 C(=O)NH(CH2)3NH2 H H 
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TABLE 2: COMPUTATIONAL PREDICTIONS AND EXPERIMENTAL BINDING ENERGIES (IN 
KCAL/MOL). ALL RELATIVE VALUES USE THE IN17 VALUE AS REFERENCE (0 
KCAL/MOL). AS EXPLAINED IN THE MAIN TEXT, AN ADDITIONAL RESTRAINED 
SIMULATION WAS USED TO OBTAIN BINDING FREE ENERGY FOR COMPOUND 18G. TO 
WITHIN ONE DECIMAL PLACE, UNCERTAINTY FOR EACH OF THE RELATIVE PREDICTIONS 
IS 0.2 KCAL/MOL, AND UNCERTAINTY IN THE EXPERIMENTAL VALUES IS 0.1 KCAL/MOL. 
OPTIMAL RMSD IS 0.8 KCAL/MOL, AND RAW RMSD IS 1.1 KCAL/MOL. 
 

relative prediction relative 

experimental 

18a 2.2 0.6 

18b 1.3 -0.6 

18d 1.5 0.7 

18e -0.3 -0.1 

18g 1.1  -0.5 

18i 1.0 -0.1 

18p 1.0 1.6 

16 0.9 0.4 

22 4.9 4.4 

23 3.7 >4.7 

25 2.6 2.2 
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Figures 

 

FIGURE 1: STRUCTURE OF IN17. ATOMIC LABELS AND RING GROUP NUMBERS ARE 
REFERRED TO THROUGHOUT THE PAPER.  
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FIGURE 2: ROTATIONAL BARRIER FOR THE O3-C30-C28-C29 TORSION OF IN17. PCM 
(POLARIZABLE CONTINUUM METHOD172) IS USED TO CAPTURE THE SOLVENT EFFECT.  
ALL QM ENERGIES WERE CALCULATED USING MP2/6-311+G**, WITH ROTATIONS AT 
EVERY 30 DEGREES.  
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FIGURE 3A: SUPERPOSITION OF CRYSTAL STRUCTURE 5MAF (CYAN) AND SIMULATION 
ENDSTATE OF A MELK-NINTEDANIB SIMULATION OF 10NS (GREEN). FOR CLARITY, THE 
NINTEDANIB LIGAND FROM THE SIMULATION IS OMITTED.  
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FIGURE 3B: COMPARISON OF THE BINDING SITE STRUCTURE OF THE SIMULATION OF 
NINTEDANIB-MELK (CYAN) AND THE 5MAF CRYSTAL STRUCTURE (PURPLE).   
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FIGURE 4: INTERACTION MAP OF IN17 MELK BINDING. THE POSITIONS OF 
SUBSTITUTION GROUPS R1, R2, AND R3, ARE LABELED. IMAGE GENERATED USING 
LIGPLOT+182. 
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FIGURE 5: CORRELATION BETWEEN EXPERIMENTAL BINDING AFFINITY AND 
COMPUTATIONAL PREDICTION. ALL VALUES IN KCAL/MOL. 
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FIGURE 6: COMPARISON OF IN17 SIMULATION STRUCTURE (GREEN) AND 18A 
SIMULATION STRUCTURE(CYAN). ONLY THE FIRST 50 RESIDUES ARE SHOWN FOR 
CLARITY. THE LOOP STRUCTURE DISCUSSED IN THE MAIN TEXT IS ENCLOSED IN THE 
RED CIRCLE. 
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Figure 7: HEATMAP OF LIGAND-PROTEIN INTERACTIONS ACROSS ALL STUDIED 
LIGANDS. COLOR CORRESPONDS TO AVERAGE CONTACT DISTANCE (NM) ACROSS ALL 
3NS OF MOLECULAR DYNAMICS SIMULATION. THE HEATMAP IS ORDERED BY MOST 
CONSERVED INTERACTIONS ACROSS ALL DERIVATIVES.  
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VIRIAL BASED BERENDSEN BAROSTAT ON GPUS USING 
AMOEBA IN TINKER-OPENMM183 

Introductory Statements 

This study chronicles the work on the inclusion of virial-based barostats into 

Tinker-OpenMM for polarizable multipole-based AMOEBA potential. Prior to this study, 

only the Monte Carlo barostat was implemented in Tinker-OpenMM. This acted as a non-

trivial limitation for anyone wanting to code in the alternative, virial based barostats. The 

coding of the virial into Tinker-OpenMM varied in complexity depending on which term 

was being included. Some of the terms were coded into Tinker-OpenMM in a manner 

identical to base Tinker, with only minor syntax changes necessary. The virial for these 

terms was trivial to port over and consisted of merely copying and pasting of these terms 

to the end of the appropriate CUDA Kernel. Some terms, however, were quite 

challenging, most notably the electrostatic force. This force was broken up into many 

different components, most of which shared limited code terms with the Tinker CPU 

code. This required extensive reverse engineering, especially of the polarizable multipole 

PME related virial terms. The complete inclusion of the virial opens many possibilities 

with regards to further development of virial-based pressure control. 

