6 research outputs found

    Determining the representative factors affecting warning message dissemination in VANETs

    Full text link
    In this paper, we present a statistical analysis based on the 2k factorial methodology to determine the representative factors affecting traffic safety applications in Vehicular ad hoc networks (VANETs). Our purpose is to determine what are the key factors affecting Warning Message Dissemination (WMD) in order to concentrate on such parameters, thus reducing the amount of required simulation time when evaluating VANETs. Simulation results show that the key factors affecting warning messages delivery are: (i) the transmission range, (ii) the radio propagation model used, and (iii) the density of vehicles. Based on this statistical analysis, we evaluate a compound key factor: neighbor density. This factor combines the above-mentioned factors into a single entity, reducing the number of factors that must be taken into account for VANET researchers to evaluate the benefits of their proposals.This work was partially supported by the Ministerio de Educacion y Ciencia, Spain, under Grant TIN2008-06441-C02-01, and by the Fundacion Antonio Gargallo, under Grant 2009/B001.Martínez Domínguez, FJ.; Toh, CK.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2012). Determining the representative factors affecting warning message dissemination in VANETs. Wireless Personal Communications. 67(2):295-314. https://doi.org/10.1007/s11277-010-9989-4S295314672Eichler, S. (2007). Performance evaluation of the IEEE 802.11p WAVE communication standard. In Proceedings of the vehicular technology conference (VTC-2007 Fall), USA.Fall, K., & Varadhan, K. (2000). ns notes and documents. The VINT Project. UC Berkeley, LBL, USC/ISI, and Xerox PARC. Available at http://www.isi.edu/nsnam/ns/ns-documentation.html .Fasolo, E., Zanella, A., & Zorzi, M. (2006). An effective broadcast scheme for alert message propagation in vehicular ad hoc networks. In Proceedings of the IEEE International Conference on Communications, Istambul, Turkey.Korkmaz, G., Ekici, E., Ozguner, F., & Ozguner, U. (2004). Urban multi-hop broadcast protocols for inter-vehicle communication systems. In Proceedings of First ACM Workshop on Vehicular Ad Hoc Networks (VANET 2004).Martinez, F. J., Toh, C.-K., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2009). Realistic radio propagation models (RPMs) for VANET simulations. In IEEE wireless communications and networking conference (WCNC), Budapest, Hungary.Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2008). CityMob: A mobility model pattern generator for VANETs. In IEEE vehicular networks and applications workshop (Vehi-Mobi, held with ICC), Beijing, China.Martinez, F. J., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2009). A performance evaluation of warning message dissemination in 802.11p based VANETs. In IEEE local computer networks conference (LCN 2009), Zürich, Switzerland.Torrent-Moreno, M., Santi, P., & Hartenstein, H. (2005). Fair sharing of bandwidth in VANETs. In Proceedings of the 2nd ACM international workshop on vehicular ad hoc networks, Germany.Tseng Y.-C., Ni S.-Y., Chen Y.-S., Sheu J.-P. (2002) The broadcast storm problem in a mobile ad hoc network. Wireless Networks 8: 153–167Wisitpongphan N., Tonguz O., Parikh J., Mudalige P., Bai F., Sadekar V. (2007) Broadcast storm mitigation techniques in vehicular ad hoc networks. Wireless Communications IEEE 14(6): 84–94. doi: 10.1109/MWC.2007.4407231Yang, X., Liu, J., Zhao, F., & Vaidya, N. H. (2004). A vehicle-to-vehicle communication protocol for cooperative collision warning. In Proceedings of the first annual international conference on mobile and ubiquitous systems: Networking and services (MobiQuitous’04).Yoon, J., Liu, M., & Noble, B. (2003). Random waypoint considered harmful. Proceedings of IEEE INFOCOMM 2003, San Francisco, California, USA.Zang, Y., Stibor, L., Cheng, X., Reumerman, H.-J., Paruzel, A., & Barroso, A. (2007). Congestion control in wireless networks for vehicular safety applications. In Proceedings of the 8th European Wireless Conference, Paris, France

