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Elastic DVS Management in Processors
With Discrete Voltage/Frequency Modes

Mauro Marinoni and Giorgio Buttazzo, Senior Member, IEEE

Abstract—Applying classical dynamic voltage scaling (DVS)
techniques to real-time systems running on processors with dis-
crete voltage/frequency modes causes a waste of computational
resources. In fact, whenever the ideal speed level computed by the
DVS algorithm is not available in the system, to guarantee the
feasibility of the task set, the processor speed must be set to the
nearest level greater than the optimal one, thus underutilizing the
system. Whenever the task set allows a certain degree of flexibility
in specifying timing constraints, rate adaptation techniques can be
adopted to balance performance (which is a function of task rates)
versus energy consumption (which is a function of the processor
speed).

In this paper, we propose a new method that combines discrete
DVS management with elastic scheduling to fully exploit the
available computational resources. Depending on the application
requirements, the algorithm can be set to improve performance
or reduce energy consumption, so enhancing the flexibility of the
system. A reclaiming mechanism is also used to take advantage
of early completions. To make the proposed approach usable in
real-world applications, the task model is enhanced to consider
some of the real CPU characteristics, such as discrete voltage/fre-
quency levels, switching overhead, task execution times nonlinear
with the frequency, and tasks with different power consumption.
Implementation issues and experimental results for the proposed
algorithm are also discussed.

Index Terms—Dynamic voltage scaling (DVS), energy-aware
scheduling, real-time computing.

I. INTRODUCTION

I N battery-powered real-time systems, reducing energy
consumption through dynamic voltage scaling (DVS) tech-

niques may create overload conditions that can jeopardize the
schedulability of the task set. Hence, the issue of reducing
energy consumption must be considered in conjunction with
the one of meeting timing constraints. Moreover, in current
processors, the voltage level cannot be varied continuously, but
only a limited number of voltage/frequency operating modes
are usually available, causing the processor to run at a speed
selectable within a discrete range. In these conditions, the speed
selected by the power manager will likely be different than the
ideal one that could minimize some cost function; thus, either
timing constraints are not met or energy is not minimized.

Manuscript received July 24, 2006; revised October 25, 2006; accepted
November 20, 2006. This work was supported in part by the Italian Ministry
of University Research under Contract 2004095094 (COFIN04). Paper no.
TII-06-07-0070.R1.

M. Marinoni is with the University of Pavia, Pavia, Italy (e-mail: mauro.mari-
noni@unipv.it).

G. Buttazzo is with the Scuola Superiore Sant’Anna of Pisa, Pisa, Italy
(e-mail: giorgio.buttazzo@sssup.it).

Digital Object Identifier 10.1109/TII.2006.890494

Whenever a control application has hard real-time require-
ments (and the task set is feasible at the highest speed), en-
ergy and timing constraints can be met by setting the processor
speed to the nearest level greater than the optimal one. In this
way, however, if the difference between the ideal and the se-
lected speed is not small, the processor becomes underutilized,
so wasting computational resources. A better solution could be
to increase task rates and improve control performance when-
ever possible. On the other hand, if reducing energy is more im-
portant and the application allows a certain degree of flexibility
in specifying timing constraints, the processor speed could be
set to the next lower level (just below the ideal speed), and the
resulting overload could be prevented by slightly increasing the
task periods.

In this paper, we present a novel DVS management algorithm
that integrates energy-aware with elastic scheduling to cope
with processors with a limited number of operating modes. To
avoid wasting processing time due to speed quantization, we
consider a more flexible task model, in which tasks can operate
within a given range of periods, with different performance.
The algorithm allows the application to select energy-oriented,
performance-oriented, and user-defined strategies. The en-
ergy-oriented strategy sacrifices performance in favor of energy
saving by selecting the lowest speed that guarantees the task
set with the largest possible periods. The performance-oriented
strategy selects the lowest speed that guarantees the task set
with the smallest periods. Whenever the selected (discrete)
speed level leaves some free processor bandwidth, elastic
scheduling is invoked to reduce task periods to fully utilize
the processor and increase the control performance. Finally,
the user-defined strategy allows selecting any processor speed
within the feasible range and adjusts task rates to fully utilize
the processor. Speed selection can be done either manually
or automatically, using the best solution found by the power
manager according to a cost function provided by the user.

An online reclaiming mechanism is integrated in the algorithm
to exploit the unused computation time resulting from early com-
pletions of the jobs. To better consider the effects of the hardware
architecture on task execution times, we use an enhanced execu-
tion time model [16], [23] that splits the code in two parts: one that
varies with speed and one that is speed independent. This enables
a more precise representation of the application code, allowing
the user to distinguish, for example, between code for pure com-
putations and code accessing peripheral devices.

