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1. Introduction 

In the visual brain incoming sensory information is first decomposed into elementary 

features in low-level areas and then transferred to high-level areas. There the features are 

grouped into coherent perceptual representations. Recent findings, however, have 

established that stimulus evoked responses in the primary visual cortex are modulated by 

surrounding stimuli. The modulated responses depend on proper recurrent interactions 

between different, separate visual regions. These extra-classical receptive field responses 

combine local visual signals with more global information from the visual scene and often 

reflect relatively high-level perceptual attributes of the stimuli. One of the fundamental 

problems to be solved by the visual system is the segregation of figure from ground (see 

Figure 1). A key factor in the figure-ground process is the combination of local with global 

information. Therefore, contextual influences on neuronal activity have been interpreted as 

the neural substrate of figure-ground perception. 

2. Feedforward projections in the visual system 

The visual brain is considered to be hierarchically structured. From the retina most 

information flows to the primary visual cortex (also referred to as striate cortex, V1, or E17) 

through the thalamic lateral geniculate nucleus (LGN). In V1 neurons extract simple, rather 

abstract features (e.g. orientation) within a small part of the visual scene. The feature 

information is further conveyed to surrounding extra-striate areas and from there to the 

higher level visual areas. In fact, the feedforward projection is dichotomized into two 

streams. Axons projecting towards areas in the temporal lobe define the ventral pathway 

(also called as the “what” or “perception” stream) and projections to the parietal areas form 

the dorsal pathway (also called the “where” or “action” stream). Information flowing to the 
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ventral pathway relates to objects and shapes whereas information conveyed to the dorsal 

pathway relates to attention and space (see Figure 2).  

 

 Figure-Ground: Classical psychophysical experiments highlighted that figures emerge from Figure 1.

its parts, being perceived as single shapes. Many very well known cases of ambiguity (such as the 

Rubin vase) exemplify this fact. In these images at any given moment we can perceive as the figure only 

one of the alternative interpretations, the other becoming the background. The neurophysiological 

correlates of this phenomenon are discussed here. 

The neurons in these latter areas have large receptive fields in order to integrate the 

elementary visual features. A classical receptive field is defined as the region of the visual 

scene from which a neuronal cell receives direct information by way of feedforward 

connections. Then, these cells responses to feedforward inputs are more closely related to 

our daily experience of the external visual world than are the responses in lower order areas 

since their selectivity is to more elaborated shapes of an object such as a face. That is, what 

Hubel and Wiesel advanced in 1968 is essentially true: receptive fields of cells at one level of 

the visual system are formed from inputs by cells at a lower level. In this way, small, simple 

receptive fields combine to form large, complex receptive fields. 

Feedforward projections are therefore the anatomical substrate for the initial transient 

response of a neuron to a stimulus, and determine the size and tuning properties of the 

stimulus evoked response. For instance, the orientation tuning of V1 neurons is 

predominantly determined by feedforward inputs (Miller, 2003) and by the biophysical 

membrane properties of the cells (Cardin et al., 2007). The spatial arrangement of the 

receptive fields of cells in the primary visual cortex follows a retino-topical organization and 

provides a topographic map of the visual world. Simple cells have an elongated receptive 

field structure, with an excitatory central oval and an inhibitory surrounding region (Hubel 

& Wiesel, 1968). In order to excite these cells stimuli need to have a particular orientation or 

direction. In the case of V1 complex cells, the receptive fields have no clear separation of 

excitatory and inhibitory regions. To excite these cells an oriented stimulus may need to 

move in a particular direction and might also need to be of a particular length. Beside 

excitatory neurons, inhibitory cells are also tuned to orientation and spatial frequency 

(Cardin et al., 2007). Thus, V1 cells respond selectively to simple, rather abstract features 

that make up an object within a small part of the visual scene mainly by reason of their 

connections with striate projecting neurons.  
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 Schematic representation of the main information pathways of the visual system and its Figure 2.

anatomical location. Sensory information is conveyed from the retina to the primary visual cortex (V1) 

from where it is distributed across the higher visual areas via the extra-striate areas. The dorsal stream 

begins with V1, goes through visual area V2, then to the dorsomedial area and visual area MT (also 

known as V5) and to the posterior parietal cortex. The ventral stream begins with V1, goes through 

visual area V2, then through visual area V4, and to the inferior temporal cortex. Top-down information 

from high-level visual areas towards low-level areas is mediated by feedback connections. 

