60,442 research outputs found

    Heat flow in InAs/InP heterostructure nanowires

    Get PDF
    The transfer of heat between electrons and phonons plays a key role for thermal management in future nanowire-based devices, but only a few experimental measurements of electron-phonon (e-ph) coupling in nanowires are available. Here, we combine experimental temperature measurements on an InAs/InP heterostructure nanowire system with finite element modeling (FEM) to extract information on heat flow mediated by e-ph coupling. We find that the electron and phonon temperatures in our system are highly coupled even at temperatures as low as 2 K. Additionally, we find evidence that the usual power-law temperature dependence of electron-phonon coupling may not correctly describe the coupling in nanowires and show that this result is consistent with previous research on similar one-dimensional electron systems. We also compare the strength of the observed e-ph coupling to a theoretical analysis of e-ph interaction in InAs nanowires, which predicts a significantly weaker coupling strength than observed experimentally.Comment: 9 pages, 6 figure

    Electrical-thermal Co-simulation With Joule Heating And Convection Effects For 3d Systems

    Get PDF
    In a method for simulating temperature and electrical characteristics within an circuit, a temperature of at least one volume within the circuit as a function of a resistance within the at least one volume is repeatedly calculated and the resistance as a function of the temperature is repeatedly calculated until the temperature is within a predetermined tolerance of a previous temperature result and until the resistance is within a predetermined tolerance of a previous resistance result. Once the temperature is within a predetermined tolerance of the previous temperature result and the resistance is within a predetermined tolerance of the previous resistance, then an output indicative of the temperature is generated.Georgia Tech Research Corporatio

    0-π\pi phase-controllable thermalthermal Josephson junction

    Full text link
    Two superconductors coupled by a weak link support an equilibrium Josephson electrical current which depends on the phase difference φ\varphi between the superconducting condensates [1]. Yet, when a temperature gradient is imposed across the junction, the Josephson effect manifests itself through a coherent component of the heat current that flows oppositely to the thermal gradient for φ<π/2 \varphi <\pi/2 [2-4]. The direction of both the Josephson charge and heat currents can be inverted by adding a π\pi shift to φ\varphi. In the static electrical case, this effect was obtained in a few systems, e.g. via a ferromagnetic coupling [5,6] or a non-equilibrium distribution in the weak link [7]. These structures opened new possibilities for superconducting quantum logic [6,8] and ultralow power superconducting computers [9]. Here, we report the first experimental realization of a thermal Josephson junction whose phase bias can be controlled from 00 to π\pi. This is obtained thanks to a superconducting quantum interferometer that allows to fully control the direction of the coherent energy transfer through the junction [10]. This possibility, joined to the completely superconducting nature of our system, provides temperature modulations with unprecedented amplitude of \sim 100 mK and transfer coefficients exceeding 1 K per flux quantum at 25 mK. Then, this quantum structure represents a fundamental step towards the realization of caloritronic logic components, such as thermal transistors, switches and memory devices [10,11]. These elements, combined with heat interferometers [3,4,12] and diodes [13,14], would complete the thermal conversion of the most important phase-coherent electronic devices and benefit cryogenic microcircuits requiring energy management, such as quantum computing architectures and radiation sensors.Comment: 10 pages, 9 color figure

    A parametrized three-dimensional model for MEMS thermal shear-stress sensors

    Get PDF
    This paper presents an accurate and efficient model of MEMS thermal shear-stress sensors featuring a thin-film hotwire on a vacuum-isolated dielectric diaphragm. We consider three-dimensional (3-D) heat transfer in sensors operating in constant-temperature mode, and describe sensor response with a functional relationship between dimensionless forms of hotwire power and shear stress. This relationship is parametrized by the diaphragm aspect ratio and two additional dimensionless parameters that represent heat conduction in the hotwire and diaphragm. Closed-form correlations are obtained to represent this relationship, yielding a MEMS sensor model that is highly efficient while retaining the accuracy of three-dimensional heat transfer analysis. The model is compared with experimental data, and the agreement in the total and net hotwire power, the latter being a small second-order quantity induced by the applied shear stress, is respectively within 0.5% and 11% when uncertainties in sensor geometry and material properties are taken into account. The model is then used to elucidate thermal boundary layer characteristics for MEMS sensors, and in particular, quantitatively show that the relatively thick thermal boundary layer renders classical shear-stress sensor theory invalid for MEMS sensors operating in air. The model is also used to systematically study the effects of geometry and material properties on MEMS sensor behavior, yielding insights useful as practical design guidelines

    Data assimilation of in situ soil moisture measurements in hydrological models: first annual doctoral progress report, work plan and achievements