The proposed algorithm has been implemented in the Shark
real-time operating system [9] as a new scheduling module, and
experimental results have been derived on an Athlon64 3000+
processor.
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The rest of this paper is organized as follows: Section II
presents some related work; Section III introduces the models
used to describe the execution time and the energy consumption
of a task; Section IV describes the integrated DVS-elastic algo-
rithm; Section V introduces metrics to evaluate the performance
of a control system as a function of the task periods; Section VI
describes some experimental results; and Section VII states our
conclusions and future work.

II. RELATED WORK

The problem of minimizing energy consumption while guar-
anteeing real-time constraints has been widely addressed in the
real-time literature. However, most of the achieved results were
derived under simplified system models, where the processor,
for example, can change its voltage and frequency within a con-
tinuous range. Unfortunately, most of the current commercial
processors [2], [11] only provide a limited number of operating
modes, each characterized by a given voltage, clock frequency,
and power consumption. Adapting a continuous model to a dis-
crete DVS system clearly causes a waste of computational re-
sources, because, in order to guarantee the feasibility of the task
set with a single speed level, the processor speed must be set to
the nearest level greater than the optimal one [21].

Other authors focused on energy-aware scheduling for spe-
cific task models. The most investigated task model is the peri-
odic one [3], [4], [13], [28], but energy-aware algorithms have
also been proposed and analyzed for aperiodic tasks [25], spo-
radic tasks [22], and mixed task sets [26]. To deal with proces-
sors having discrete speed levels, some authors proposed to split
tasks into parts and run each part at a different frequency [12],
[15], [28].

Mejia-Alvarez et al. [19] proposed an approach where each
task is assigned a different frequency; however, the processor
model is simpler than the one used in this paper, and the fre-
quency assignment problem is NP-hard; thus, it can be treated
online only by a heuristic algorithm.

More recently, Bini et al. [6] presented a method for approx-
imating any speed level with two given discrete values, which
are properly switched as a pulse width modulation signal to ob-
tain its average value. Schedulability analysis to guarantee the
feasibility of real-time task sets was also presented.

In order to guarantee task timing constraints, most of the
algorithms for hard real-time systems perform the analysis
assuming that each task executes for its worst-case execution
times (WCETs). This is usually a strong conservative hypoth-
esis that may cause a waste of computational resources. To
exploit the additional slack coming from early completions,
some authors [5], [13] proposed to mix an offline approach
based on WCETs with an online method, which is in charge of
reclaiming the unused computation time for a further reduction
of the CPU frequency.

Reclaiming algorithms can be distinguished in two cate-
gories, known as inter-task and intra-task methods. Inter-task
algorithms decide the working frequency on a task-by-task
basis, while intra-task algorithms may adjust the frequency,
even within a single task [20]. Some algorithms mixing
intra-task and inter-task approaches have also been proposed
[13].

The use of elastic scheduling has already been proposed for
improving DVS management [16], but the method is based on
WCET estimations and is only applicable offline; thus, all the
unused computation time leads to a waste of energy. Moreover,
the algorithm is presented without a set of tests to experimen-
tally validate the approach.

In this paper, an online reclamation algorithm works in com-
bination with an offline method to achieve a further reduction of
the processor speed whenever a job completes earlier than ex-
pected. A set of experimental results are presented to show var-
ious aspects of the algorithm and describe the effects of some
user-defined parameters.

III. MODELS

This section introduces the models adopted in this paper to
represent task execution times and power consumption. More-
over, the elastic model is also briefly recalled for the sake of
completeness. To simplify the comparison between processors
with different frequency ranges , all the quantities
of interest (power, computation times, etc.) will be expressed
as a function of speed, defined as the normalized frequency

. Hence, the validity range for the normalized speed
is , where and .

If more voltage levels can be used for a given frequency, the
rule adopted in this paper is to select the minimum voltage level
compatible with the frequency selected by the algorithm. This
approach is in line with the selected power model and leads to
a simple and fast implementation. It is a quite common solution
adopted in most of the proposed algorithms, and it is also used
in the CPUFreq driver for the Linux kernel.

A. Execution Time Model

Typically, task execution times are considered to be inversely
proportional to the clock frequency and are modeled as

, where is the task execution time at the max-
imum processor speed. Extensive experiments on real hardware,
however, show that this assumption is not correct. A more ac-
curate model is to split the execution time in two parts: one de-
pendent on the CPU frequency and one independent. While the
former part is due to the code that works with the processor or
with the hardware running at the CPU frequency, the latter part
comes from the code that uses hardware devices that are not
affected by frequency changes. For example, the video output
operates at the frequency of the PCI bus, so its execution time
does not change with the CPU speed.