V1 

MT 

V4 
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3. Contextual modulation of classical receptive field responses 

The feedforward established response property of visual neurons is not fixed. It can be 

modified by factors such as experience and learning, or, more importantly, by the spatial 

and temporal context in which a stimulus is presented. The latter strongly influences the 

stimulus evoked response of a cell. The prominence of contextual information processing is 

reflected by the fact that the majority of neurons in the primary visual cortex are sensitive to 

such contextual influences from surrounding regions. Surrounding stimuli outside the 

classical receptive field do not activate the cell but modulate the response to the stimulus 

that falls within it. This modulation by the extra classical receptive field signals contextual 

information to the cell which adds to the classical receptive field response. Such modulation 

effects are primarily seen for stimuli with high spatial frequencies (Meese & Holmes, 2007) 

and can be elicited by distal stimulus configurations at distances of up to 30mm within the 

primary visual cortex (Alexander & Wright, 2006).  

The effects of surrounding stimuli on a centre stimulus are complex and signals from the 

surround have been reported both to be suppressive and facilitatory, as well as both 

selective and unselective. The way modulation interacts in V1 depends on the relative 

position and orientation of the centre and surrounding stimuli. For example, for static lines 

neuronal facilitation is observed when a near threshold stimulus inside the classical 

receptive field is flanked by high contrast collinear elements located in the surrounding 

regions of visual space when compared to a single presentation of the low threshold line 

(Polat et al., 1998). In contrast, when the flanked lines differ in their orientation or are not 

collinearly aligned suppression of neural activity to the target line is observed (Kapadia et 

al., 2000). For drifting gratings, surround influence is mainly suppressive and suppression 

tends to be stronger when the surround grating also moves in the neurons preferred 

direction. When the surround is 90 degrees from the preferred orientation (orthogonal), 

suppression becomes weaker and sometimes results in response facilitation (Jones et al., 

2001). For an orthogonal surround grating suppression is strongest on the flanks 

(Cavanaugh et al., 2002). Similar accounts for surround suppression have been reported in 

optical imaging studies (Grinvald et al., 1994) and in the cat visual cortex (Walker et al., 

1999). Context modulation is not only a robust feature of neurons in the primary visual 

cortex, it is also observed in high visual areas of the monkey, for instance for MT (middle 

temporal) neurons in the motion domain and for V4 neurons in the color domain (Allman et 

al., 1985). 

Surround stimuli not only have an effect on cortical neurons but also on thalamic relay cells. 

For example, surround stimuli used for neurons in the primary visual cortex suppress the 

classical receptive field response of neurons in the lateral geniculate nucleus (LGN) 

suggesting that contextual interactions alter the transfer of thalamocortical information. 

Similar effects are also observed in the cat where surround suppression is not primarily 

attributable to intra-cortical inhibition but to a reduction of thalamocortical inputs (Ozeki et 

al., 2004). A modification in the feedforward signal by non-classical receptive field 

stimulation in the cat visual cortex is also seen to enhance orientation tuning selectivity 

(Chen et al., 2005). Context modulation seems thus to be a very general phenomenon 
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throughout the visual brain allowing the comparison of the sensory patterns inside and 

outside the receptive field. 

4. Contextual modulation in figure-ground segmentation 

Most of these contextual modulations are described for stimulations by a single bar with 

surrounding bars. Visual perception, however, requires the grouping of such individual 

features into coherent and meaningful objects. For example, for a figure-ground texture the 

orientated line segments are grouped in such a way that they generate the percept of a 

textured figure overlying a homogeneous background (see Figure 3). Thus, to form a neural 

representation of the figure the individual encoded line segments of the figure need to be 

grouped and to be segregated from line segments from the background. In the primary 

visual cortex, this grouping operation is likely implemented by the same mechanisms as for 

contextual modulation (Kapadia et al., 2000).  

