Kernelization algorithms for the {\sc cluster editing} problem have been a
popular topic in the recent research in parameterized computation. Thus far
most kernelization algorithms for this problem are based on the concept of {\it
critical cliques}. In this paper, we present new observations and new
techniques for the study of kernelization algorithms for the {\sc cluster
editing} problem. Our techniques are based on the study of the relationship
between {\sc cluster editing} and graph edge-cuts. As an application, we
present an O(n2)-time algorithm that constructs a 2k kernel for the
{\it weighted} version of the {\sc cluster editing} problem. Our result meets
the best kernel size for the unweighted version for the {\sc cluster editing}
problem, and significantly improves the previous best kernel of quadratic size
for the weighted version of the problem