    On the Study of Vehicle Density in Intelligent Transportation Systems

    Get PDF
    Vehicular ad hoc networks (VANETs) are wireless communication networks which support cooperative driving among vehicles on the road. The specific characteristics of VANETs favor the development of attractive and challenging services and applications which rely on message exchanging among vehicles. These communication capabilities depend directly on the existence of nearby vehicles able to exchange information. Therefore, higher vehicle densities favor the communication among vehicles. However, vehicular communications are also strongly affected by the topology of the map (i.e., wireless signal could be attenuated due to the distance between the sender and receiver, and obstacles usually block signal transmission). In this paper, we study the influence of the roadmap topology and the number of vehicles when accounting for the vehicular communications capabilities, especially in urban scenarios. Additionally, we consider the use of two parameters: the SJ Ratio (SJR) and the Total Distance (TD), as the topology-related factors that better correlate with communications performance. Finally, we propose the use of a new density metric based on the number of vehicles, the complexity of the roadmap, and its maximum capacity. Hence, researchers will be able to accurately characterize the different urban scenarios and better validate their proposals related to cooperative Intelligent Transportation Systems based on vehicular communications

    An Infrastructureless Approach to Estimate Vehicular Density in Urban Environments

    Get PDF
    In Vehicular Networks, communication success usually depends on the density of vehicles, since a higher density allows having shorter and more reliable wireless links. Thus, knowing the density of vehicles in a vehicular communications environment is important, as better opportunities for wireless communication can show up. However, vehicle density is highly variable in time and space. This paper deals with the importance of predicting the density of vehicles in vehicular environments to take decisions for enhancing the dissemination of warning messages between vehicles. We propose a novel mechanism to estimate the vehicular density in urban environments. Our mechanism uses as input parameters the number of beacons received per vehicle, and the topological characteristics of the environment where the vehicles are located. Simulation results indicate that, unlike previous proposals solely based on the number of beacons received, our approach is able to accurately estimate the vehicular density, and therefore it could support more efficient dissemination protocols for vehicular environments, as well as improve previously proposed schemes.This work was partially supported by the Ministerio de Ciencia e Innovacion, Spain, under Grant TIN2011-27543-C03-01, as well as by the Fundacion Universitaria Antonio Gargallo (FUAG), and the Caja de Ahorros de la Inmaculada (CAI).Sanguesa, JA.; Fogue, M.; Garrido, P.; Martinez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2013). An Infrastructureless Approach to Estimate Vehicular Density in Urban Environments. Sensors. 13(2):2399-2418. doi:10.3390/s130202399S2399241813

    Detecting Non-Line of Sight to Prevent Accidents in Vehicular Ad hoc Networks

    Get PDF
    There are still many challenges in the field of VANETs that encouraged researchers to conduct further investigation in this field to meet these challenges. The issue pertaining to routing protocols such as delivering the warning messages to the vehicles facing Non-Line of Sight (NLOS) situations without causing the storm problem and channel contention, is regarded as a serious dilemma which is required to be tackled in VANET, especially in congested environments. This requires the designing of an efficient mechanism of routing protocol that can broadcast the warning messages from the emergency vehicles to the vehicles under NLOS, reducing the overhead and increasing the packet delivery ratio with a reduced time delay and channel utilisation. The main aim of this work is to develop the novel routing protocol for a high-density environment in VANET through utilisation of its high mobility features, aid of the sensors such as Global Positioning System (GPS) and Navigation System (NS). In this work, the cooperative approach has been used to develop the routing protocol called the Co-operative Volunteer Protocol (CVP), which uses volunteer vehicles to disseminate the warning message from the source to the target vehicle under NLOS issue; this also increases the packet delivery ratio, detection of NLOS and resolution of NLOS by delivering the warning message successfully to the vehicle under NLOS, thereby causing a direct impact on the reduction of collisions between vehicles in normal mode and emergency mode on the road near intersections or on highways. The cooperative approach adopted for warning message dissemination reduced the rebroadcast rate of messages, thereby decreasing significantly the storm issue and the channel contention. A novel architecture has been developed by utilising the concept of a Context-Aware System (CAS), which clarifies the OBU components and their interaction with each other in order to collect data and take the decisions based on the sensed circumstances. The proposed architecture has been divided into three main phases: sensing, processing and acting. The results obtained from the validation of the proposed CVP protocol using the simulator EstiNet under specific conditions and parameters showed that performance of the proposed protocol is better than that of the GRANT protocol with regard to several metrics such as packet delivery ratio, neighbourhood awareness, channel utilisation, overhead and latency. It is also successfully shown that the proposed CVP could detect the NLOS situation and solves it effectively and efficiently for both the intersection scenario in urban areas and the highway scenario