Introduction: 
Proper pressure control is essential for molecular dynamics (MD) that requires 

simulation of pressure effects39. For example, molecular dynamics has proven invaluable 

in the prediction of the structure of compounds such as glasses184, nanomaterials185, and 

metals186,187 under extreme pressures as high as 1,000,000 atm. Many of the standard 

spectroscopic techniques are ineffective under high pressures. For example, even 

pioneering NMR studies are limited to around 2000-3000 atm188. Since NMR is the 
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primary technique to gain dynamics information about molecular systems, MD 

simulations act as a valuable complement to the limited experimental tools available at 

higher pressures. As another biological example, proteins have evolved to maintain 

structure and function at the pressure experienced by an organism. For most organisms, 

this pressure is near 1 Atm. However, there has been increasing interest in the dynamics 

of proteins from piezophiles that live under extreme pressures as high at 1100 atm189, 

pressures that would denature most proteins. Molecular dynamics studies of the pressure 

stability of these enzymes have revealed that protein dynamics of pressure tolerant 

enzymes (at least in Dihydrofolate Reductase) are altered to enable increased flexibility at 

high pressures190, thus enabling substrate exchange. A better understanding of these 

adaptations may allow for biosynthetic applications or mutagenesis of proteins for high-

pressure industrial applications191. Material science and biochemical studies such as these 

require robust pressure control that allows for simulation is not only ambient pressures, 

but also at extreme pressures. This pressure control is implemented via a simulation 

component known as a barostat. 

Most barostat implementations require the calculation of a system property known 

as the virial192. The virial is defined as the change in energy with respect to volume (i.e., 

dU/dV).  The virial is the sum of two components; an internal, potential interaction 

derived component and a kinetic energy term. For most systems, the internal virial has a 

tendency to push system volume inwards, while the kinetic term pulls system volume 

outwards. For simple pairwise forces, the internal virial expression is also equivalent to 

the dot product of force and distance. However, for some forces, internal virial 
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calculations derived from dU/dV are required (such as during the calculation of the virial 

due to multipole forces using Ewald summation193). The virial can then be converted into 

an instantaneous pressure using the equation 𝑃4567 =
8
9∗;

∗ (2 ∗ 𝐾𝐸 −𝑊), with 𝐾𝐸 being 

kinetic energy, and 𝑊 is the average of the diagonal components of the internal virial 

tensor for the case of an isotropic barostat. This instantaneous pressure is then used to 

scale box dimensions and coordinates in order to bring the instantaneous pressure closer 

to the target external pressure. There is a wide range of virial based barostats, including 

the Nose Hoover barostat40, 194-195, the Berendsen barostat39, and the Langevin piston 

method41. Note that Berendsen does not give correct ensemble fluctuation, whereas it is 

very effective to equilibrate the system to target pressure.  

Tinker-OpenMM64 is a modified version of OpenMM65, 196 designed for GPU 

computation containing many features that are not present in the main release of 

OpenMM. These additions include the latest modifications of the AMOEBA polarizable 

forcefield114, 166 and the ability to perform free energy perturbation calculations. 

However, Tinker-OpenMM lacks in pressure control methodologies. Since Tinker-

OpenMM currently doesn't compute the AMOEBA virial (unlike the base Tinker 

package197-198 for CPU computation), Tinker GPU pressure scaling can only be 

accomplished via a Monte Carlo Barostat199. The Monte Carlo barostat uses the target 

pressure and system energy to probabilistically select increases or decreases in system 

box size. The Monte Carlo barostat results in the correct equilibrium system density and 

volume ensemble. However, the Monte Carlo barostat is less effective than virial-based 

barostats in the equilibration of molecular systems that are far from equilibrium density 
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or for systems undergo substantial volume changes as a result of state changes (e.g., 

protein folding and unfolding). Therefore, it is desirable for Tinker-OpenMM to contain 

virial-based barostats. 

When making an initial choice of barostats, we wanted to implement a barostat 

that was already present in Tinker CPU so as to enable comparisons of these already 

well-validated platforms with the GPU results. Tinker CPU currently supports the Nose-

