2,466 research outputs found

    MOMA: Visual Mobile Marker Odometry

    Full text link
    In this paper, we present a cooperative odometry scheme based on the detection of mobile markers in line with the idea of cooperative positioning for multiple robots [1]. To this end, we introduce a simple optimization scheme that realizes visual mobile marker odometry via accurate fixed marker-based camera positioning and analyse the characteristics of errors inherent to the method compared to classical fixed marker-based navigation and visual odometry. In addition, we provide a specific UAV-UGV configuration that allows for continuous movements of the UAV without doing stops and a minimal caterpillar-like configuration that works with one UGV alone. Finally, we present a real-world implementation and evaluation for the proposed UAV-UGV configuration

    Fast, Autonomous Flight in GPS-Denied and Cluttered Environments

    Full text link
    One of the most challenging tasks for a flying robot is to autonomously navigate between target locations quickly and reliably while avoiding obstacles in its path, and with little to no a-priori knowledge of the operating environment. This challenge is addressed in the present paper. We describe the system design and software architecture of our proposed solution, and showcase how all the distinct components can be integrated to enable smooth robot operation. We provide critical insight on hardware and software component selection and development, and present results from extensive experimental testing in real-world warehouse environments. Experimental testing reveals that our proposed solution can deliver fast and robust aerial robot autonomous navigation in cluttered, GPS-denied environments.Comment: Pre-peer reviewed version of the article accepted in Journal of Field Robotic

    Visual SLAM for flying vehicles

    Get PDF
    The ability to learn a map of the environment is important for numerous types of robotic vehicles. In this paper, we address the problem of learning a visual map of the ground using flying vehicles. We assume that the vehicles are equipped with one or two low-cost downlooking cameras in combination with an attitude sensor. Our approach is able to construct a visual map that can later on be used for navigation. Key advantages of our approach are that it is comparably easy to implement, can robustly deal with noisy camera images, and can operate either with a monocular camera or a stereo camera system. Our technique uses visual features and estimates the correspondences between features using a variant of the progressive sample consensus (PROSAC) algorithm. This allows our approach to extract spatial constraints between camera poses that can then be used to address the simultaneous localization and mapping (SLAM) problem by applying graph methods. Furthermore, we address the problem of efficiently identifying loop closures. We performed several experiments with flying vehicles that demonstrate that our method is able to construct maps of large outdoor and indoor environments. © 2008 IEEE

    High-Precision Localization Using Ground Texture

    Full text link
    Location-aware applications play an increasingly critical role in everyday life. However, satellite-based localization (e.g., GPS) has limited accuracy and can be unusable in dense urban areas and indoors. We introduce an image-based global localization system that is accurate to a few millimeters and performs reliable localization both indoors and outside. The key idea is to capture and index distinctive local keypoints in ground textures. This is based on the observation that ground textures including wood, carpet, tile, concrete, and asphalt may look random and homogeneous, but all contain cracks, scratches, or unique arrangements of fibers. These imperfections are persistent, and can serve as local features. Our system incorporates a downward-facing camera to capture the fine texture of the ground, together with an image processing pipeline that locates the captured texture patch in a compact database constructed offline. We demonstrate the capability of our system to robustly, accurately, and quickly locate test images on various types of outdoor and indoor ground surfaces