Let be the execution time evaluated at the maximum
processor speed, and let be the percentage of code that deals
with the frequency-dependent hardware. Then, the task execu-
tion time can be modeled as

(1)

Unfortunately, classifying the code in the two parts described
above is not easy, because the actual execution times depend
on the architecture on which the task is running. For example,
operations that rely on RAM memory are frequency-dependent
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Fig. 1. C(s) as a function of the � parameter.

if running on ARM processors and frequency-independent if
running on 86 architectures.

The value of can be estimated experimentally by mea-
suring the execution time of a task at the maximum frequency

and at the minimum frequency
. In fact, by (1)

thus, can be computed as

(2)

It is worth noting that the simplified model that considers the
execution time inversely proportional to the frequency (equiva-
lent to the case ) gets worse as the frequency decreases.
For example, on a task with running at speed 0.2, the
computation time provided by the simplified model would be
3.57 times the real one.

Fig. 1 shows as a function of the processor speed for
different values of . It can be seen that the simplified model
that considers the execution time inversely proportional to the
frequency (equivalent to the case ) gets worse as the fre-
quency decreases.

B. Energy Consumption Model

In CMOS integrated circuits, the dominant component of
power consumption is the dynamic power dissipation due to
switching [10], which is given by

where is the effective capacity involved in switching,
is the supply voltage, and is the clock frequency. The value
of the capacity depends on two factors: the load capacity

being charged/discharged and the activity weight , which is
a measure of the actual switching activity. Thus, .

Moreover, a voltage reduction causes an increase of the delays
in the gates, according to the following formula:

where is a constant, and is the threshold voltage. Observing
that the processor speed is directly proportional to the clock fre-
quency and inversely proportional to the gate delay, it turns
out that the power consumption of a processor grows with the
cube of its speed. The overall energy consumption of the system,
however, also depends on other components of lower grade.
Martin et al. [17], [18], [27] derived the following relation to
describe the power consumption as a function of the speed:

(3)

The term is a coefficient related to the consumption of those
components that vary both voltage and frequency. The co-
efficient is related to the hardware components that can only
vary the clock frequency, whereas represents the power con-
sumed by the components that are not affected by the processor
speed. Finally, the second-order term describes the non-
linearities of dc-dc regulators in the range of the output voltage.

C. Elastic Task Model

In our framework, each task is considered as flexible as a
spring, whose utilization can be modified by changing its period
within a specified range. More specifically, each task is charac-
terized by four parameters: a worst-case computation time ,
which depends on the processor speed according to (1), a min-
imum period (considered as a nominal period), a max-
imum period , and an elastic coefficient . The elastic
coefficient specifies the flexibility of the task to vary its utiliza-
tion for adapting the system to a new feasible rate configuration:
the greater , the more elastic the task. Hence, we consider a
set of elastic tasks, where each task is indicated by

In the following, will denote the actual period of task ,
which is constrained to be in the range . More-
over, and will denote
the maximum and minimum utilization of , whereas

and will denote the max-
imum and minimum utilization of the task set.

Note that both and depend on the processor
speed; hence, any load variation due to a speed change is
always subject to an elastic guarantee and is accepted only if
there exists a feasible schedule in which all the periods are
within their range. In our framework, tasks can be handled
by any periodic scheduling algorithm with given utilization
least upper bound . Remember that for the earliest
deadline first (EDF) algorithm, , whereas for the rate
monotonic algorithm, , where is the
number of tasks [14]. Hence, if , all tasks can be
activated at the minimum period ; otherwise, the elastic
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algorithm is used to adapt the tasks’ periods to such that
, where is some desired utilization

factor. It can be easily shown (see [7] for details) that a solution
always exists if .

As shown in [7], if is the set of tasks that reached their
maximum period (i.e., minimum utilization) and is the set of
tasks whose utilization can still be compressed, then to achieve a
desired utilization , each task has to be compressed
up to the following utilization:

(4)

where

(5)

(6)

(7)

If there exist tasks for which , then the period of
those tasks has to be fixed at its maximum value (so that

), sets and must be updated (hence, and
recomputed), and (4) applied again to the tasks in . If there

exists a feasible solution, that is, if , the iterative
process ends when each value computed by (4) is greater than
or equal to its corresponding minimum .

D. Overall Task Model

To integrate the execution time model with the elastic one,
each task will be denoted as follows:

where the meaning of the parameters has been explained in the
previous sections.