 

 Four different types of figure-ground stimuli and a background in isolation. The figure is Figure 3.

defined either by a difference in contrast, in the orientation of its texture lines or in the color of its 

borders.  

While stimulating with such a figure-ground texture and recording neural spike activity in 

the primary visual cortex, two stages of neural processing after stimulus onset can be 

discerned. One dominated by the early (<100 msec) response transient, another occurring at 

relatively longer latencies (> 100 msec). The early stage is associated with feedforward 

processing and early feature extraction (e.g. stimulus orientation), the later stage has been 

related to recurrent processing and high level visual processes such as perceptual grouping 

and segmentation (Lamme & Roelfsema, 2000)(see Figure 4).  

For example, at a latency of about 100 msec, (Lamme, 1995; Zipser et al., 1996), when a 

neuron has its receptive field on the figure location, the cell’s activity is enhanced compared 

to the activity when its receptive field is located on the background. The neural 

segmentation signals the figure as a whole. Indeed, it is found to be present at the borders as 

well as at the centre of a textured defined figure (Lamme et al., 1999). This type of contextual 

modulation is referred to as figure-ground modulation. A study (Rossi et al., 2001) implied 

the absence of figure-ground based contextual modulation in macaque visual cortex, but it is 

possible that the authors underestimated the extent of modulation (Corthout & Supèr, 2004).  
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The delay in the onset of extra-classical receptive field modulation is independent of the 

time at which the receptive field itself was first stimulated and is not a side effect of the 

recent history of receptive field stimulation. Zisper et al. (Zipser et al., 1996) showed this by 

using a two-step procedure in which they first present a homogeneous texture display 

(thereby generating the initial burst of neural activity) and then subsequently modifying 

only the extra receptive field stimulus so that a textured-defined figure appeared. After the 

initial burst, the response strength settled into a steady state of activity. However, between 

80 and 100 msec after the display changed to the figure configuration, the response rate 

rebounded to a more elevated level of activity.  

 

 Late V1 responses signal figure-ground context (shaded area). Traces represent the strength of Figure 4.

spiking activity over time. When a texture is presented to the eye neurons in the visual cortex respond 

robustly (= first peak of activity). After approximately 100 ms. responses differ according to the context 

of the classical receptive field stimulus. In the figure case responses are enhanced (black trace) 

compared to the homogeneous or ground condition (grey trace). This enhanced neural activity is 

referred to figure-ground modulation. 
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Neurophysiological observations show that figure-ground modulation occurs first at the 

border of the figure followed by modulation for the center region of the textured figure 

(Lamme et al., 1999; Marcus & Van Essen, 2002; Huang & Paradiso, 2008). These findings 

can be interpreted as a filling-in process or, alternatively, as two independent processes of 

border detection and a grouping operation where surface responses simply lag behind the 

responses to the border. 

The finding that surface signals and not boundary signals are reduced by extra-striate 

lesions (Lamme et al., 1999) argues for two distinct mechanisms. Also, the finding that the 

onset of the modulated responses across the whole surface is the same (Lamme et al, 1999) 

argues against a gradual filling-in process of textured stimuli over time and favors 

independent mechanisms for boundary and surface detection. In Supèr et al. 2010, by means 

of computational modeling it was shown that the whole figure pops-out instantaneously 

and no filling-in process of the figural region takes place. Therefore, the model data also fit 

the idea of two independent mechanisms for local border and surface detection.  

Lamme showed onset latencies for figure-ground modulation of 60-120 ms after stimulus 

onset, or 30-60 ms after response onset (Lamme et al., 1999). General, non-specific surround 

suppression, in contrast, is an earlier contextual effect which takes about 7 ms to develop 

after response onset (Knierim & Van Essen, 1992). This authors also found that the 

orientation specific modulation of responses to centre-surround stimuli occurs a bit later, 

around 15-20ms after the response onset (Knierim & Van Essen, 1992). In another study, 

early textured figure–ground segregation was seen to occur at 40-80 ms after stimulus onset 

(Marcus & Van Essen, 2002) and was not different between V1 and V2 neurons.  