Hoover barostat and the Berendsen barostat. The Nose-Hoover barostat was initially 

considered. However, the Tinker implementation of the Nose-Hoover barostat contains a 

thermostat coupled to a barostat. This coupling introduces complications in analysis, 

leaving the possibility that any error is due to the thermostat, not just the barostat. By 

implementing the Berendsen barostat, temperature control can be handled by the already 

implemented Bussi thermostat42. One disadvantage of the Berendsen barostat is that 

correct volume ensembles are not achieved.199 This makes the Berendsen barostat 

inappropriate for production simulations, and limits effective use cases to initial 

equilibration. However, implementation of the Berendsen barostat can act as an initial 

test of if a GPU based virial can enable consistent pressure control. This is especially 

important since forces (and thus the virial, which uses many force intermediate terms in 

its calculation) needs to be calculated at a lesser, 32-bit precision (as opposed to the 64-

bit computation utilized by Tinker CPU).  This lack of precision could result in a drift in 

equilibrium densities in the GPU when compared to the CPU. Indeed, significant total 

energy drifts are observed when integrating positions at 32-bit precision, indicating that 

calculation of system properties using 32-bit precision can cause a significant difference 
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in system behavior196. Thus typical GPU MD utilized mixed precisions where certain 

variables such as positions use 64-bit while others use 32. Since the AMOEBA internal 

virial (or indeed, any polarizable virial) has not been implemented in CUDA for GPU-

MD, it is unclear if a GPU based implementation of the AMOEBA virial would enable 

sufficient precision for robust pressure control. In this paper, we show the 

implementation of the AMOEBA virial on GPUs within Tinker-OpenMM and use the 

Berendsen Barostat as a test of the utilization of this virial for pressure control schemes. 

Methods:  

DERIVATION OF VIRIAL: 

 Given unit cell vectors, 𝑎� = [𝑎�8, 𝑎�), 𝑎�9]�, 𝛼 = 1, 2, 3, which form the edges of 

the cell, the cell-matrix is defined as 

  𝑨 = �𝑎8, 𝑎), 𝑎9� = �
𝑎11 𝑎21 𝑎31
𝑎12 𝑎22 𝑎32
𝑎13 𝑎23 𝑎33

�   (1) 

 The instantaneous pressure is given by 200 

  𝑝�s =
8
;
V∑ 𝑚𝑣4�𝑣4s4 − 𝑊�sW (2) 

The first term on the RHS corresponds to the kinetic energy contribution while the 

second term is the internal virial: 

  𝑊�s = −∑ 𝑟4K,�	𝑓4K,s4,K�4	  

The average of three diagonal components of pressure tensor gives the usual scalar 

pressure in an isotropic system. 

The virial tensor can also be evaluated from derivatives of potential energy 201 



91

��
�`��
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��

3

��1
 (3) 

which can be conveniently applied to obtain virial for a system handled by Ewald sum 

𝑊�s = ∑ �������
�`� 

𝑎�s9
��1  (4) 

Note the partial derivative is with respect fixed s, fractional coordinate. 

The Ewald energy for multipoles is  

𝑈¡¢`£M = 𝑈A_`£ + 𝑈A_¤4¥ + 𝑈6_£¦  (5) 

The self-energy term is independent of cell dimension and makes no contribution to 

pressure.  The real space component of pressure tensor intuitively takes the form 202 

𝑊�s
A_`£ = −� 𝑟4K,�

4,K�4
𝑓4K,sA_`£  

where 𝑓4K,sA_`£ is the force between site i and j computed in the Ewald real space, and the 

summation is over all pairs of sites. The remaining reciprocal component is to be derived 

using above eq (4) and is presented in the supplementary materials of the publication. 

The virial due to torque is calculated as ∆𝑋~ ∗ 𝐹𝑥~ + ∆𝑋¨ ∗ 𝐹𝑥¨ + ∆𝑋© ∗ 𝐹𝑥©. Subscripts 

denote the X, Y, and Z frame defining atoms. All other terms are calculated analogously. 

This dot product definition of the virial can be used because this torque is not volume 

dependent203.  Here forces are the forces converted from/due to torque.  

VIRIAL IMPLEMENTATION: 
 Calculation of the diagonal and off-diagonal components of the virial tensor was added 

to the end of the appropriate GPU force kernels (contained in Tinker-

Openmm/plugins/amoeba/platform/cuda/src/kernels) via adaptation of the vir() array 
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modifications present in the Tinker CPU codebase.  Modifications were made to the 

Multipole, van der Waals, angle, angle-torsion, bond, out of plane bend, pi-torsion, 

stretch-bend, stretch-torsion, torsion-torsion, and torsion forces. For all forces except the 

more complicated multipole force (along with polarization), all changes were made at the 

end of the kernel, guarded by an if USES_VIRIAL preprocessor directive. The multipole 

virial is contained throughout multipole. cu, multipolePme.cu, and 

pmeMultipoleElectrostatics.cu, with all virial components, either utilizing the 

USES_VIRIAL directive or are contained within routines that are executed only if the 

virial is required for a given simulation. The flagging of virial-requiring terms with the 

USES_VIRIAL directive enables virial-dependent calculations only in simulations in 

which the virial is required, removing computational expenses in simulations that do not 

use the virial. GPU virial computation can be turned on in the interface by a call to 

OpenMM_System_setUsesVirial (omm->system, (OpenMM_Boolean) true). The GPU 

virial was split into fast, bonded (available by calling CudaContext.getFastVirial()) and 

slow, nonbonded (available by calling CudaContext.getSlowVirial()) components. This 

separation allows for the implementation of multistep algorithms (such as r-RESPA204) 

that require averaging of fast components by the number of inner steps. 