    Adaptive Mechanisms to Improve Message Dissemination in Vehicular Networks

    Get PDF
    En el pasado, se han dedicado muchos recursos en construir mejores carreteras y autovías. Con el paso del tiempo, los objetivos fueron cambiando hacia las mejoras de los vehículos, consiguiendo cada vez vehículos más rápidos y con mayor autonomía. Más tarde, con la introducción de la electrónica en el mercado del automóvil, los vehículos fueron equipados con sensores, equipos de comunicaciones, y otros avances tecnológicos que han permitido la aparición de coches más eficientes, seguros y confortables. Las aplicaciones que nos permite el uso de las Redes Vehiculares (VNs) en términos de seguridad y eficiencia son múltiples, lo que justifica la cantidad y recursos de investigación que se están dedicando en los últimos años. En el desarrollo de esta Tesis, los esfuerzos se han centrado en el área de las Vehicular Ad-hoc Networks, una subclase de las Redes Vehiculares que se centra en las comunicaciones entre los vehículos, sin necesidad de que existan elementos de infraestructura. Con la intención de mejorar el proceso de diseminación de mensajes de alerta, imprescindibles para las aplicaciones relacionadas con la seguridad, se ha propuesto un esquema de difusión adaptativo, capaz de seleccionar automáticamente el mecanismo de difusión óptimo en función de la complejidad del mapa y de la densidad actual de vehículos. El principal objetivo es maximizar la efectividad en la difusión de mensajes, reduciendo al máximo el número de mensajes necesarios, evitando o mitigando las tormentas de difusión. Las propuestas actuales en el área de las VANETs, se centran principalmente en analizar escenarios con densidades típicas o promedio. Sin embargo, y debido a las características de este tipo de redes, a menudo se dan situaciones con densidades extremas (altas y bajas). Teniendo en cuenta los problemas que pueden ocasionar en el proceso de diseminación de los mensajes de emergencia, se han propuesto dos nuevos esquemas de difusión para bajas densidades: el \emph{Junction Store and Forward} (JSF) y el \emph{Neighbor Store and Forward} (NSF). Además, para situaciones de alta densidad de vehículos, se ha diseñado el \emph{Nearest Junction Located} (NJL), un esquema de diseminación que reduce notablemente el número de mensajes enviados, sin por ello perder prestaciones. Finalmente, hemos realizado una clasificacion de los esquemas de difusión para VANETs más importantes, analizando las características utilizadas en su diseño. Además hemos realizado una comparación de todos ellos, utilizando el mismo entorno de simulación y los mismos escenarios, permitiendo conocer cuál es el mejor esquema de diseminación a usar en cada momento

    I-VDE: A Novel Approach to Estimate Vehicular Density by Using Vehicular Networks