5. Figure-ground activity as a neural correlate of visual perception 

So far we have described how by modulating the classical receptive field activity extra-

classical receptive field effects combine local signals with more global information from the 

visual scene. Such extra classical respective field responses, therefore, will reflect in our 

brain relatively high-level perceptual attributes of the stimuli that fall within the neuron’s 

small receptive field. 

Several studies show that the influences of various contextual patterns on neuronal activity 

in the primary visual cortex of awake, behaving monkeys resemble in many respects with 

the influences of the same contextual stimuli on human perception (Li et al., 2000; Kapadia 

et al., 2000). For example, when an oriented line is embedded in similar lines within similar 

orientation, it will be less salient than when the surrounding lines have an orthogonal 

orientation. Correspondingly, contextual modulation is stronger in the latter case than in the 

first case. Furthermore, presence of surround features result in neuronal response 

suppression and also in perceptual masking (Li et al., 2000). This masking can be relieved by 

a difference in orientation between the target and surrounding features (Van der Smagt et 

al., 2005). Similarly, contextual modulation has been interpreted as the neural substrate of 

many perceptual phenomena, like pop-out (Knierim & Van Essen 1992), perceived 
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brightness (Rossi et al., 1996), figure-ground segmentation (Lamme, 1995; Zisper et al., 

1996), detection of focal orientation discontinuity (Sillito et al., 1995), tilt illusion (Gilbert & 

Wiesel, 1990), and perceptual grouping (Kapadia et al., 2000). 

In figure-ground perception, neurons in the primary visual cortex not only provide border 

information from illusory contours (Von der Heydt et al., 1984; Grosof et al., 1993; Lee & 

Nguyen, 2001), they also carry information about surface perception. As we stated before 

the figure seems to pop-out: when, for example, a surface area is perceived neurons in the 

primary visual cortex are activated throughout the region topographically corresponding to 

the perceived surface and not restricted to the region representing the border of the surface 

(Komatsu, 2007). Similarly, they correlate with perceived surface lightness (MacEvoy & 

Paradiso, 2001).  

But a direct link between the figure-ground modulation and the animal’s percept of the 

figure was not found before a study by Supèr et al. (Supèr et al., 2001a) showing that figure-

ground responses are present when the animal perceives the figure and absent when the 

animal does not perceive the figure. It also proves that the early stimulus driven activity (0-

100 ms) does not relate to whether the figure is seen or not seen but exclusively the late 

figure-ground modulation (see Figure 5). 

 

 Figure-ground modulation (shaded areas) is present for perceived stimuli (left panel) and Figure 5.

absent for not perceived (right panel) figures. Note that in both condition neurons are equally well 

activated by the feedforward projections, i.e. the first peak responses (adapted from Supèr et al 2001a). 

Similarly, figure-ground modulation is selectively suppressed in anesthetized animals, 

while responses remain selective for low-level features such as orientation of texture bars 

(Lamme et al., 1998). Also backward masking of figure-ground textures rendering the figure 

invisible abolishes figure-ground modulation (Lamme et al., 2002), and figure-ground 

perception is severely impaired when feedback information from extra-striate areas is 

removed (Supèr & Lamme, 2007a). Finally, figure-ground modulation represents a neural 

correlate of working memory (Supèr et al., 2001b) and becomes part of the motor 

preparation (Supèr et al., 2003b, 2004; Supèr & Lamme, 2007b).  
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6. Feedback connections to primary visual cortex 

Most, perhaps all, feedforward connections from V1 to higher visual areas are reciprocated 

by strong feedback projections. V1 connects with at least 12 subdivisions of the visual cortex. 

It receives projections from the following extra-striate visual areas: V2, V3, V3A, V4, V4t, MT 

(V5), parieto-occipital sulcus (PO) and posterior intraparietal area (PIP) (Felleman & Van 

Essen, 1991). Feedback pathways to V1 carry mainly excitatory input and project 

preferentially to pyramidal cells (see Figure 6).  

 

 Main feedforward and feedback projections between V1 and extra-striate areas.  Figure 6.

Being the number of feedback axons significant, the cortico-cortical connections generate a 

lower mean-amplitude excitatory post-synaptic potential (PSP) than either thalamo-cortical 

or feedforward cortico-cortical connections (Shao & Burkhalter, 1996). Conceivably these 

weak synaptic connections indicate a modulatory role for feedback to V1 neurons since it 

does not suffice to activate its otherwise silent cells. 