BERENDSEN BAROSTAT IMPLEMENTATION: 
The Berendsen barostat was coded for use with the RESPA integrator present in 

Tinker-OpenMM. Briefly, a routine scaleBox() was added into the CustomStepKernel 

implementation present in platforms/cuda/src/CudaKernels.cpp. The scaleBox routine 
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performs pressure scaling identical to that present in the Tinker interface, based on the 

barostat scheme reported previously39. Briefly, after each step, the kinetic energy and 

virial potential were used to determine the box length scaling constant according to the 

equation 𝐿𝑒𝑛𝑔𝑡ℎ𝑠𝑐𝑎𝑙𝑒 = ((1 + Δ𝑡 ∗ ϐ
¯
∗ V𝑃°±²³ − 𝑃³´µ¶·³W)8/9. The compressibility (ϐ )

was chosen as that of water (0.000046), with τ equaling the default Tinker CPU value of 

2.0. The instantaneous pressure was calculated using the equation 𝑃4567 =
¹
9∗;

∗

(2 ∗ 𝐾𝐸 −𝑊), with 𝑘 being a conversion factor between kJ/mol/Å3 to atm (equal to 

16.39). In order to increase system stability, the fast virial was averaged across all inner 

steps. The actual scaling of atomic coordinates is accomplished using the GPU kernel 

scaleCoordinates() inside platforms/cuda/src/kernel/monteCarloBarostat.cu, which scales 

the positions of molecular centers (as opposed to scaling each individual atom 

independently). The command addscalebox () was placed at the end of the RESPA 

definition in the Tinker ommstuff.cpp interface, after the BUSSI, scaling routine, causing 

the scaleBox() routine to be called at the end of each r-RESPA step. 

VIRIAL VALUE CONFIRMATION: 

The virial build of Tinker-OpenMM was modified to print both the fast, bonded 

virial and the slow, non-bonded virial at each r-RESPA inner step. 1000 steps of MD 

were then performed using a 1.0 fs time step, with the output of a structural archive file 

every step. The total virial for each GPU generated frame was then calculated using the 

Tinker "analyze" routine. The average and percent difference was then calculated on a 
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per-component basis using only the diagonal component of the virial. The first 500 

frames were ignored, in order to compare near-equilibrium frames 

MD PROCEDURES: 
All Molecular Dynamics calculations were performed using a 2.0fs timestep, and 

the RESPA integrator, with structural output every 1ps. All calculations were performed 

at 1Atm pressure using the Berendsen barostat, and 298K temperature using the BUSSI 

thermostat42 unless otherwise noted. Simulations utilized an electrostatic Ewald cutoff of 

7.0 Å and a van der Waals (vdW) cutoff of 12.0 Å.  

MOLECULAR SYSTEMS: 

 All small-molecule systems consisted of pure liquids available in the example/ folder of 

the tinker release and utilized the amoeba09 parameters.  The water system utilized 

consisted of a cubic box of 2,210 water molecules run using the AMOEBA water14 

forcefield. The protein system utilized was bench7.xyz solvated Dihydrofolate Reductase 

(DHFR) test system includes in the bench/ folder of the Tinker CPU distribution, using 

the amoebabio09 parameters. The RNA system utilized was a solvated double-stranded 

RNA molecule consisting of the sequence 5'-AAGCUGCCAG-3', 3'-UCGACGGU-5', 

using the amoebanuc17 parameter file. 



95

Results: 

VIRIAL CPU VS GPU COMPARISON 

Since the virial for each force often contains mathematical intermediates of the 

force (or even the calculated force itself), a computationally efficient internal virial must 

be calculated at 32-bit precision.  This potentially limits internal virial accuracy when 

compared to the 64-bit precision utilized by Tinker CPU. Initial tests of the internal virial 

consisted of calculating the difference in the diagonal internal virial components 

calculated using the Tinker-OpenMM GPU and Tinker CPU platforms. Since only the 

diagonal components contribute to isotropic pressure, the off-diagonal internal virial 

tensor components were ignored. This comparison was accomplished by performing 

1000 steps of MD on a minimized starting structure, using a build of Tinker-OpenMM 

modified to print out the slow and fast virials every r-RESPA inner step. The first 500 

structures of this simulation were not included in the internal virial analysis in order to 

test near-equilibrium values. The internal virial tensor for these final 500 frames was then 

calculated using Tinker's "analyze" routine. The Dihydrofolate Reductase (DHFR) 

protein system showed an average diagonal internal virial component difference of 

