276 research outputs found

    Unifying Sparsest Cut, Cluster Deletion, and Modularity Clustering Objectives with Correlation Clustering

    Get PDF
    Graph clustering, or community detection, is the task of identifying groups of closely related objects in a large network. In this paper we introduce a new community-detection framework called LambdaCC that is based on a specially weighted version of correlation clustering. A key component in our methodology is a clustering resolution parameter, λ\lambda, which implicitly controls the size and structure of clusters formed by our framework. We show that, by increasing this parameter, our objective effectively interpolates between two different strategies in graph clustering: finding a sparse cut and forming dense subgraphs. Our methodology unifies and generalizes a number of other important clustering quality functions including modularity, sparsest cut, and cluster deletion, and places them all within the context of an optimization problem that has been well studied from the perspective of approximation algorithms. Our approach is particularly relevant in the regime of finding dense clusters, as it leads to a 2-approximation for the cluster deletion problem. We use our approach to cluster several graphs, including large collaboration networks and social networks

    The Feedback Arc Set Problem with Triangle Inequality is a Vertex Cover Problem

    Full text link
    We consider the (precedence constrained) Minimum Feedback Arc Set problem with triangle inequalities on the weights, which finds important applications in problems of ranking with inconsistent information. We present a surprising structural insight showing that the problem is a special case of the minimum vertex cover in hypergraphs with edges of size at most 3. This result leads to combinatorial approximation algorithms for the problem and opens the road to studying the problem as a vertex cover problem

    Correlation Clustering with Adaptive Similarity Queries

    Get PDF
    In correlation clustering, we are given nn objects together with a binary similarity score between each pair of them. The goal is to partition the objects into clusters so to minimise the disagreements with the scores. In this work we investigate correlation clustering as an active learning problem: each similarity score can be learned by making a query, and the goal is to minimise both the disagreements and the total number of queries. On the one hand, we describe simple active learning algorithms, which provably achieve an almost optimal trade-off while giving cluster recovery guarantees, and we test them on different datasets. On the other hand, we prove information-theoretical bounds on the number of queries necessary to guarantee a prescribed disagreement bound. These results give a rich characterization of the trade-off between queries and clustering error

    Correlation Clustering Generalized

    Get PDF
    We present new results for LambdaCC and MotifCC, two recently introduced variants of the well-studied correlation clustering problem. Both variants are motivated by applications to network analysis and community detection, and have non-trivial approximation algorithms. We first show that the standard linear programming relaxation of LambdaCC has a Theta(log n) integrality gap for a certain choice of the parameter lambda. This sheds light on previous challenges encountered in obtaining parameter-independent approximation results for LambdaCC. We generalize a previous constant-factor algorithm to provide the best results, from the LP-rounding approach, for an extended range of lambda. MotifCC generalizes correlation clustering to the hypergraph setting. In the case of hyperedges of degree 3 with weights satisfying probability constraints, we improve the best approximation factor from 9 to 8. We show that in general our algorithm gives a 4(k-1) approximation when hyperedges have maximum degree k and probability weights. We additionally present approximation results for LambdaCC and MotifCC where we restrict to forming only two clusters

    Cluster Editing: Kernelization based on Edge Cuts

    Full text link
    Kernelization algorithms for the {\sc cluster editing} problem have been a popular topic in the recent research in parameterized computation. Thus far most kernelization algorithms for this problem are based on the concept of {\it critical cliques}. In this paper, we present new observations and new techniques for the study of kernelization algorithms for the {\sc cluster editing} problem. Our techniques are based on the study of the relationship between {\sc cluster editing} and graph edge-cuts. As an application, we present an O(n2){\cal O}(n^2)-time algorithm that constructs a 2k2k kernel for the {\it weighted} version of the {\sc cluster editing} problem. Our result meets the best kernel size for the unweighted version for the {\sc cluster editing} problem, and significantly improves the previous best kernel of quadratic size for the weighted version of the problem

    Correlation Clustering with Adaptive Similarity Queries

    Get PDF
    In correlation clustering, we are givennobjects together with a binary similarityscore between each pair of them. The goal is to partition the objects into clustersso to minimise the disagreements with the scores. In this work we investigatecorrelation clustering as an active learning problem: each similarity score can belearned by making a query, and the goal is to minimise both the disagreementsand the total number of queries. On the one hand, we describe simple activelearning algorithms, which provably achieve an almost optimal trade-off whilegiving cluster recovery guarantees, and we test them on different datasets. On theother hand, we prove information-theoretical bounds on the number of queriesnecessary to guarantee a prescribed disagreement bound. These results give a richcharacterization of the trade-off between queries and clustering error
    • …
    corecore