In fact, feedback connections show an orderly topographic organization and terminate in 

discrete patches within V1. The patchy feedback terminations overlap with patches of V1 

feedforward projecting neurons (Angelucci et al., 2002), tend to target alike tuned cells 

(Budd, 1998), and correlate with ocular dominance, iso-orientation columns, and the so 

called Cytochrome Oxidase-rich blobs (neurons assembled in cylindrical shapes) (Sincich & 

Horton, 2005).  

What's more, the distribution patterns of feedback axons follow a laminar segregation 

(Felleman & Van Essen, 1991). Feedback axons terminate in upper layers 1, 2/3, 4B and 

lower layers 5/6, whereas the granular layer is excluded from feedback projections. Some 

layers appear to have reciprocal connections: projections from primary visual cortex to MT 

originate from layers 4B and 6. Feedback from MT is predominantly to layers 4B and 6. 
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Similarly, feedforward projection to V2 and V3 comes mainly from layers 2/3, which also 

receive most feedback from V2 and V3. Besides feedback to V1, the striate cortex also feeds 

back to the LGN. Feedback to the LGN is retinotopically organized, and the cells in layer 6 

of the visual cortex that provide the feedback arise from differently distributed cell groups, 

which have functionally selective visual-response properties. 

On the other hand, conduction velocities of feedback connections are just as fast as those of 

feedforward connections (~3-10 m/sec). Apparently, feedback acts on the early part of the 

stimulus evoked response (Hupé et al., 2001) which suggests that feedback signals are 

present in V1 all together with feedforward signals from the thalamus. The role of feedback 

in the early stage response can be seen specifically in the fact that inactivation of areas V2 

and MT reduces the response of neurons in V1 to visual stimulation of their receptive field 

center. It also reduces the suppressive effect of surround motion stimulation. Moreover, 

feedback-enhanced centre-surround antagonism influences the stimulus driven 

synchronization. For instance, orientation tuning curves are much broader in the absence of 

feedback. Thus, retinal stimulation not solely determines the responses of V1 neurons but 

they are deeply influenced by extensive top-down information. 

7. Horizontal connections 

Intrinsic horizontal connections that link surrounding neurons convey information from 

beyond the classical receptive field representing an alternative to feedback for providing 

contextual information of the target stimulus (Angelucci et al., 2002; Cudeiro and Sillito, 2006). 

In V1 they are intra-laminar projections made by excitatory neurons in layers 1, 2/3, 4B, and 

5/6. Horizontal connections are frequently reciprocal and project locally (short; limited to a few 

hundreds of microns) up to several millimeters (long) within the primary visual cortex. The 

distribution of horizontal axonal projections is not globular but tends to be co-aligned with the 

shape of the receptive fields where axons project collinearly (Angelucci et al., 2002). Moreover, 

the termination of horizontal axons appears to be patchy indicating that these axons 

specifically select neighboring cells to contact. For instance, horizontal connections 

preferentially interconnect columns of similar ocular dominance and cells with similar 

orientation preference. Interestingly, the excitatory inputs from lateral connections and also 

from feedback pathways can suppress activity of neurons in the column. 

It has been proposed that short horizontal connections shape the spatial summation 

properties of V1 neurons at low contrast. One example of such “short-range” surround 

modulation is the enhancement of the receptive field center response to an optimally 

oriented low-contrast stimulus by flanking co-oriented and co-axial high-contrast stimuli; a 

phenomenon thought to underlie perceptual grouping of contour elements named co-linear 

facilitation. A further reason why short horizontal connections may be the underlying 

anatomical substrate of this phenomenon is that GABA inactivation of laterally displaced V1 

sites reduces co-linear facilitation. Horizontal axons have slow velocity conductance 

(typically 0.1-0.2 m/sec), i.e. about 30-50 times slower than feedforward and feedback 

connections (Girard et al., 2001). Since it has been shown that contextual suppressive effects 
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come from large regions (4-7mm), the limited horizontal spread of axons (up to 3.5-4.5 mm 

radius in V1 monkey) together with the already mentioned slow conductance velocities of 

these fibers cast doubt on a role for horizontal connections in perceptual integration (See 

Supèr et al., 2010).  

