18,386 research outputs found

    Colour Relations in Form

    Get PDF
    The orthodox monadic determination thesis holds that we represent colour relations by virtue of representing colours. Against this orthodoxy, I argue that it is possible to represent colour relations without representing any colours. I present a model of iconic perceptual content that allows for such primitive relational colour representation, and provide four empirical arguments in its support. I close by surveying alternative views of the relationship between monadic and relational colour representation

    Neural dynamics of feedforward and feedback processing in figure-ground segregation

    Get PDF
    Determining whether a region belongs to the interior or exterior of a shape (figure-ground segregation) is a core competency of the primate brain, yet the underlying mechanisms are not well understood. Many models assume that figure-ground segregation occurs by assembling progressively more complex representations through feedforward connections, with feedback playing only a modulatory role. We present a dynamical model of figure-ground segregation in the primate ventral stream wherein feedback plays a crucial role in disambiguating a figure's interior and exterior. We introduce a processing strategy whereby jitter in RF center locations and variation in RF sizes is exploited to enhance and suppress neural activity inside and outside of figures, respectively. Feedforward projections emanate from units that model cells in V4 known to respond to the curvature of boundary contours (curved contour cells), and feedback projections from units predicted to exist in IT that strategically group neurons with different RF sizes and RF center locations (teardrop cells). Neurons (convex cells) that preferentially respond when centered on a figure dynamically balance feedforward (bottom-up) information and feedback from higher visual areas. The activation is enhanced when an interior portion of a figure is in the RF via feedback from units that detect closure in the boundary contours of a figure. Our model produces maximal activity along the medial axis of well-known figures with and without concavities, and inside algorithmically generated shapes. Our results suggest that the dynamic balancing of feedforward signals with the specific feedback mechanisms proposed by the model is crucial for figure-ground segregation

    Border-ownership-dependent tilt aftereffect in incomplete figures

    Get PDF
    A recent physiological finding of neural coding for border ownership (BO) that defines the direction of a figure with respect to the border has provided a possible basis for figure-ground segregation. To explore the underlying neural mechanisms of BO, we investigated stimulus configurations that activate BO circuitry through psychophysical investigation of the BO-dependent tilt aftereffect (BO-TAE). Specifically, we examined robustness of the border ownership signal by determining whether the BO-TAE is observed when gestalt factors are broken. The results showed significant BO-TAEs even when a global shape was not explicitly given due to the ambiguity of the contour, suggesting a contour-independent mechanism for BO coding.This paper was published in Journal of the Optical Society of America. A and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/abstract.cfm?URI=josaa-24-1-18. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law

    Neural models of inter-cortical networks in the primate visual system for navigation, attention, path perception, and static and kinetic figure-ground perception

    Full text link
    Vision provides the primary means by which many animals distinguish foreground objects from their background and coordinate locomotion through complex environments. The present thesis focuses on mechanisms within the visual system that afford figure-ground segregation and self-motion perception. These processes are modeled as emergent outcomes of dynamical interactions among neural populations in several brain areas. This dissertation specifies and simulates how border-ownership signals emerge in cortex, and how the medial superior temporal area (MSTd) represents path of travel and heading, in the presence of independently moving objects (IMOs). Neurons in visual cortex that signal border-ownership, the perception that a border belongs to a figure and not its background, have been identified but the underlying mechanisms have been unclear. A model is presented that demonstrates that inter-areal interactions across model visual areas V1-V2-V4 afford border-ownership signals similar to those reported in electrophysiology for visual displays containing figures defined by luminance contrast. Competition between model neurons with different receptive field sizes is crucial for reconciling the occlusion of one object by another. The model is extended to determine border-ownership when object borders are kinetically-defined, and to detect the location and size of shapes, despite the curvature of their boundary contours. Navigation in the real world requires humans to travel along curved paths. Many perceptual models have been proposed that focus on heading, which specifies the direction of travel along straight paths, but not on path curvature. In primates, MSTd has been implicated in heading perception. A model of V1, medial temporal area (MT), and MSTd is developed herein that demonstrates how MSTd neurons can simultaneously encode path curvature and heading. Human judgments of heading are accurate in rigid environments, but are biased in the presence of IMOs. The model presented here explains the bias through recurrent connectivity in MSTd and avoids the use of differential motion detectors which, although used in existing models to discount the motion of an IMO relative to its background, is not biologically plausible. Reported modulation of the MSTd population due to attention is explained through competitive dynamics between subpopulations responding to bottom-up and top- down signals

    Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas

    Get PDF
    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG

    The analytic edge - image reconstruction from edge data via the Cauchy Integral

    Full text link
    A novel image reconstruction algorithm from edges (image gradients) follows from the Sokhostki-Plemelj Theorem of complex analysis, an elaboration of the standard Cauchy (Singular) Integral. This algorithm demonstrates the use of Singular Integral Equation methods to image processing, extending the more common use of Partial Differential Equations (e.g. based on variants of the Diffusion or Poisson equations). The Cauchy Integral approach has a deep connection to and sheds light on the (linear and non-linear) diffusion equation, the retinex algorithm and energy-based image regularization. It extends the commonly understood local definition of an edge to a global, complex analytic structure - the analytic edge - the contrast weighted kernel of the Cauchy Integral. Superposition of the set of analytic edges provides a "filled-in" image which is the piece-wise analytic image corresponding to the edge (gradient data) supplied. This is a fully parallel operation which avoids the time penalty associated with iterative solutions and thus is compatible with the short time (about 150 milliseconds) that is biologically available for the brain to construct a perceptual image from edge data. Although this algorithm produces an exact reconstruction of a filled-in image from the gradients of that image, slight modifications of it produce images which correspond to perceptual reports of human observers when presented with a wide range of "visual contrast illusion" images
    corecore