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-39247-4_6Road traffic is experiencing a drastic increase in recent years, thereby increasing the every day traffic congestion problems, especially in cities. Vehicle density is one of the main metrics used for assessing the road traffic conditions. Currently, most of the existing vehicle density estimation approaches, such as inductive loop detectors or traffic surveillance cameras, require infrastructure-based traffic information systems to be installed at various locations. In this paper, we present I-VDE, a solution to estimate the density of vehicles that has been specially designed for Vehicular Networks. Our proposal allows Intelligent Transportation Systems to continuously estimate the vehicular density by accounting for the number of beacons received per Road Side Unit, as well as the roadmap topology. Simulation results indicate that our approach accurately estimates the vehicular density, and therefore automatic traffic controlling systems may use it to predict traffic jams and introduce countermeasures.This work was partially supported by the Ministerio de Ciencia e Innovaci´on, Spain, under Grant TIN2011-27543-C03-01, as well as by the Fundaci´on Universitaria Antonio Gargallo (FUAG), and the Caja de Ahorros de la Inmaculada (CAI)Barrachina Villalba, J.; Garrido Picazo, MP.; Fogue, M.; Martínez, FJ.; Cano Escribá, JC.; Tavares De Araujo Cesariny Calafate, CM.; Manzoni, P. (2013). I-VDE: A Novel Approach to Estimate Vehicular Density by Using Vehicular Networks. En Ad-hoc, Mobile, and Wireless Network. Springer. 63-74. https://doi.org/10.1007/978-3-642-39247-4_6S6374Akhtar, N., Ergen, S., Ozkasap, O.: Analysis of distributed algorithms for density estimation in VANETs. In: IEEE Vehicular Networking Conference (VNC), pp. 157–164 (November 2012)Barrachina, J., Garrido, P., Fogue, M., Martinez, F.J., Cano, J.C., Calafate, C.T., Manzoni, P.: D-RSU: A Density-Based Approach for Road Side Unit Deployment in Urban Scenarios. In: International Workshop on IPv6-based Vehicular Networks (Vehi6), Collocated with the 2012 IEEE Intelligent Vehicles Symposium, pp. 1–6 (June 2012)Fall, K., Varadhan, K.: ns notes and documents. The VINT Project. UC Berkeley, LBL, USC/ISI, and Xerox PARC (February 2000), http://www.isi.edu/nsnam/ns/ns-documentation.htmlFogue, M., Garrido, P., Martinez, F.J., Cano, J.C., Calafate, C.T., Manzoni, P.: A Realistic Simulation Framework for Vehicular Networks. In: 5th International ICST Conference on Simulation Tools and Techniques (SIMUTools 2012), Desenzano, Italy, pp. 37–46 (March 2012)Fogue, M., Garrido, P., Martinez, F.J., Cano, J.C., Calafate, C.T., Manzoni, P.: Evaluating the impact of a novel message dissemination scheme for vehicular networks using real maps. Transportation Research Part C: Emerging Technologies 25, 61–80 (2012)Garelli, L., Casetti, C., Chiasserini, C., Fiore, M.: MobSampling: V2V Communications for Traffic Density Estimation. In: IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1–5 (May 2011)Krajzewicz, D., Rossel, C.: Simulation of Urban MObility (SUMO), Centre for Applied Informatics (ZAIK) and the Institute of Transport Research at the German Aerospace Centre (2012), http://sumo.sourceforge.netKrauss, S., Wagner, P., Gawron, C.: Metastable states in a microscopic model of traffic flow. Physical Review E 55(5), 5597–5602 (1997)Martinez, F.J., Toh, C.K., Cano, J.C., Calafate, C.T., Manzoni, P.: Determining the representative factors affecting warning message dissemination in VANETs. Wireless Personal Communications 67(2), 295–314 (2012)Martinez, F.J., Cano, J.C., Calafate, C.T., Manzoni, P., Barrios, J.M.: Assessing the feasibility of a VANET. In: ACM Workshop on Performance Monitoring, Measurement and Evaluation of Heterogeneous Wireless and Wired Networks (PM2HW2N 2009, held with MSWiM), pp. 39–45. ACM, NY (2009)OpenStreetMap: Collaborative project to create a free editable map of the world (2012), http://www.openstreetmap.orgSoldo, F., Lo Cigno, R., Gerla, M.: Cooperative synchronous broadcasting in infrastructure-to-vehicles networks. In: Fifth Annual Conference on Wireless on Demand Network Systems and Services (WONS), pp. 125–132 (January 2008)Stanica, R., Chaput, E., Beylot, A.: Local density estimation for contention window adaptation in vehicular networks. In: IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), pp. 730–734 (September 2011)Tan, E., Chen, J.: Vehicular traffic density estimation via statistical methods with automated state learning. In: IEEE Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 164–169 (September 2007)Tyagi, V., Kalyanaraman, S., Krishnapuram, R.: Vehicular traffic density state estimation based on cumulative road acoustics. IEEE Transactions on Intelligent Transportation Systems 13(3), 1156–1166 (2012)ZunZun: Online Curve Fitting and Surface Fitting Web Site (2013), http://www.zunzun.co
    corecore