IV. ALGORITHM DESCRIPTION

The algorithm proposed in this paper combines DVS manage-
ment with elastic scheduling to enhance performance or reduce
energy consumption in systems with discrete operating modes.
In the following, we assume the task set is feasible when the
processor runs at the maximum speed and all tasks execute at
their maximum period, that is,

(8)

(where ); otherwise, no feasible solution can be
found, and the task set is rejected by the feasibility test. The

parameter allows the user to account for the overhead in-
troduced by the kernel, which can be measured offline. A value

should never be used, since other internal kernel
activities (e.g., the interrupt handlers for the network or other

Fig. 2. Block diagram of the algorithm.

peripheral devices) could create critical transient overload con-
ditions.

At the application level, the user can choose among three high
level strategies.

• Energy oriented: energy consumption is minimized
by selecting the lowest processor speed that guaran-
tees schedulability with the maximum periods; then, if

(note, strictly less), periods are reduced
by the elastic algorithm to reach the desired utilization ,
thus improving the control performance.

• Performance oriented: control performance is maxi-
mized by selecting the lowest processor speed that
provides full performance, that is, that guarantees schedu-
lability with the minimum periods; if , that is, if

, then is set to and task periods
are enlarged by the elastic algorithm to reach feasibility
with the desired utilization .

• User mode: this mode allows the user to manually select
a speed level included in the range [ , ] defined by
the two previous modes. If , periods are
enlarged by the elastic algorithm to reach feasibility with
the desired utilization .

The algorithm consists of three hierarchical levels. At the top
level, the power manager performs the acceptance test and com-
putes the working speed according to the selected strategy.
At the medium level, the elastic scheduler computes the task
periods and passes the task set to the system scheduler at the
bottom level. We can see each level as a function that con-
verts the input task model into a new one accepted at the lower
level. The hierarchical structure of the algorithm is illustrated
in Fig. 2. The power manager is invoked every time a new task
enters/leaves the system or a new speed is selected by the appli-
cation.

The algorithm starts by computing the ideal speed bounds
in the continuous speed domain; then, it selects the

actual discrete speed limits , and finally, it invokes the
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elastic algorithm to perform period adaptation. In addition, at
runtime, a reclaiming mechanism is proposed to take advantage
of early completions.

A. Computing the Frequency Bounds

The algorithm starts by computing a range of ideal speeds [ ,
] in which the schedulability of the task set is guaranteed and

there is no energy waste when the tasks run at their minimum
periods.

In the energy-oriented strategy, assuming a single speed is
used for the whole application, the minimum theoretical speed

(in a continuous range) is computed as the speed that min-
imizes energy consumption while guaranteeing the schedula-
bility of the task set.

Considering the computation time model expressed in (1), the
total processor utilization can also be expressed as a function of
the processor speed as follows:

(9)

where is the processor utilization due to the frequency-de-
pendent code, estimated at the maximum speed, whereas is
the one that is frequency-independent.

The minimum utilization computed with the max-
imum periods can also be expressed as a function of speed as
follows:

(10)

Imposing (desired utilization), the related speed
is given by

If is out of the range [0,1], the task set is not feasible and it
is rejected by the guarantee test.

In the performance-oriented strategy, if ,
the speed that guarantees the best performance is clearly

. Otherwise, the best theoretical speed to achieve full
performance is computed as the minimum speed that guaran-
tees schedulability with the nominal periods.

Considering that can be expressed as

(11)

Fig. 3. Speed bounds computed by the algorithm for the energy-oriented and
the performance-oriented mode.

Imposing , the best theoretical speed is given
by

Hence, in general

if
otherwise.

B. Frequency Selection and Period Adjustment

Most commercial processors do not allow a continuous varia-
tion of voltage and frequency but only provide a limited number
of operating modes, each characterized by specific values for
supply voltage, frequency, and power consumption. Due to the
discrete range of frequencies, it may not be possible to set the
CPU speed at or . Hence, we set

(12)

(13)

Fig. 3 illustrates the speeds selected by the algorithm for the
energy-oriented and the performance-oriented mode.
Once the speeds and are computed and task set schedu-
lability is guaranteed in the worst-case situation, there can be
different strategies to select the operating speed as a function of
the high level approach.

• Energy-oriented. If the objective is to minimize energy
consumption, the actual speed is set to . If , then

. Hence, to fully utilize the processor, task
periods are reduced through elastic scheduling to bring the
task set utilization at the desired level .
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• Performance-oriented. If the objective is to improve
performance, the actual speed is set to . Note that, if

, all tasks can run at their nominal period
and the elastic algorithm is not used; otherwise, task
periods are expanded to reach the desired utilization .

• User mode. Finally, if the user decides to select a specific
speed (among the available levels), the elastic
method is invoked to reduce periods and reach the desired
utilization .