    Get PDF
    Water scarcity and the presence of water of good quality is a serious public concern since it determines the availability of water to society. Water scarcity especially in arid climates and due to extreme droughts related to climate change drive water use technologies such as irrigation to become more efficient and sustainable. Plant root water and nutrient uptake is one of the most important processes in subsurface unsaturated flow and transport modeling, as root uptake controls actual plant evapotranspiration, water recharge and nutrient leaching to the groundwater, and exerts a major influence on predictions of global climate models. To improve irrigation strategies, water flow needs to be accurately described using advanced monitoring and modeling. Our study focuses on the assimilation of hydrological data in hydrological models that predict water flow and solute (pollutants and salts) transport and water redistribution in agricultural soils under irrigation. Field plots of a potato farmer in a sandy region in Belgium were instrumented to continuously monitor soil moisture and water potential before, during and after irrigation in dry summer periods. The aim is to optimize the irrigation process by assimilating online sensor field data into process based models. Over the past year, we demonstrated the calibration and optimization of the Hydrus 1D model for an irrigated grassland on sandy soil. Direct and inverse calibration and optimization for both heterogeneous and homogeneous conceptualizations was applied. Results show that Hydrus 1D closely simulated soil water content at five depths as compared to water content measurements from soil moisture probes, by stepwise calibration and local sensivity analysis and optimization the Ks, n and α value in the calibration and optimization analysis. The errors of the model, expressed by deviations between observed and modeled soil water content were, however, different for each individual depth. The smallest differences between the observed value and soil-water content were attained when using an automated inverse optimization method. The choice of the initial parameter value can be optimized using a stepwise approach. Our results show that statistical evaluation coefficients (R2, Ce and RMSE) are suitable benchmarks to evaluate the performance of the model in reproducing the data. The degree of water stress simulated with Hydrus 1D suggested to increase irrigation at least one time, i.e. at the beginning of the simulation period and further distribute the amount of irrigation during the growing season, instead of using a huge amount of irrigation later in the season. In the next year, we will further look for to the best method (using soft data and methods for instance PTFs, EMI, Penetrometer) to derive and predict the spatial variability of soil hydraulic properties (saturated hydraulic conductivity) of the soil and link to crop yield at the field scale. Linear and non-linear pedotransfer functions (PTFs) have been assessed to predict penetrometer resistance of soils from their water status (matric potential, ψ and degree of saturation, S) and bulk density, ρb, and some other soil properties such as sand content, Ks etc. The geophysical EMI (electromagnetic induction) technique provides a versatile and robust field instrument for determining apparent soil electrical conductivity (ECa). ECa, a quick and reliable measurement, is one of ancillary properties (secondary information) of soil, can improve the spatial and temporal estimation of soil characteristics e.g., salinity, water content, texture, prosity and bulk density at different scales and depths. According to previous literature on penetrometer measurements, we determined the effective stress and used some models to find the relationships between soil properties, especially Ks, and penetrometer resistance as one of the prediction methods for Ks. The initial results obtained in the first yearshowed that a new data set would be necessary to validate the results of this part. In the third year, quasi 3D-modelling of water flow at the field scale will be conducted. In this modeling set -up, the field will be modeled as a collection of 1D-columns representing the different field conditions (combination of soil properties, groundwater depth, root zone depth). The measured soil properties are extrapolated over the entire field by linking them to the available spatially distributed data (such as the EMI-images). The data set of predicted Ks and other soil properties for the whole field constructed in the previous steps will be used for parameterising the model. Sensitivity analysis ‘SA’ is essential to the model optimization or parametrization process. To avoid overparameterization, the use of global sensitivity analysis (SA) will be investigated. In order to include multiple objectives (irrigation management parameters, costs, …) in the parameter optimization strategy, multi-objective techniques such as AMALGAM have been introduced. We will investigate multi-objective strategies in the irrigation optimization

    Frequency Dependent Specific Heat from Thermal Effusion in Spherical Geometry

    Get PDF
    We present a novel method of measuring the frequency dependent specific heat at the glass transition applied to 5-polyphenyl-4-ether. The method employs thermal waves effusing radially out from the surface of a spherical thermistor that acts as both a heat generator and thermometer. It is a merit of the method compared to planar effusion methods that the influence of the mechanical boundary conditions are analytically known. This implies that it is the longitudinal rather than the isobaric specific heat that is measured. As another merit the thermal conductivity and specific heat can be found independently. The method has highest sensitivity at a frequency where the thermal diffusion length is comparable to the radius of the heat generator. This limits in practise the frequency range to 2-3 decades. An account of the 3omega-technique used including higher order terms in the temperature dependency of the thermistor and in the power generated is furthermore given.Comment: 17 pages, 15 figures, Substantially revised versio

    An electrical probe of the phonon mean-free path spectrum

    Full text link
    Most studies of the mean-free path accumulation function (MFPAF) rely on optical techniques to probe heat transfer at length scales on the order of the phonon mean-free path. In this paper, we propose and implement a purely electrical probe of the MFPAF that relies on photo-lithographically defined heater-thermometer separation to set the length scale. An important advantage of the proposed technique is its insensitivity to the thermal interfacial impedance and its compatibility with a large array of temperature-controlled chambers that lack optical ports. Detailed analysis of the experimental data based on the enhanced Fourier law (EFL) demonstrates that heat-carrying phonons in gallium arsenide have a much wider mean-free path spectrum than originally thought
    corecore