8,047 research outputs found

    Heuristic Approach for Scheduling Dependent Real-Time Tasks

    Full text link
    Reducing energy consumption is a critical issue in the design of battery-powered real time systems to prolong battery life. With dynamic voltage scaling (DVS) processors, energy consumption can be reduced efficiently by making appropriate decisions on the processor speed/voltage during the scheduling of real time tasks. Scheduling decision is usually based on parameters which are assumed to be crisp. However, in many circumstances the values of these parameters are vague. The vagueness of parameters suggests that to develop a fuzzy logic approach to reduce energy consumption by determining the appropriate supply-voltage/speed of the processor provided that timing constraints are guaranteed. Intensive simulated experiments and qualitative comparisons with the most related literature have been conducted in the context of dependent real-time tasks. Experimental results have shown that the proposed fuzzy scheduler saves more energy and creates feasible schedules for real time tasks. It also considers tasks priorities which cause higher system utilization and lower deadline miss time

    Heuristic Approach for Scheduling Dependent Real-Time Tasks

    Get PDF
    Reducing energy consumption is a critical issue in the design of battery-powered real time systems to prolong battery life. With dynamic voltage scaling (DVS) processors, energy consumption can be reduced efficiently by making appropriate decisions on the processor speed/voltage during the scheduling of real time tasks. Scheduling decision is usually based on parameters which are assumed to be crisp. However, in many circumstances the values of these parameters are vague. The vagueness of parameters suggests that to develop a fuzzy logic approach to reduce energy consumption by determining the appropriate supply-voltage/speed of the processor provided that timing constraints are guaranteed. Intensive simulated experiments and qualitative comparisons with the most related literature have been conducted in the context of dependent real-time tasks. Experimental results have shown that the proposed fuzzy scheduler saves more energy and creates feasible schedules for real time tasks. It also considers tasks priorities which cause higher system utilization and lower deadline miss time

    Processor Speed Control for Power Reduction of Real-Time Systems

    Get PDF
    Reducing energy consumption is a critical issue in the design of battery-powered real time systems to prolong battery life. With dynamic voltage scaling (DVS) processors, energy consumption can be reduced efficiently by making appropriate decisions on the processor speed/voltage during the scheduling of real time tasks. Scheduling decision is usually based on parameters which are assumed to be crisp. However, in many circumstances the values of these parameters are vague. The vagueness of parameters suggests that to develop a fuzzy logic approach to reduce energy consumption by determining the appropriate supply-voltage/speed of the processor provided that timing constraints are guaranteed. Intensive simulated experiments and qualitative comparisons with the most related literature have been conducted in the context of dependent real-time tasks. Experimental results have shown that the proposed fuzzy scheduler saves more energy and creates feasible schedules for real time tasks. It also considers tasks priorities which cause higher system utilization and lower deadline miss time

    Elastic DVS Management in Processors with Discrete Voltage/Frequency Modes

    Get PDF
    Applying classical dynamic voltage scaling (DVS) techniques to real-time systems running on processors with discrete voltage/frequency modes causes a waste of computational resources. In fact, whenever the ideal speed level computed by the DVS algorithm is not available in the system, to guarantee the feasibility of the task set, the processor speed must be set to the nearest level greater than the optimal one, thus underutilizing the system. Whenever the task set allows a certain degree of flexibility in specifying timing constraints, rate adaptation techniques can be adopted to balance performance (which is a function of task rates) versus energy consumption (which is a function of the processor speed). In this paper, we propose a new method that combines discrete DVS management with elastic scheduling to fully exploit the available computational resources. Depending on the application requirements, the algorithm can be set to improve performance or reduce energy consumption, so enhancing the flexibility of the system. A reclaiming mechanism is also used to take advantage of early completions. To make the proposed approach usable in real-world applications, the task model is enhanced to consider some of the real CPU characteristics, such as discrete voltage/frequency levels, switching overhead, task execution times nonlinear with the frequency, and tasks with different power consumption. Implementation issues and experimental results for the proposed algorithm are also discussed