8. Role of feedback in figure-ground 

Feedback projections from higher visual areas to lower areas are more suitable to provide 

the contextual information necessary for figure-ground segmentation since they have high 

conductance velocity (~3-10 m/sec), have large spread in V1 and influence surround 

mediated responses in it.  

Figure-ground segregation may start with a boundary detection process followed by filling-

in the surface between these boundaries. Psychophysical studies where detection is initiated 

at the boundaries between surfaces (Motoyoshi, 1999) lead to such an interpretation. 

Discriminating local discontinuities in texture elements suffices for border detection, which 

in principle can be accomplished by horizontal projections. Surface detection, however, is 

likely an expression of more global influences. Neurophysiological data show that surface 

signals, and not boundary signals, are abolished by extra-striate lesions (see Lamme et al., 

1999) and support such as role for feedback. 

Not all feedback may contribute to figure-ground segmentation; although inactivation of V2 

does decrease the neuronal response to the single bar, it has no effect on centre-surround 

interactions of neurons in the primary visual cortex (Hupé et al., 2001). This may mean that 

figure-ground segmentation occurs in parts of the cortex that do not receive feedback, at 

least from V2. Indeed, the exact role of feedback in figure-ground segregation is not clear. 

For instance, has feedback a decisive role in the occurrence of figure-ground activity or a 

more modulatory role in controlling the strength of the figure-ground signal? Many 

arguments are inconsistent with a leading role of feedback projections in producing either 

contextual effects or directly figure-ground segmentation. A lesion study provides further 

evidence showing that after removing most of the feedback (including V3, V4, MT, MST, but 

not V2) to V1 detection of textured figure-ground stimuli presented in the lesioned field was 

not affected (Supèr & Lamme, 2007a).  

However, consistent with the modulatory role, visual context presumably transmitted by 

feedback may activate non-stimulated regions of V1 (Smith & Muckli, 2010), and in 

agreement with TMS experiments (Pascual-Leone & Walsh, 2001; Silvanto et al., 2005; 

Corthout, 1999), patient studies demonstrate that V1 alone is not sufficient for simple figure-

ground segregation (Allen et al., 2009) suggesting that feedback is required. Yet, as stated 

before, inactivation of V2, which is the main contributor of feedback to the primary visual 

cortex, has no effect on centre-surround interactions of V1 neurons (Hupé et al., 2001).  

Alternatively, feedback may enhance the response modulation of the figure as a whole. 

Feedback has been shown to have a push-pull effect where the responses to centre stimulus 

are enhanced and the responses to surrounding stimuli suppressed (Cudeiro & Sillito, 2006). 
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A sort of push-pull operation also takes place during figure-ground segregation. Compared 

to responses to homogeneous textures, responses to figure elements are enhanced and 

responses to ground elements, where a figure is presented outside the receptive field, are 

weakened. In this case, feedback acts as a kind of attention mechanism by pulling the figure 

signal and pushing the ground responses and so enhancing stimulus contrast (De Weerd et 

al., 1999; Hayes & Merigan 2007). Note that this does not mean that figure-ground activity 

represents a neural correlate of attention. Figure enhancement is observed when attention is 

divided or directed away from the figure (Landman et al., 2003b). Shifting attention away 

from the figure location by presenting a pop-out stimulus outside the receptive field 

produces a suppressive effect for both ‘figure’ and ‘ground’ responses, but not necessarily 

abolish the figure-ground signal (Supèr et al., 2001b).  

9. Arguments against a prominent role of feedback in figure-ground 

Several more arguments are inconsistent with a leading role of feedback projections in 

producing contextual effects and figure-ground segmentation. Surround effects are 

primarily suppressive but blockade of intra-cortical inhibition does not reduce significantly 

surround suppression (Ozeki et al., 2004). Surround suppression is fast and may arrive even 

earlier than the feedforward triggered excitatory classical receptive fields response (Bair et 

al., 2003; Webb et al. 2005). This timing is inconsistent with contextual modulation by late 

feedback. Also surround suppression in the monkey LGN emerges too fast for an 

involvement from cortical feedback (Alitto & Usrey, 2008).  