9.0±6.0 kcal/mol/Å3, with a percent difference of 0.08±0.06% (Table 1). The RNA 

system displayed slightly more significant raw divergence, at 14.3±9.6 kcal/mol/Å3 due 

to larger system size. For the RNA system, the percent difference was identical to that of 

the protein system, with a percent difference of 0.08±0.05%. It was unclear if this degree 

of accuracy was sufficient to enable virial-based pressure control. Most of the divergence 

in CPU and GPU calculated internal virial was identified as being a result of the particle 
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mesh Ewald virial, which cannot be improved upon without increasing to 64-bit 

precision.  The calculation at this increased precision would result in an unacceptable 

approximately 30-fold reduction in performance196.  At this speed reduction, the 

performance advantage of the GPU platform is essentially negated. It was thus decided to 

proceed with Berendsen pressure control testing with this virial divergence.   

EQUILIBRATION OF SMALL MOLECULE SYSTEMS: 

Since it was uncertain if the internal virial accuracy was sufficient to enable 

pressure control, it was necessary to test the capabilities of the GPU platform on a wide 

range of small molecules. In addition to water, pure liquids of formamide, benzene, and 

methanol were chosen to represent a diverse set of molecular properties.  This series of 

compounds was simulated at 1 Atmosphere pressure using Tinker CPU for 1ns to 

generate equilibrium structures and velocities using a well-validated computational 

platform. These simulation starting points were then run using the Berendsen barostat for 

30ns at 1A tm to confirm that this equilibrium is maintained. All of the tested small 

molecules maintained the same density as in the CPU simulation (Table 2), an indication 

that the Tinker-OpenMM system is able to maintain stable simulations for a wide range 

of chemical moieties. 

EQUILIBRATION OF WATER AT HIGH PRESSURES 

It is essential that any barostat be able to equilibrate systems that are at an initial 

non-equilibrium density. The previous series of tests started the simulated systems at 

equilibrium and did not determine the ability of the Tinker-OpenMM platform to 
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simulate systems at pressures other than 1 atm.  In order to test both capabilities, a series 

of simulations of water were conducted at 1, 1000, 2000, and 4000 atmospheres. 

Critically, all 4 series of simulations were started with structures and velocities of a 1 atm 

water system generated using CPU. Therefore, reaching the correct equilibrium requires 

that the higher-pressure systems increase in density, demonstrating the capability of the 

GPU Berendsen barostat to equilibrate to different pressures. This series of Berendsen 

simulations reached near-equilibrium densities within 20ps and displayed equilibrium 

densities virtually identical to those observed in the 1ns CPU simulation (Figure 1) that 

were started at 1 atm pressure. The minor shift observed in equilibrium densities is likely 

due to integration and velocity precision differences between GPU and CPU. The percent 

virial divergence is small enough so as this consistent shift is not easily explained by 

virial divergence.  The previous test (with all compounds at 1 Atm) could have been 

passed by a barostat with little to no box size evolution. The change of box size to reach 

equilibrium densities occurs relatively rapidly, while still maintaining an appropriate 

long-term equilibrium. This is a strong indication that the Tinker-OpenMM Berendsen 

barostat can perform pressure equilibration to densities identical to that of the CPU 

Berendsen platform, despite the less accurate virial.  

COMPARISON OF BERENDSEN AND MONTE CARLO BAROSTATS ON GPU 
The only previous pressure equilibration platform present in Tinker-OpenMM 

was the Monte Carlo Barostat. Unlike the Berendsen barostat, the Monte Carlo barostat 

displayed correct ensemble pressure and velocity fluctuations and thus is more suitable 
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for production simulation. The weakness of the Monte Carlo barostat, however, is the 

equilibration of structures far from equilibrium or dealing with substantial volume 

changes. Therefore, a likely pipeline would consist of an initial equilibration with the 

Berendsen barostat, followed by production simulations using Monte Carlo, or another 

(to be developed) virial based barostat such as Nose-Hoover. In order for this pipeline to 

work effectively, the equilibrium densities of the Monte Carlo and Berendsen barostat 

should be in agreement. To test this agreement, the water density tests at 1, 1000, 2000, 

and 4000 atm, as well as the other liquids at 1 Atmosphere, were repeated using the 

Monte Carlo barostat in Tinker-OpenMM on GPUs. The GPU Monte Carlo barostat 

showed comparable densities to the GPU Berendsen barostat for both water (Figure 2) 

and organic liquids (Table 3). This close agreement enables a smooth transition between 

the Monte Carlo and Berendsen barostats.  This agreement is even closer than that 

observed between the GPU and CPU Berendsen barostats. This is an indication that the 

small divergence observed between the two platforms may be due to precision issues 

related to the velocity and components of the platform rather than the barostat, and more 

importantly, the polarizable multipole virial has been correctly implemented on the GPU 

platform.    

