4,312 research outputs found

    Biosignal controlled recommendation in entertainment systems

    Get PDF
    With the explosive growth of the entertainment contents and the ubiquitous access of them via fixed or mobile computing devices, recommendation systems become essential tools to help the user to find the right entertainment at the right time and location. I envision that by integrating the bio signal input into the recommendation process, it will help the users not only to find interesting contents, but also to increase one’s comfort level by taking into account the biosginal feedback from the users. The goal of this project was to develop a biosignal controlled entertainment recommendation system that increases the user’s comfort level by reducing the level of stress. As the starting point, this project aims to contribute to the field of recommendation systems with two points. The first is the mechanism of embedding the biosignal non-intrusively into the recommendation process. The second is the strategy of the biosignal controlled recommendation to reduce stress. Heart rate controlled in-flight music recommendation is chosen as its application domain. The hypothesis of this application is that, the passenger's heart rate deviates from the normal due to unusual long haul flight cabin environment. By properly designing a music recommendation system to recommend heart rate controlled personalized music playlists to the passenger, the passengers' heart rate can be uplifted, down-lifted back to normal or kept within normal, thus their stress can be reduced. Four research questions have been formulated based on this hypothesis. After the literature study, the project went mainly through three phases: framework design, system implementation and user evaluation to answer these research questions. During the framework design phase, the heart rate was firstly modeled as the states of bradycardia, normal and tachycardia. The objective of the framework is that, if the user's heart rate is higher or lower than the normal heart rate, the system recommends a personalized music playlist accordingly to transfer the user’s heart rate back to normal, otherwise to keep it at normal. The adaptive framework integrates the concepts of context adaptive systems, user profiling, and the methods of using music to adjust the heart rate in a feedback control system. In the feedback loop, the playlists were composed using a Markov decision process. Yet, the framework allows the user to reject the recommendations and to manually select the favorite music items. During this process, the system logs the interactions between the user and the system for later learning the user’s latest music preferences. The designed framework was then implemented with platform independent software architecture. The architecture has five abstraction levels. The lowest resource level contains the music source, the heart rate sensors and the user profile information. The second layer is for resource management. In this layer are the manager components to manage the resources from the first layer and to modulate the access from upper layers to these resources. The third layer is the database, acting as a data repository. The fourth layer is for the adaptive control, which includes the user feedback log, the inference engine and the preference learning component. The top layer is the user interface. In this architecture, the layers and the components in the layers are loosely coupled, which ensures the flexibility. The implemented system was used in the user experiments to validate the hypothesis. The experiments simulated the long haul flights from Amsterdam to Shanghai with the same time schedule as the KLM flights. Twelve subjects were invited to participate in the experiments. Six were allocated to the controlled group and others were allocated to the treatment group. In addition to a normal entertainment system for the control group, the treatment group was also provided with the heart rate controlled music recommendation system. The experiments results validated the hypothesis and answered the research questions. The passenger's heart rate deviates from normal. In our user experiments, the passenger's heart rate was in the bradycardia state 24.6% of time and was in the tachycardia state 7.3% of time. The recommended uplifting music reduces the average bradycardia state duration from 14.78 seconds in the control group to 6.86 seconds in the treatment group. The recommended keeping music increases the average normal state duration from 24.66 seconds in the control group to 29.79 seconds in the treatment group. The recommended down-lifting music reduces the average tachycardia state duration from 13.89 seconds in the control group to 6.53 seconds in the treatment group. Compared to the control group, the stress of the treatment group has been reduced significantly

    Implicit personalization in driving assistance: State-of-the-art and open issues

    Get PDF
    In recent decades, driving assistance systems have been evolving towards personalization for adapting to different drivers. With the consideration of driving preferences and driver characteristics, these systems become more acceptable and trustworthy. This article presents a survey on recent advances in implicit personalized driving assistance. We classify the collection of work into three main categories: 1) personalized Safe Driving Systems (SDS), 2) personalized Driver Monitoring Systems (DMS), and 3) personalized In-vehicle Information Systems (IVIS). For each category, we provide a comprehensive review of current applications and related techniques along with the discussion of industry status, benefits of personalization, application prospects, and future focal points. Both relevant driving datasets and open issues about personalized driving assistance are discussed to facilitate future research. By creating an organized categorization of the field, we hope that this survey could not only support future research and the development of new technologies for personalized driving assistance but also facilitate the application of these techniques within the driving automation community</h2

    Fog Computing in Medical Internet-of-Things: Architecture, Implementation, and Applications