Moreover, Supèr and Lamme results in 2007(a), where by removing feedback (but not V2) to 

V1 figure-ground perception was impaired though visual detection of textured figure-

ground stimuli was not affected, imply that figure-ground segmentation occurs without 

feedback from these extra-striate areas and without producing visual awareness. This agrees 

with the belief that figure-ground organization is an automatic process (Qiu et al., 2007). For 

example, preserved figure-ground segregation is observed in neglect patients (Driver et al., 

1992) and surface segregation signals evolve independent of attention (Landman et al., 

2003b). Similarly, the assignment of border-ownership precedes object recognition and the 

deployment of attention (Qiu et al., 2007; Von der Heydt et al., 2004). Furthermore, the short 

onset latencies and sometimes incomplete cue invariance suggest that border-ownership 

assignment is not generated in higher level visual areas but within the lower visual areas 

(Zhou et al., 2000).  

In addition, figure-ground segmentation depends on the size of the figure region and drops 

with increasing figure sizes (>80-120). This size dependency argues against segregation by 

feedback since termination fields of feedback projections cover large regions of visual space 

in V1. Finally, an intriguing finding is that contextual neural interactions corresponding to 

perception are observed at sub-cortical levels in the LGN and even in the retina (Rossi & 

Paradiso, 1999) and that competition for object awareness is fully resolved in monocular 

visual cortex (Tong & Engel, 2001). So, there is considerable evidence against a major role of 

feedback in figure-ground segregation. 
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10. Feedforward segregation of figure-ground 

Recently it has been demonstrated that figure-ground segregation can be achieved in a 

purely feedforward manner (Supèr et al., 2010). By means of a computational model (see 

Figure 7) and using biological plausible spiking neurons surround inhibition was the key 

factor. The feedforward segregation of figure from ground was robust. A decrease of the 

input contrast by 80% still yielded figure-ground segregation. Figure-ground segregation 

occurred for very small figures (even for the size of 1x1 pixel) and for large figures. Since the 

surround inhibition depended on stimulus size, figure-ground segregation failed when the 

figure size approximated the background size. This agrees with human figure-ground 

perception, where small stimuli are interpreted as figures and larger ones as background. 

When figure and background have the same size the assignment of figure and ground 

became ambiguous (Barenholtz & Feldman, 2006). 

 

 A) Model architecture. It was a three layered model of spiking neurons. B) Connectivity. Local Figure 7.

excitation was combined with global inhibition. C) Equivalence between the used feature maps and the 

original figure-ground textured stimuli. 

Feedback has a direct consequence on the activity of the ascending neurons where it lowers 

the responses to figure elements in layer 1. Despite the inhibitory nature, feedback enhances 

the figure-ground signal in layer 2. Feedback accomplishes this by a differential effect on 

neural activity; it enhances figure responses and lowers background responses (Supèr & 

Romeo, 2011). Such push-pull effect is also observed in neurons of the visual cortex 
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responding to figure-ground textures (Supèr et al., 2001a; Landman et al., 2003a; Scholte et 

al., 2008). Moreover, the model shows that feedback especially enhances figure-ground 

signal when the feedforward input is relatively weak. So feedback acts as a kind of attention 

mechanism enhancing stimulus contrast (De Weerd et al., 1999; Hayes & Merigan, 2007). In 

accordance, feedback improves stimulus response precision (Andolina et al., 2007) and 

feature contrast (Huang et al., 2007), and enhances figure-ground discrimination (Hupé et 

al., 1998) and top-down attention may enhance both feedforward responses in the LGN 

(McAlonan et al., 2008) and figure-ground modulatory responses in early cortex (Scholte et 

al., 2006; Roelfsema et al., 2007; Qiu et al., 2007). Therefore, instead of generating the 

contextual effects needed for figure-ground segmentation, it is speculated that inhibitory 

feedback boosts the feedforward generated figure-ground activity. Markedly, feedforward 

inhibition decreases the figure-ground signal (Supèr et al., 2010) whereas inhibition through 

feedback increases the figure-ground signal (Supèr & Romeo, 2011). Further studies are 

needed to understand the dynamics that lead to such a difference. 