Conclusions: 
 Over time, Tinker-OpenMM is nearing the molecular dynamics capabilities of the 

Tinker-CPU platform. One of the most significant limitations of the Tinker-OpenMM 

platform has previously been the lack of virial-based pressure control methods. These 
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virial-based methods are often more stable during initial equilibration than the Monte 

Carlo barostat. While the Berendsen barostat lacks the proper ensemble, it is an essential 

steppingstone in virial-based pressure control on GPU. Prior to this study, it was unclear 

if the lesser accuracy of OpenMM force (and thus virial) calculation would be accurate 

enough to enable robust pressure control. The results of this study indicate that this 

inaccuracy is unlikely to be an issue in the implementation of pressure control schemes.  

In the near future, we aim to add a wide range of the diversity of barostats that require the 

virial, such as Nose-Hoover or the Langevin Piston. 

Concluding Remarks 
When we had initially set out to add virial-based pressure control, the Berendsen 

barostat was not our primary target pressure control scheme. When initial prototype 

results for this barostat was presented to the Tinker community, the reception was 

lukewarm. This was due to the fact that the Berendsen barostat does not result in the 

correct ensemble volume fluctuations. However, attempts to implement other barostats in 

the allotted time were unsuccessful. For example, attempts were made to code in Tinker-

CPUs’ Nose Hoover barostat. Initial results for this barostat looked promising- it 

appeared to maintain the density of water at the correct value. However, when inputted 

with alternative liquid boxes- such as methanol, biases to high density were observed. We 

were unable to accurately identify the causes of this errant behavior and decided to 

change focus to the Berendsen barostat (which was already coded) due to concerns with 

the timing of the writing of this thesis. However, in finalizing the Berendsen barostat, a 



100

possible (untested) cause of the errant Nose-hoover behavior may have been identified. 

The Tinker-OpenMM getKineticEnergy() routine shifts atomic velocities by half a 

timestep of acceleration to account for the Verlet based shift of calculation of velocities 

and positions. This shift is not needed in the Nose-Hoover implementation but may be 

causing inappropriate kinetic energy to be calculated. While this has yet to be formally 

tested, this is a likely stepping off point to attempt to fix the Tinker-OpenMM Nose 

Hoover implementation. 
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Tables: 

TABLE 1: 

THE AVERAGE AND ABSOLUTE VIRIAL DIVERGENCE BETWEEN SIMULATION FRAMES 
GENERATED USING BERENDSEN BAROSTAT MOLECULAR DYNAMICS (MD) ON GPU AND 
THE CPU ANALYSIS OF THESE FRAMES. GPU MD WAS RUN FOR 1000 STEPS OF MD 
USING A 1FS TIMESTEP, AND PER-COMPONENT AVERAGE DIVERGENCE WAS 
CALCULATED FOR FRAMES 500 TO 1000. 

Protein RNA 
Absolute Difference(kcal/mol/Å3) 9.0±6.0 14.3±9.6 
Percent Difference 0.08±0.06% 0.08±0.05% 
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TABLE 2 COMPARISON OF THE EQUILIBRIUM DENSITY OF CPU AND GPU BERENDSEN 
BAROSTAT SIMULATIONS. GPU RESULTS ARE TAKEN OVER 30NS, AND CPU RESULTS 
ARE TAKEN OVER 1NS. BOTH RESULTS IGNORE THE FIRST 200PS.  

Compound GPU Density CPU 
Density 

Benzene 0.878±0.007 0.877±0.007 
Formamide 1.124±0.004 1.124±0.004 
Methanol 0.781±0.002 0.783 

±0.002 
Water 0.994±0.003 1.002±0.003 
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TABLE3: COMPARISON OF EQUILIBRIUM DENSITY (OVER 30NS, IGNORING THE FIRST 
200PS) FOR THE BERENDSEN AND MONTE CARLO GPU BAROSTATS. 

Compound Berendsen Monte Carlo 
Benzene 0.878±0.007 0.880±0.009 
Formamide 1.124±0.004 1.124±0.006 
Methanol 0.781±0.002 0.782±0.004 
Water 0.994±0.003 0.998±0.005 
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Figures 

FIGURE 1: AVERAGE DENSITY FOR BERENDSEN GPU AND BERENDSEN CPU MD 
SIMULATIONS ON THE WATER AT VARIOUS PRESSURES. VALUES ARE REPORTED AS 
AVERAGE ± STANDARD DEVIATION. FIRST 200PS OF SIMULATION TIME WAS IGNORED IN 
THE CALCULATION. CPU SIMULATIONS WERE CONDUCTED FOR 1NS, AND GPU 
SIMULATIONS WERE SIMULATED FOR 30NS. 
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FIGURE 2:  AVERAGE DENSITY FOR BERENDSEN GPU AND MONTE CARLO GPU 
SIMULATIONS ON THE WATER AT VARIOUS PRESSURES. VALUES ARE REPORTED AS 
AVERAGE ±STANDARD DEVIATION. FIRST 200PS OF SIMULATION TIME WAS IGNORED IN 
THE CALCULATION. BOTH SERIES OF SIMULATIONS WERE SIMULATED FOR 30NS. 
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FUTURE DIRECTIONS 
During my time as a graduate student, the usability of Tinker-OpenMM as a GPU 

molecular dynamics engine has improved dramatically. During the early stages of my 