    Angular variation as a monocular cue for spatial percepcion

    Get PDF
    Monocular cues are spatial sensory inputs which are picked up exclusively from one eye. They are in majority static features that provide depth information and are extensively used in graphic art to create realistic representations of a scene. Since the spatial information contained in these cues is picked up from the retinal image, the existence of a link between it and the theory of direct perception can be conveniently assumed. According to this theory, spatial information of an environment is directly contained in the optic array. Thus, this assumption makes possible the modeling of visual perception processes through computational approaches. In this thesis, angular variation is considered as a monocular cue, and the concept of direct perception is adopted by a computer vision approach that considers it as a suitable principle from which innovative techniques to calculate spatial information can be developed. The expected spatial information to be obtained from this monocular cue is the position and orientation of an object with respect to the observer, which in computer vision is a well known field of research called 2D-3D pose estimation. In this thesis, the attempt to establish the angular variation as a monocular cue and thus the achievement of a computational approach to direct perception is carried out by the development of a set of pose estimation methods. Parting from conventional strategies to solve the pose estimation problem, a first approach imposes constraint equations to relate object and image features. In this sense, two algorithms based on a simple line rotation motion analysis were developed. These algorithms successfully provide pose information; however, they depend strongly on scene data conditions. To overcome this limitation, a second approach inspired in the biological processes performed by the human visual system was developed. It is based in the proper content of the image and defines a computational approach to direct perception. The set of developed algorithms analyzes the visual properties provided by angular variations. The aim is to gather valuable data from which spatial information can be obtained and used to emulate a visual perception process by establishing a 2D-3D metric relation. Since it is considered fundamental in the visual-motor coordination and consequently essential to interact with the environment, a significant cognitive effect is produced by the application of the developed computational approach in environments mediated by technology. In this work, this cognitive effect is demonstrated by an experimental study where a number of participants were asked to complete an action-perception task. The main purpose of the study was to analyze the visual guided behavior in teleoperation and the cognitive effect caused by the addition of 3D information. The results presented a significant influence of the 3D aid in the skill improvement, which showed an enhancement of the sense of presence.Las señales monoculares son entradas sensoriales capturadas exclusivamente por un solo ojo que ayudan a la percepción de distancia o espacio. Son en su mayoría características estáticas que proveen información de profundidad y son muy utilizadas en arte gráfico para crear apariencias reales de una escena. Dado que la información espacial contenida en dichas señales son extraídas de la retina, la existencia de una relación entre esta extracción de información y la teoría de percepción directa puede ser convenientemente asumida. De acuerdo a esta teoría, la información espacial de todo le que vemos está directamente contenido en el arreglo óptico. Por lo tanto, esta suposición hace posible el modelado de procesos de percepción visual a través de enfoques computacionales. En esta tesis doctoral, la variación angular es considerada como una señal monocular, y el concepto de percepción directa adoptado por un enfoque basado en algoritmos de visión por computador que lo consideran un principio apropiado para el desarrollo de nuevas técnicas de cálculo de información espacial. La información espacial esperada a obtener de esta señal monocular es la posición y orientación de un objeto con respecto al observador, lo cual en visión por computador es un conocido campo de investigación llamado estimación de la pose 2D-3D. En esta tesis doctoral, establecer la variación angular como señal monocular y conseguir un modelo matemático que describa la percepción directa, se lleva a cabo mediante el desarrollo de un grupo de métodos de estimación de la pose. Partiendo de estrategias convencionales, un primer enfoque implanta restricciones geométricas en ecuaciones para relacionar características del objeto y la imagen. En este caso, dos algoritmos basados en el análisis de movimientos de rotación de una línea recta fueron desarrollados. Estos algoritmos exitosamente proveen información de la pose. Sin embargo, dependen fuertemente de condiciones de la escena. Para superar esta limitación, un segundo enfoque inspirado en los procesos biológicos ejecutados por el sistema visual humano fue desarrollado. Está basado en el propio contenido de la imagen y define un enfoque computacional a la percepción directa. El grupo de algoritmos desarrollados analiza las propiedades visuales suministradas por variaciones angulares. El propósito principal es el de reunir datos de importancia con los cuales la información espacial pueda ser obtenida y utilizada para emular procesos de percepción visual mediante el establecimiento de relaciones métricas 2D- 3D. Debido a que dicha relación es considerada fundamental en la coordinación visuomotora y consecuentemente esencial para interactuar con lo que nos rodea, un efecto cognitivo significativo puede ser producido por la aplicación de métodos de L estimación de pose en entornos mediados tecnológicamente. En esta tesis doctoral, este efecto cognitivo ha sido demostrado por un estudio experimental en el cual un número de participantes fueron invitados a ejecutar una tarea de acción-percepción. El propósito principal de este estudio fue el análisis de la conducta guiada visualmente en teleoperación y el efecto cognitivo causado por la inclusión de información 3D. Los resultados han presentado una influencia notable de la ayuda 3D en la mejora de la habilidad, así como un aumento de la sensación de presencia

    Mixed marker-based/marker-less visual odometry system for mobile robots

    Get PDF
    When moving in generic indoor environments, robotic platforms generally rely solely on information provided by onboard sensors to determine their position and orientation. However, the lack of absolute references often leads to the introduction of severe drifts in estimates computed, making autonomous operations really hard to accomplish. This paper proposes a solution to alleviate the impact of the above issues by combining two vision‐based pose estimation techniques working on relative and absolute coordinate systems, respectively. In particular, the unknown ground features in the images that are captured by the vertical camera of a mobile platform are processed by a vision‐based odometry algorithm, which is capable of estimating the relative frame‐to‐frame movements. Then, errors accumulated in the above step are corrected using artificial markers displaced at known positions in the environment. The markers are framed from time to time, which allows the robot to maintain the drifts bounded by additionally providing it with the navigation commands needed for autonomous flight. Accuracy and robustness of the designed technique are demonstrated using an off‐the‐shelf quadrotor via extensive experimental test
    corecore