It is worth observing that, in the energy-oriented strategy, the
elastic mechanism is always used to reduce periods to bring the
processor utilization up to , so improving the control per-
formance whenever possible. Such an improvement is larger
when the number of available speeds is small. Clearly, the values
of computation times used in the elastic method are computed
using the speed level set by the power manager or selected by
the user.

C. Power Consumption and Elastic Coefficients

Another advantage of using the elastic approach in this con-
text is that, if tasks have different power consumption, elastic
coefficients can be set to reduce the energy of the tasks with
higher power consumption. In fact, since the energy consumed
by a task in a given interval is proportional to the number of jobs
executed in that interval, elastic coefficients can be assigned so
that tasks with higher power will be more compressed, that is,
are subject to a larger period variation to decrease their energy
consumption. To obtain this result, the elastic coefficient can
be set as

(14)

where is the power consumed by task , as defined in
(3). Note, however, that since extracting energy consumption
patterns from real applications is not a trivial task, a detailed
analysis of such an approach requires a deeper investigation,
which is out of the scope of this paper.

D. Online Reclamation of Unused Bandwidth

Real-time tasks are characterized by worst-case computation
times, but most jobs usually run for much less than their worst-
case value. Our DVS algorithm takes advantage of such a saving
for a further reduction of the processor speed. The reclaiming
algorithm has a tight interaction with the task scheduler, and its
behavior depends on the particular scheduling policy adopted in
the kernel [21].

When a task instance is released, determining its actual com-
putational requirements is very hard (if not impossible), because
a specific job could save a different percentage of frequency-de-
pendent and frequency-independent code. Hence, a conserva-
tive worst-case assumption must be used. When the job com-
pletes, however, it is possible to compute the saved time by
accounting the actual execution. Instead of wasting this time
leaving the CPU idle, the processor can be slowed down to fur-
ther reduce energy consumption. To do so, each time a job is
released or completed, the computation of the working speed is

TABLE I
JOB VARIABLE MANIPULATION

Fig. 4. Example for job variables updates.

performed using the actual status of the task set. For this pur-
pose, a new variable is added to the task model. It is the ex-
ecution time actually consumed by the current job of task .
Note that estimating such a variable requires a specific mecha-
nism in the kernel capable of monitoring job execution times. In
our experiments, computation time evaluations have been car-
ried out using the job execution time (JET) monitor available in
the Shark kernel [9].

This variable is updated upon the occurrence of the following
events: job release, job completion, and job preemption.

• When a job is released, is reset to zero. If the job acti-
vation triggers a speed switch, is increased by , which
is the overhead to switch the speed. Note that taking this
overhead into account is extremely important since in some
architectures, can be in the order of milliseconds.

• When a job completes, is increased by . Such an incre-
ment at the end of the job is done because the values are
used to compute the actual speed from the current status of
the task set, so they need to be consistent all the time.

• At a context switch, the variables are updated to account
for the amount of used computation .

The operations on the variable are summarized in Table I,
whereas an example is presented in Fig. 4, which illustrates the
behavior of two tasks running in the system.

In sequence, the different timelines show the processor speed,
the task executions, and the variable for tasks and . At
time , the first task is released and starts executing, so starts
growing while the task is running. At time , a job of is re-
leased, preempting . When completes at time , the speed
is recomputed. The new minimum working speed is lower than
the actual one, so the actual speed is changed and the switching
time is accounted to . At time , resumes its execu-
tion that finishes earlier than expected at time ; hence, the un-
used computation time leads to a new speed reduction, and the
switching time is accounted to .
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At job termination or activation, the reclaiming algorithm re-
computes the working speed. Tasks periods are left unchanged
to save runtime overhead and avoid extra jitter in task activa-
tions. If all tasks terminated the current job and the CPU has
enough time to switch down the frequency (the next activation
is at least ahead of ), the chosen speed is ; otherwise, the
minimum speed that guarantees the actual status of the task set
is computed. The actual task utilization can be computed as

where is a function returning 0 if the current job of the
task is completed or 1 otherwise.

So, the total utilization of the task set is expressed as

Imposing , the ideal dynamic speed resulting
from the reclaiming algorithm results to be

(15)

The chosen discrete frequency is the minimum one greater than
or equal to

(16)

If the reclaiming algorithm was triggered by the completion of
a job and the proposed speed is equal to the actual one,
then the frequency switch time is subtracted from .

V. QUALITY OF CONTROL

Note that, in control applications, the performance of peri-
odic control tasks also depends on their activation rates. Hence,
any scheduling approach manipulating task periods has to take
into account the consequence of the imposed variations on the
system performance. Increasing a task period causes a perfor-
mance degradation, which is typically measured through a per-
formance index [8], [24]. Often, instead of using the per-
formance index, many algorithms use the difference be-
tween the index and the value of the performance index of
the optimal control. Many control systems belong to a class in
which the function expressing the degradation is monotonically
decreasing, convex, and can be approximated as

where the magnitude and the decay rate characterize the
single task. The evaluation of the whole task set is computed as

where are weights used to characterize the relative impor-
tance of the tasks.