Ph.D., simple NVT simulation (or constant pressure simulation using Monte Carlo) was 

the only functionality of AMOEBA on Tinker-OpenMM. Through the work of myself 

and others, Tinker-OpenMM has reached a point of maturity where it is mostly ready for 

wide-scale adoption for various free energy calculations. Now that we have reached this 

degree of implementation, the question comes, what is needed in the next stages of the 

evolution of this platform, as well as the use of AMOEBA as a whole? 

The first, most noticeable improvement is in the functional form of the AMOEBA 

forcefield. Development of a next generation of the AMOEBA forcefield (AMOEBA+) is 

well underway205. This update promises to allow for greater accuracy in results due to a 

better capturing of the physics of the electrostatic force. The most noticeable changes in 

this update to the AMOEBA forcefield is the addition of charge transfer and charge 

penetration terms. Initial analysis of the AMOEBA+ model on the water is promising, 

and parameterization of a protein forcefield using these new terms is ongoing. This 

update is (hopefully) the last major update to the functional form of AMOEBA. Having 

stability in the overall functional form of AMOEBA should aid in needed developments 

in other areas of the utilizing of Tinker OpenMM. 

The next most urgent area that needs significant improvements is in the area of 

general usability. The computational chemistry community as a whole is impressed by 

the capabilities of the AMOEBA forcefield and want to integrate AMOEBA based 
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calculations into their workflows. However, the usability of Tinker leaves much to be 

desired with respect to the new user experience. Where most comparable packages such 

as AMBER and CHARMM have GUIs and extensive tutorials, Tinker solely has unix 

command line programs and lesser documentation. The addition of a GUI based pipeline 

for (for example) binding free energy simulations would greatly ease the acquisition of 

new users of this powerful forcefield. 

Another problematic area is that of small molecule parameterization. It is clear 

that the parameterization process can work effectively (as evidenced by my work with 

MELK ligands). However, the process (especially for torsional optimization) is not fully 

automated and requires a large number of expensive QM calculations for torsional 

scanning. One solution to the problem of torsional parameterization is that of a torsional 

lookup dictionary. However, it is likely that torsional values are too dependent on 

neighboring atomic environment to be adequately captured by this approach. A better 

solution would be to "slice" a ligand into smaller fragments, each of which would contain 

a single torsion and its environment. This would allow for QM torsional scans that can be 

completed in a reasonable amount of computational time. Such a program would be 

challenging to implement since this would require some molecular insight into what 

constitutes a viable fragment (as a simple example, one should not split up a ring system). 

However, this approach to ligand parameterization is the most likely to be able to 

generate useful molecular parameter sets. This approach of performing extensive QM 

calculations for each new molecule is expensive, but not unprecedented. Indeed, this 

approach is precisely how multipoles are calculated for new molecules. If such an 
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approach could be made computationally feasible, it would likely result in increases in 

usability and accuracy.  

Another area of improvement for Tinker-OpenMM is in the ability to speed up 

simulation speed. One example of such efforts includes the recent addition of OPT3 

polarization206, a truncation to the number of polarization iterations that results in a 30% 

overall improvement in system performance. Another recent performance improvement 

was made in Tinker-HP that allows for outer timesteps of as long as 10fs, using BAOAB 

integration, drastically improving the overall simulation speed207. Porting this approach 

over to Tinker-OpenMM should be possible and enable dramatic performance 

improvements. 

The final, most preliminary (but arguably most important) improvement that 

needs to be made is better sampling approaches. Most current approaches use dynamic 

approaches based upon the Maxwell kinetic energy distribution. This kinetic energy 

distribution is necessary in order to capture real-world kinetics. However, this 

distribution is slower than desired for the calculations of thermodynamic properties such 

as binding free energies. Standard dynamics base approached also have a tendency to get 

stuck in alternative minima, as the kinetic energy at room temperature kinetic motion is 

insufficient to overcome the necessary energy barriers. Improvements to sampling, such 

as metadynamics approaches88 or OSRW91, enable improvements to these aspects by 

biasing the system's energy surface to enable better sampling. This allows for more rapid 

and accurate convergence in property calculations (such as free energy calculation).   
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Over the past several years, GPU computing using Tinker-OpenMM has 

undergone a transformative change into the main accessible use case for large scale 

AMOEBA simulations such as protein-ligand systems. The previous advancement in the 

testing and application of the AMOEBA forcefield has been limited by its poor 

computational efficiency. GPU computing helps relieve many of the issues associated 

with this inefficiency. This should allow for improvements in the applications available 

for the AMOEBA forcefield, as well as incentivize the further development of improved 

methods.   