    CPU Energy-Aware Parallel Real-Time Scheduling

    Get PDF
    Both energy-efficiency and real-time performance are critical requirements in many embedded systems applications such as self-driving car, robotic system, disaster response, and security/safety control. These systems entail a myriad of real-time tasks, where each task itself is a parallel task that can utilize multiple computing units at the same time. Driven by the increasing demand for parallel tasks, multi-core embedded processors are inevitably evolving to many-core. Existing work on real-time parallel tasks mostly focused on real-time scheduling without addressing energy consumption. In this paper, we address hard real-time scheduling of parallel tasks while minimizing their CPU energy consumption on multicore embedded systems. Each task is represented as a directed acyclic graph (DAG) with nodes indicating different threads of execution and edges indicating their dependencies. Our technique is to determine the execution speeds of the nodes of the DAGs to minimize the overall energy consumption while meeting all task deadlines. It incorporates a frequency optimization engine and the dynamic voltage and frequency scaling (DVFS) scheme into the classical real-time scheduling policies (both federated and global) and makes them energy-aware. The contributions of this paper thus include the first energy-aware online federated scheduling and also the first energy-aware global scheduling of DAGs. Evaluation using synthetic workload through simulation shows that our energy-aware real-time scheduling policies can achieve up to 68% energy-saving compared to classical (energy-unaware) policies. We have also performed a proof of concept system evaluation using physical hardware demonstrating the energy efficiency through our proposed approach

    Energy-Centric Scheduling for Real-Time Systems

    Get PDF
    Energy consumption is today an important design issue for all kinds of digital systems, and essential for the battery operated ones. An important fraction of this energy is dissipated on the processors running the application software. To reduce this energy consumption, one may, for instance, lower the processor clock frequency and supply voltage. This, however, might lead to a performance degradation of the whole system. In real-time systems, the crucial issue is timing, which is directly dependent on the system speed. Real-time scheduling and energy efficiency are therefore tightly connected issues, being addressed together in this work. Several scheduling approaches for low energy are described in the thesis, most targeting variable speed processor architectures. At task level, a novel speed scheduling algorithm for tasks with probabilistic execution pattern is introduced and compared to an already existing compile-time approach. For task graphs, a list-scheduling based algorithm with an energy-sensitive priority is proposed. For task sets, off-line methods for computing the task maximum required speeds are described, both for rate-monotonic and earliest deadline first scheduling. Also, a run-time speed optimization policy based on slack re-distribution is proposed for rate-monotonic scheduling. Next, an energy-efficient extension of the earliest deadline first priority assignment policy is proposed, aimed at tasks with probabilistic execution time. Finally, scheduling is examined in conjunction with assignment of tasks to processors, as parts of various low energy design flows. For some of the algorithms given in the thesis, energy measurements were carried out on a real hardware platform containing a variable speed processor. The results confirm the validity of the initial assumptions and models used throughout the thesis. These experiments also show the efficiency of the newly introduced scheduling methods

    Power-Aware Real-Time Scheduling upon Identical Multiprocessor Platforms

    Get PDF
    In this paper, we address the power-aware scheduling of sporadic constrained-deadline hard real-time tasks using dynamic voltage scaling upon multiprocessor platforms. We propose two distinct algorithms. Our first algorithm is an off-line speed determination mechanism which provides an identical speed for each processor. That speed guarantees that all deadlines are met if the jobs are scheduled using EDF. The second algorithm is an on-line and adaptive speed adjustment mechanism which reduces the energy consumption while the system is running.Comment: The manuscript corresponds to the final version of SUTC 2008 conferenc