To have a common scale for all task sets, the quality of control
(QoC) index used in this paper is expressed as

(17)

where is the value of the index calculated when tasks
run at their nominal periods. A value of 1 means that all tasks
are running with nominal periods.

VI. EXPERIMENTAL RESULTS

To validate the proposed approach, the elastic-DVS algorithm
has been implemented in the S.Ha.R.K. kernel [9] as an external
scheduling module using EDF as a periodic task scheduler. Ex-
periments were performed on an AMD Athlon64 3000+, whose
clock can be set at four frequencies: 1000, 1800, 2000, and
2200 MHz, corresponding to the following normalized speeds:
0.4545, 0.8181, 0.9090, 1.

The first experiment is aimed at verifying the execution time
model introduced in Section III, while the second one presents
a qualitative comparison between the energy-aware and the per-
formance-oriented strategy as a function of the workload. Then,
a set of experiments are presented, each focusing on a different
aspect of the proposed algorithm. The third experiment shows
the advantages of using the elastic task model when working on
a processor with discrete clock frequencies. The fourth experi-
ment is used to test how the user-selected speed affects the
power consumption and the quality of control. The fifth experi-
ment shows how the average power can be reduced by making
elastic coefficients proportional to individual task power con-
sumption. Finally, the last experiment illustrates the advantage
of using the reclaiming mechanism.

All the tasks used in the last four experiments have the fol-
lowing characteristics.

• was generated as a random variable uniformly dis-
tributed in the range [1, 100] milliseconds.

• was generated as the product of and a random
number with Gaussian distribution, with mean equal to 4
and standard deviation equal to 2.

• was computed in order to give each task the same
fraction of the total utilization when running at the full
speed with nominal period: .

• was generated as a random value with Gaussian distribu-
tion (mean 0.5 and standard deviation 0.4).

• All the elastic coefficients were set equal to 1.
Finally, the desired utilization was set to to take over-
heads into account, and all the weights in the quality of control
index were set to 1 to simplify the comparison in the experi-
mental results.
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TABLE II
TASK EXECUTION TIMES (IN MILLISECONDS) AS A FUNCTION

OF THE NORMALIZED SPEED

TABLE III
� VALUES AND ESTIMATION ERRORS

A. Validating the Execution Time Model

This experiment was aimed at verifying the consistency of the
execution model expressed by (1). To do that, we implemented
a group of five periodic tasks with different characteristics (i.e.,

parameter), and the execution time of each task was estimated
for all available speeds. The body of each task was composed
as follows:

• : Integer: 7 000 000 operations on integer numbers;
• : Float: 90 000 floating point operations and trigono-

metric functions;
• : Text1: 700 000 integer operations mixed with the

output of 9000 characters in text mode without screen
scrolling;

• : Text2: same as but with 2 100 000 integer operations
and only 3000 characters;

• : Graphics: like but with 1 500 000 integer operations
and 150 characters printed in graphics mode.

Note that, although these tasks are not taken from a real control
application, they represent a significant test case to evaluate the
effectiveness of the execution time model proposed in this paper,
because they include instructions with different balance of fre-
quency-dependent and frequency-independent code, as shown
by the parameter reported in Table III.

Results are shown in Table II, which reports the mean execu-
tion times (in milliseconds), each obtained on 10 000 task acti-
vations.

Then, the value of each task was computed using (2), and
measured values were compared against the theoretical values
given by (1). Table III reports the value for each task and the
computation time error of the measured value with respect to
the theoretical one. It is worth observing that, even though
changes from 0.0926 to 1, the relative error is less than 2%.

Fig. 5 shows the measured values of the execution times on
the theoretical curves given by (1). It is worth observing that,
using the simplified model of a fully frequency-dependent task

, the error would be much higher. For ex-
ample, the theoretical execution time of task (Text1) running
at the lowest frequency would be 4572, while the real one is
2309 (98% smaller). Also notice that the measured values for

Fig. 5. Comparison between actual execution times and theoretical values.

Fig. 6. Speed bounds computed by the algorithm as a function of the load for
the energy-aware and the performance-oriented mode.

tasks and both lie on the same curve corresponding to
.

B. Energy-Aware versus Performance-Oriented Algorithm

In this experiment, we tested the behavior of the DVS-elastic
algorithm as a function of the workload. The load was gener-
ated using the same set of tasks described in Section VI-A and
varied by scaling the execution times to increase the maximum
utilization from 0.45 to 1.8. All elastic coeffi-
cients were set to 1 for simplicity, and the desired utilization
was set to to take overheads into account. Fig. 6 il-
lustrates the speed levels , , , and computed by the
algorithm as a function of the load under the energy-aware and
the performance-oriented mode, respectively.