APPENDIX 

Code Details 

FREE ENERGY PERTURBATION IMPLEMENTATION DETAILS 

On the CPU ommstuff.cpp side, the free energy perturbation changes were minor. 

For the VdW force, the OpenMM_AmoebaVdwForce_addParticle() routine was 

modified to give each particle a lambda value( 1 if non-ligand, otherwise, the gobal vdw-

lambda value. The modifications to the electrostatics on the interface side operated 

similarly, though no changes needed to be made to the interface. The scaling of multipole 

factors was already handled by the Tinker CPU reading of variables; no modifications 

were necessary. 

On the GPU side, no changes needed to be made to the electrostatic forces. The 

vdW changes are in the routine that passes parameters to the GPU 

(plugins/amoeba/platforms/cuda/src/AmoebaCudaKernels.cpp) in order to pass the 

lambda array to GPU, and in the GPU kernel 

plugins/amoeba/platforms/cuda/src/kernels/Amoebavdwforce2.cu). The kernel changes 

consisted of the inclusion of a combined lambda variable for each interaction. If two 

lambdas are non-identical (in the case of a ligand-environment interaction), the lower 

lambda value (that of the ligand) is used. Otherwise (in ligand-ligand or environment-

environment interactions), this variable is set to 1.  

110
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RELATIVE FREE ENERGY IMPLEMENTATION 

This code is currently in the TinkerRelative and TinkerOMMRelative  github 

branches. The electrostatic lambda is read in from two variables, elamdba1 and 

elambda2. Each of these keywords is accepted and read in by this version of Tinker, as 

are the ligand1 and ligand2 keywords that describe ligand bounds. The lambda 1 and 2 

are handled by mutate.f, like in the normal build.  vdW lambda is handed in a similar 

manner on the CPU, with each particle given a value of vdwlambda. If in ligand 1, 1-

vdwambda if in ligand 2, or 1 otherwise. Therefore, 1 is compete for ligand 1 vdW, and 0 

is compete ligand 2 vdW. 

On the GPU side, no changes were needed for electrostatic code. As described in 

the manuscript, this was a decision made in order to make coding feasible. The 

AmoebaCudaKernels works in a similar manner as normal vdW code,  though launched 

with the amoebaVdwforce2reative kernel. Each atom is put into one of 3 groups. 0 if the 

environment, 1 if ligand1, and 2 if ligand 2. Each interaction is gated by the statement  if 

abs((2.0-(numGroups1*numGroups2)))>0.1. If atom 1 or 2 is environment or the same 

ligand, this expression is 2>0.1, or either 1>0.1 or 2>0.1, which always results in 

execution.  However, if an interaction is between a ligand 1 atom and a ligand 2 atom, 

this expression results in a number close to ( though not exactly, due to floating-point 

math) 0, causing the entire force calculation method to be ignored. This prevents the 
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interaction of ligand 1 and ligand 2 atoms via the vdW force, which would result in 

overlap and simulation catastrophe. 

VIRIAL CODING DETAILS 

The virial code is contained within the VIRIAL branch of github. The actual virial 

implementation relies on the addition of values to two variables, SlowViral and 

FastVirial. This separation was done in order to enable multi timestep integrators, and are 

created in platforms/cuda/src/CudaContext.cpp.  This unique location in GPU memory 

does not move throughout the simulation, allowing for different forces to add to each in a 

pace in global GPU memory.  

One aspect that was made very carefully was ensuring that race condition in the 

adding to global virial arrays was avoided. For the bonded forces, each bonded force adds 

to a local Vxx, etc. value. Writes to this local variable do not coincide (this bonded code 

is not well parallelized). Vxx is then atomically added to the fast virial. The nonbonded 

forces handle this problem differently, as race conditions are much more likely. The virial 

additions are thus added directly to central memory. This may lead to some 

bottlenecking, but this simple atomic addition is a negligible cost.  

The virial calculation for most of the forces was relatively trivia porting of code 

from the CPU. The only real change was in the Ewald virial calculation. It was 

determined that since the FFT grid needed to be completey different from that used in 

force and energy computation, the intermediates from this code could not be used. 

However, the basic code structure from force Ewald was duplicated and modified for 

virial calculation.  

The implemented RESPA code is based upon the implementation in tinker CPU. 

The CustomIntegrator implementation of the r-RESPA was used in order to ensure that 
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maximum compatibility and utilization of well-trusted code. The critical change to this 

code is the addition of a new command (addScaleBox) that performs virial-based 

coordinate and box size scaling using a modified version of the scaling routine used by 

the Monte Carlo Barostat. This command was placed in the interface at the end of 

integration to enable scaling at a time equivalent to that used by Tinker CPU code. 
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