    Energy-Aware Scheduling for Streaming Applications

    Get PDF
    Streaming applications have become increasingly important and widespread,with application domains ranging from embedded devices to server systems.Traditionally, researchers have been focusing on improving the performanceof streaming applications to achieve high throughput and low response time.However, increasingly more attention is being shifted topower/performance trade-offbecause power consumption has become a limiting factor on system designas integrated circuits enter the realm of nanometer technology.This work addresses the problem of scheduling a streaming application(represented by a task graph)with the goal of minimizing its energy consumptionwhile satisfying its two quality of service (QoS) requirements,namely, throughput and response time.The available power management mechanisms are dynamic voltage scaling (DVS),which has been shown to be effective in reducing dynamic power consumption, andvary-on/vary-off, which turns processors on and off to save static power consumption.Scheduling algorithms are proposed for different computing platforms (uniprocessor and multiprocessor systems),different characteristics of workload (deterministic and stochastic workload),and different types of task graphs (singleton and general task graphs).Both continuous and discrete processor power models are considered.The highlights are a unified approach for obtaining optimal (or provably close to optimal)uniprocessor DVS schemes for various DVS strategies anda novel multiprocessor scheduling algorithm that exploits the differencebetween the two QoS requirements to perform processor allocation,task mapping, and task speedscheduling simultaneously

    The Thermal-Constrained Real-Time Systems Design on Multi-Core Platforms -- An Analytical Approach

    Get PDF
    Over the past decades, the shrinking transistor size enabled more transistors to be integrated into an IC chip, to achieve higher and higher computing performances. However, the semiconductor industry is now reaching a saturation point of Moore’s Law largely due to soaring power consumption and heat dissipation, among other factors. High chip temperature not only significantly increases packing/cooling cost, degrades system performance and reliability, but also increases the energy consumption and even damages the chip permanently. Although designing 2D and even 3D multi-core processors helps to lower the power/thermal barrier for single-core architectures by exploring the thread/process level parallelism, the higher power density and longer heat removal path has made the thermal problem substantially more challenging, surpassing the heat dissipation capability of traditional cooling mechanisms such as cooling fan, heat sink, heat spread, etc., in the design of new generations of computing systems. As a result, dynamic thermal management (DTM), i.e. to control the thermal behavior by dynamically varying computing performance and workload allocation on an IC chip, has been well-recognized as an effective strategy to deal with the thermal challenges. Over the past decades, the shrinking transistor size, benefited from the advancement of IC technology, enabled more transistors to be integrated into an IC chip, to achieve higher and higher computing performances. However, the semiconductor industry is now reaching a saturation point of Moore’s Law largely due to soaring power consumption and heat dissipation, among other factors. High chip temperature not only significantly increases packing/cooling cost, degrades system performance and reliability, but also increases the energy consumption and even damages the chip permanently. Although designing 2D and even 3D multi-core processors helps to lower the power/thermal barrier for single-core architectures by exploring the thread/process level parallelism, the higher power density and longer heat removal path has made the thermal problem substantially more challenging, surpassing the heat dissipation capability of traditional cooling mechanisms such as cooling fan, heat sink, heat spread, etc., in the design of new generations of computing systems. As a result, dynamic thermal management (DTM), i.e. to control the thermal behavior by dynamically varying computing performance and workload allocation on an IC chip, has been well-recognized as an effective strategy to deal with the thermal challenges. Different from many existing DTM heuristics that are based on simple intuitions, we seek to address the thermal problems through a rigorous analytical approach, to achieve the high predictability requirement in real-time system design. In this regard, we have made a number of important contributions. First, we develop a series of lemmas and theorems that are general enough to uncover the fundamental principles and characteristics with regard to the thermal model, peak temperature identification and peak temperature reduction, which are key to thermal-constrained real-time computer system design. Second, we develop a design-time frequency and voltage oscillating approach on multi-core platforms, which can greatly enhance the system throughput and its service capacity. Third, different from the traditional workload balancing approach, we develop a thermal-balancing approach that can substantially improve the energy efficiency and task partitioning feasibility, especially when the system utilization is high or with a tight temperature constraint. The significance of our research is that, not only can our proposed algorithms on throughput maximization and energy conservation outperform existing work significantly as demonstrated in our extensive experimental results, the theoretical results in our research are very general and can greatly benefit other thermal-related research
    • …
    corecore