As is clear from the graphs, when the load is less than ,
even the performance-oriented strategy is able to reduce energy
consumption, by finding the minimum speed that can guarantee
all the tasks at their minimum periods. On the other hand, the en-
ergy-aware strategy allows a reduction in terms of energy con-
sumption up to an overload of about 70% (i.e., ),
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when the maximum overload that the classical elastic algorithm
can manage is 80% (i.e., ), for the specific task set.

A significant improvement achieved with the integrated al-
gorithm can be seen in Fig. 6 for . In fact,
without elastic scheduling, the task set would not be feasible
with all tasks running at their nominal periods , and the
use of a pure energy-aware algorithm with discrete speeds and
maximum periods would waste processor utilization, penalizing
performance (since tasks would run at the lowest possible rate).
In fact, for this value of , the utilization factor with
maximum periods is 0.62, which is a lot less than the desired
value . Using the proposed approach, the desired uti-
lization can be reached with a normalized speed ,
and tasks can run with shorter periods computed by the elastic
algorithm, so improving the application performance.

C. Effects of the Elastic Task Model

This experiment is aimed at evaluating the advantages of
using the elastic task model with respect to an approach with
fixed task periods. In a first simulation, the energy-oriented
approach was applied on a set of elastic tasks with periods in

and compared with the case in which all task
periods were fixed and equal to .

Fig. 7 shows the results in term of selected speed (upper
graph) and quality of control (lower graph) when the total
utilization of the task set at full speed varies
from 0.8 to 2.8 with a step of 0.1. For each step, the value on the

-axis represents the mean obtained on 100 task sets of 50 tasks
each. We can see that, although the two algorithms select the
same speed, the quality of control of the performance-oriented
strategy is always higher. As expected, for high workloads,
elastic tasks tend to run with larger periods; hence, the QoC
decreases toward the one of the fixed task set. On the other
hand, when the maximum utilization of the task set is less than
one, the QoC achievable by the elastic approach is significantly
higher than that obtained by the fixed tasks.

In a second simulation, the performance-oriented strategy
was applied on a set of elastic tasks with periods in
and compared with the case in which all task periods were
fixed and equal to . As in the previous experiment, results
were derived in terms of speed and quality of control and are
illustrated in Fig. 8. Since the performance-oriented approach
also considers energy issues, the quality of control index is
less than 1, where the value of 1 corresponds by definition to
the performance index of the tasks running with the minimum
periods. When the two algorithms select the same speed, the
quality reduction in the elastic task set (with respect to the fixed
set) is relatively small. On the other hand, a higher decrease
in the QoC is compensated by a larger speed reduction (i.e.,
energy saving). Also note that, when the system is overloaded,
the task set with fixed periods may not be feasible, whereas
the elastic application can always be executed with degraded
performance.

Note that the QoC index decreases as the task set utilization
grows because periods are enlarged. The spike at is due
to a speed switch from 0.4545 to 0.8181. Such a speed increase
creates a slack, which is used by the algorithm to reduce periods,
so increasing the QoC.

Fig. 7. Comparison of the energy-oriented approach on tasks with elastic and
fixed (maximum) periods.

D. Impact of the User-Defined Strategy

Sometimes, the energy-oriented strategy could be too penal-
izing in terms of performance, and the performance-oriented
one could be too energy consuming. In this cases, the processor
speed can be manually selected by the user at a level suitable
for the application aims. This experiment shows the effect of
the user-defined strategy on the task set behavior. The experi-
ment has been performed on a task set with maximum utiliza-
tion of 0.9 and 1.1. For each utilization, 100 task sets with a
random number of tasks in the range [20,100] have been gen-
erated. For every task set, the quality of service has been com-
puted at each speed between and . The results are reported
in Fig. 9. The experiment shows that a trade-off between perfor-
mance and energy consumption is achievable by acting on the
processor speed. If the selected value is within the computed
bounds and , the feasibility of the schedule is always guar-
anteed. It turns out that the values of computed by (12) result
to be the same for the two tested utilizations, while (13) pro-
duces two different values for . This happens because the per-
formance-oriented approach is capable of reducing the power
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Fig. 8. Comparison of the performance-oriented approach on tasks with elastic
and fixed (minimum) periods.

consumption if the task set utilization is smaller than the de-
sired one. It is interesting to observe that, in applications where
the task set is static (e.g., in OSEK-compliant systems [1]), the
speed selection could be done automatically by a tool according
to user-defined parameters, such as the minimum allowed QoC,
the maximum available mean power, and so on.