    Full text link
    In the era when the market segment of Internet of Things (IoT) tops the chart in various business reports, it is apparently envisioned that the field of medicine expects to gain a large benefit from the explosion of wearables and internet-connected sensors that surround us to acquire and communicate unprecedented data on symptoms, medication, food intake, and daily-life activities impacting one's health and wellness. However, IoT-driven healthcare would have to overcome many barriers, such as: 1) There is an increasing demand for data storage on cloud servers where the analysis of the medical big data becomes increasingly complex, 2) The data, when communicated, are vulnerable to security and privacy issues, 3) The communication of the continuously collected data is not only costly but also energy hungry, 4) Operating and maintaining the sensors directly from the cloud servers are non-trial tasks. This book chapter defined Fog Computing in the context of medical IoT. Conceptually, Fog Computing is a service-oriented intermediate layer in IoT, providing the interfaces between the sensors and cloud servers for facilitating connectivity, data transfer, and queryable local database. The centerpiece of Fog computing is a low-power, intelligent, wireless, embedded computing node that carries out signal conditioning and data analytics on raw data collected from wearables or other medical sensors and offers efficient means to serve telehealth interventions. We implemented and tested an fog computing system using the Intel Edison and Raspberry Pi that allows acquisition, computing, storage and communication of the various medical data such as pathological speech data of individuals with speech disorders, Phonocardiogram (PCG) signal for heart rate estimation, and Electrocardiogram (ECG)-based Q, R, S detection.Comment: 29 pages, 30 figures, 5 tables. Keywords: Big Data, Body Area Network, Body Sensor Network, Edge Computing, Fog Computing, Medical Cyberphysical Systems, Medical Internet-of-Things, Telecare, Tele-treatment, Wearable Devices, Chapter in Handbook of Large-Scale Distributed Computing in Smart Healthcare (2017), Springe

    Feedback Control of Human Stress with Music Modulation

    Get PDF
    Mental stress has known detrimental effects on human health, however few algorithmic methods of reducing mental stress have been widely explored. While the act of listening to music has been shown to have beneficial effects for stress reduction, and furthermore, audio players have been designed to selectively choose music and other inputs with the intent of stress reduction, limited work has been conducted for real-time stress reduction with feedback control using physiological input signals such as heart rate or Heart Rate Variability (HRV). This thesis proposes a feedback controller that uses HRV signals from wearable sensors to perform real-time (< 1 second) modulations to music through tempo changes with the goal to regulate and reduce stress levels. A standardized, stress inducing test based on the popular Stroop test is also introduced, which has been shown to induce acute stress in subjects and can be used as a testing benchmark for controller design. Ultimately, a controller is presented that when used is not only able to maintain stress levels during stress-inducing inputs to a human but even provides de-stressing effects beyond baseline performance.No embargoAcademic Major: Electrical and Computer Engineerin

    Towards emotional interaction: using movies to automatically learn users’ emotional states

    Get PDF
    The HCI community is actively seeking novel methodologies to gain insight into the user's experience during interaction with both the application and the content. We propose an emotional recognition engine capable of automatically recognizing a set of human emotional states using psychophysiological measures of the autonomous nervous system, including galvanic skin response, respiration, and heart rate. A novel pattern recognition system, based on discriminant analysis and support vector machine classifiers is trained using movies' scenes selected to induce emotions ranging from the positive to the negative valence dimension, including happiness, anger, disgust, sadness, and fear. In this paper we introduce an emotion recognition system and evaluate its accuracy by presenting the results of an experiment conducted with three physiologic sensors.info:eu-repo/semantics/publishedVersio

    A Sensing Platform to Monitor Sleep Efficiency

    Get PDF
    Sleep plays a fundamental role in the human life. Sleep research is mainly focused on the understanding of the sleep patterns, stages and duration. An accurate sleep monitoring can detect early signs of sleep deprivation and insomnia consequentially implementing mechanisms for preventing and overcoming these problems. Recently, sleep monitoring has been achieved using wearable technologies, able to analyse also the body movements, but old people can encounter some difficulties in using and maintaining these devices. In this paper, we propose an unobtrusive sensing platform able to analyze body movements, infer sleep duration and awakenings occurred along the night, and evaluating the sleep efficiency index. To prove the feasibility of the suggested method we did a pilot trial in which several healthy users have been involved. The sensors were installed within the bed and, on each day, each user was administered with the Groningen Sleep Quality Scale questionnaire to evaluate the user’s perceived sleep quality. Finally, we show potential correlation between a perceived evaluation with an objective index as the sleep efficiency.</p
    • …
    corecore