Development and analysis of Tinker-OpenMM as a GPU-based free energy perturbation engine

Abstract

The utilization of computational technologies for the lead optimization process is one of the biggest challenges in the computational chemistry field. In this dissertation, I describe the addition of GPU-based absolute and relative free energy calculation methods using polarizable force field AMOEBA to Tinker-OpenMM. I then proceed to test the capabilities of this platform by studying the binding free energy and binding structures of derivatives of the MELK inhibitor IN17. Also, I present the implementation of virial-based pressure control to the Tinker-OpenMM platform that is needed for performing isobaric simulations.Cellular and Molecular Biolog

    Similar works