E. Power Consumption and Elastic Coefficients

As mentioned in Section IV-C, assigning the elastic coeffi-
cients to express job energy consumption allows the user to
privilege tasks with lower power demand. This experiment is
aimed at showing how the elastic coefficients may affect the
mean power consumption. To do so, the power-related assign-
ment is compared with the one in which all elastic coefficients
have the same value.

The power model is the one expressed in (3), where, for the
sake of simplicity, , , and are set to 0, and only is
managed. The maximum utilization of the task set at the max-
imum speed is 1.1, and 100 task sets (of four
tasks) are generated for each configuration. From a configura-
tion to the next one, the value of is increased by a value equal
to the task index . For each task, a displacement

Fig. 9. QoC for the user-defined strategy.

factor is defined as the ratio between and . The value of
the elastic coefficient for task is set equal to . For each
task set, the power consumed by tasks with fixed elastic coeffi-
cients and with power-related ones is computed as

Then, the mean is computed among all task sets for the same
configuration and approach. For each coefficient configuration,
the comparison between the two assignments is expressed as the
ratio between the power-related approach and the fixed-coeffi-
cients approach.

Fig. 10(a) illustrates the dependency of the various parame-
ters as a function of the displacement factor, whereas Fig. 10(b)
reports the power saving achievable by the power-dependent
elastic coefficients. As is clear from the graph, the power-re-
lated assignment of the elastic coefficients can produce a sig-
nificant power saving in the application. As the displacement
factor grows, the reduction produced by the power-related ap-
proach is more and more significant. In particular, a reduction
of 0.8% is observed for a displacement factor equal to 1.2727,
which increases up to 12.7%, when the displacement factor is
equal to 4. Also note that implementing this features does not
increase the runtime overhead of the acceptance test.

F. Online Reclaiming Mechanism

This final experiment shows the effect of the reclaiming
mechanism on the power consumption. The energy-oriented
strategy was used on a task set with .
To generate early completions, job execution times were set
equal to , where was varied from 0.1 to 1. For each
value of , 100 task sets were generated and the offline and
the dynamic approaches were compared in terms of speed
and power consumption. For the dynamic algorithm, speed
and power consumption were computed as means over the
hyperperiod. Results are reported in Fig. 11, which shows the
average dynamic speed and the ratio between the mean power
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Fig. 10. (a) Task consumption constants. (b) Power consumption ratio.

Fig. 11. Speed and power ratio.

in the dynamic approach and the mean power without using the
reclaiming algorithm as a function of .

When , the ratio is almost 1 because tasks run for their
worst-case execution time, as supposed in the offline algorithm.
The real value of the ratio is less than 1 because sporadic idle
times allow the reclaiming algorithm to set the speed to .
The mean power ratio decreases with and reaches a stable

level for values of smaller than 0.5. This is explained with
the limitation imposed by the value of the minimum discrete
speed (0.4545), which does not allow the algorithm to produce
the desired reduction.

VII. CONCLUSIONS

In this paper, we presented an integrated approach that com-
bines DVS techniques with elastic scheduling to balance con-
trol performance with energy consumption in embedded sys-
tems running on architectures with a limited number of oper-
ating modes. An enhanced task execution time model was used
to consider some real architecture characteristics, such as the
access to peripherals, whose execution is not scalable with the
clock frequency.

Experimental results on an AMD Athlon64 3000+ with four
operating modes showed the validity of the proposed execution
model and illustrated the advantage of the integrated approach,
both for maximizing performance and minimizing energy con-
sumption. The execution model showed that a more precise (less
pessimistic) estimation can be achieved for the task computation
time, so allowing a better exploitation of the computational re-
sources. We also shown the advantage of the proposed approach
in terms of flexibility for the application developer, who can
balance energy versus performance, by selecting the system be-
havior from a high performance configuration (at a cost of high
power consumption) to a low-energy setting (corresponding to
a degraded performance level). Experiments have also shown
that by integrating the power consumption characteristics of in-
dividual tasks into the elastic coefficients leads to a larger energy
saving, without extra overhead costs. Finally, simulation exper-
iments illustrated the effectiveness of a reclaiming mechanism
that takes advantage of early completions to perform a further
reduction of the processor speed.

As a future development, we plan to use the proposed ap-
proach on a different platform that allows obtaining direct mea-
surements of the real power consumptions, so that a full set of
tests can be carried out to precisely compare our method with
other related work proposed in the literature.

We also plan to apply the proposed approach to wireless mo-
bile networks, for prolonging battery lifetime in a team of mo-
bile robot units that need to operate under stringent performance
constraints.
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