20 research outputs found

    Matroid Intersection: A Pseudo-Deterministic Parallel Reduction from Search to Weighted-Decision

    Get PDF
    We study the matroid intersection problem from the parallel complexity perspective. Given two matroids over the same ground set, the problem asks to decide whether they have a common base and its search version asks to find a common base, if one exists. Another widely studied variant is the weighted decision version where with the two matroids, we are given small weights on the ground set elements and a target weight W, and the question is to decide whether there is a common base of weight at least W. From the perspective of parallel complexity, the relation between the search and the decision versions is not well understood. We make a significant progress on this question by giving a pseudo-deterministic parallel (NC) algorithm for the search version that uses an oracle access to the weighted decision. The notion of pseudo-deterministic NC was recently introduced by Goldwasser and Grossman [Shafi Goldwasser and Ofer Grossman, 2017], which is a relaxation of NC. A pseudo-deterministic NC algorithm for a search problem is a randomized NC algorithm that, for a given input, outputs a fixed solution with high probability. In case the given matroids are linearly representable, our result implies a pseudo-deterministic NC algorithm (without the weighted decision oracle). This resolves an open question posed by Anari and Vazirani [Nima Anari and Vijay V. Vazirani, 2020]

    Do Prices Coordinate Markets?

    Full text link
    Walrasian equilibrium prices can be said to coordinate markets: They support a welfare optimal allocation in which each buyer is buying bundle of goods that is individually most preferred. However, this clean story has two caveats. First, the prices alone are not sufficient to coordinate the market, and buyers may need to select among their most preferred bundles in a coordinated way to find a feasible allocation. Second, we don't in practice expect to encounter exact equilibrium prices tailored to the market, but instead only approximate prices, somehow encoding "distributional" information about the market. How well do prices work to coordinate markets when tie-breaking is not coordinated, and they encode only distributional information? We answer this question. First, we provide a genericity condition such that for buyers with Matroid Based Valuations, overdemand with respect to equilibrium prices is at most 1, independent of the supply of goods, even when tie-breaking is done in an uncoordinated fashion. Second, we provide learning-theoretic results that show that such prices are robust to changing the buyers in the market, so long as all buyers are sampled from the same (unknown) distribution

    Generating secret in a network

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 247-253) and index.This monograph studies the theory of information through the multiuser secret key agreement problem. A general notion of mutual dependence is established for the secrecy capacity, as a natural generalization of Shannon's mutual information to the multivariate case. Under linear-type source models, this capacity can be achieved practically by linear network codes. In addition to being an unusual application of the network coding solution to a secrecy problem, it gives secrecy capacity an interpretation of network information flow and partition connectivity, further confirming the intuitive meaning of secrecy capacity as mutual dependence. New identities in submodular function optimization and matroid theory are discovered in proving these results. A framework is also developed to view matroids as graphs, allowing certain theory on graphs to generalize to matroids. In order to study cooperation schemes in a network, a general channel model with multiple inputs is formulated. Single-letter secrecy capacity upper bounds are derived using the Shearer-type lemma. Lower bounds are obtained with a new cooperation scheme called the mixed source emulation. In the same way that mixed strategies may surpass pure strategies in zero-sum games, mixed source emulation outperforms the conventional pure source emulation approach in terms of the achievable key rate. Necessary and sufficient conditions are derived for tightness of these secrecy bounds, which shows that secrecy capacity can be characterized for a larger class of channels than the broadcast-type channels considered in previous work. The mixed source emulation scheme is also shown to be unnecessary for some channels while insufficient for others. The possibility of a better cooperative scheme becomes apparent, but a general scheme remains to be found.by Chung Chan.Ph.D

    Matroid Secretary Is Equivalent to Contention Resolution

    Get PDF
    We show that the matroid secretary problem is equivalent to correlated contention resolution in the online random-order model. Specifically, the matroid secretary conjecture is true if and only if every matroid admits an online random-order contention resolution scheme which, given an arbitrary (possibly correlated) prior distribution over subsets of the ground set, matches the balance ratio of the best offline scheme for that distribution up to a constant. We refer to such a scheme as universal. Our result indicates that the core challenge of the matroid secretary problem lies in resolving contention for positively correlated inputs, in particular when the positive correlation is benign in as much as offline contention resolution is concerned. Our result builds on our previous work which establishes one direction of this equivalence, namely that the secretary conjecture implies universal random-order contention resolution, as well as a weak converse, which derives a matroid secretary algorithm from a random-order contention resolution scheme with only partial knowledge of the distribution. It is this weak converse that we strengthen in this paper: We show that universal random-order contention resolution for matroids, in the usual setting of a fully known prior distribution, suffices to resolve the matroid secretary conjecture in the affirmative
    corecore