11. Cortical state, attention, and figure-ground segmentation 

The strength of figure-ground modulation depends on the momentary state of the visual 

cortex (Supèr et al., 2003a, 2003b; Van der Togt et al., 2006. See Figure 8). A proper state is 

characterized by low-frequency correlated neural firing. Absence or deficiency in such 

synchronous firing prohibits figure-ground segregation resulting in the occasionally failure 

to detect a stimulus (Supèr et al., 2003a). Supèr & Romeo (2011) showed that feedback affects 

the strength of figure-ground activity by changing the cortical state, i.e. changing the firing 

from low-frequency bursting mode (9Hz) to a tonic firing pattern, which is consistent with 

the observations that feedback shifts neural responses in the thalamus from a bursting mode 

into a tonic mode (Sherman, 2001). 

Low frequency or busting activity is generally associated with less attentive states. For 

example, in the thalamic LGN of the awake animal, bursting is more common during 

periods of drowsiness and is largely restricted to episodes lasting a few seconds with most 

of the episodes showing rhythmic bursting activity in the delta (0.5-4Hz) frequency 

(Weyland et al., 2001). In accordance, other studies report that the state of vigilance is 

associated with single or tonic firing patterns whereas rhythmic bursting at alpha 

frequencies (8-12Hz) relates to periods of low vigilance (Steriade et al., 1999; Llinás & 

Steriade, 2006). Furthermore, tonic firing increases the signal-to-noise ratio (Sherman, 2001). 

Similarly to the dynamical changes in cortical state, fast temporal changes in EEG activity 

have also been associated with changes in attention and discrimination (Vogel & Luck, 2000; 

Arnott et al., 2001; Bastiaansen & Brunia, 2001). Putting these findings together it is 

reasonable to assume that moments of high vs. low vigilance, so to say, have different 

strength of figure-ground modulation because of the different firing pattern of the 

ascending neurons (see also Supèr et al., 2003a).  

Such an explanation may also be relevant for the observed discrepancy on attentional effects 

in V1. Whereas single-unit studies of attention in monkeys have repeatedly revealed 
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relatively modest attentional modulations in V1, human functional magnetic resonance 

imaging studies demonstrate a large attentional enhancement of the blood oxygen level-

dependent (BOLD) signal in V1. A recent report shows that the neuronal metabolic rate 

differs between low frequency oscillatory bursting and more random or aperiodic (tonic) 

neural firing where the former gives smaller BOLD responses (Parkes et al., 2004). If one 

considers that attention, carried by top-down feedback, affects besides spike rate also the 

firing pattern (bursting versus tonic) fMRI recordings will measure a stronger attentional 

signals than single cell recordings. Finally, it has been shown that cognitive processing of 

sensory stimuli, like attention is represented by spike rate as well as by spike timing 

(synchrony). The finding that feedback changes spike rate by changing spike timing may 

shed some new light on the debate about the neural correlates of cognitive processing.  

 

 Synchronized V1 activity over time during a figure-ground perception task. Seen condition Figure 8.

corresponds to those trials where the animal correctly detected the stimulus and Not-Seen condition 

corresponds to the trials where the animal failed to perceive the stimulus. A side and a top view are 

shown of these correlations. Color indicate correlation strength. Time is from onset of figure-ground 

texture (adapted from Van der Togt et al., 2006). 

The states of arousal and attention are strongly linked with the natural release of 

neuromodulators, in particular acetylcholine, which influence recurrent processing. The 

neuromodulator acetylcholine reduces the efficacy of feedback and intra-cortical 

connections via the activation of muscarinic receptors (Kimura & Baughman, 1997). It also 

increases the efficacy of feedforward connections via the activation of nicotinic receptors 

(Disney et al., 2007). Application of acetylcholine in the primary visual cortex reduces the 

extent of spatial integration and enhances the neuronal responses especially in the later 

(sustained) part of the response (Roberts et al., 2005). Neuromodulators may also modify 

orientation tuning and improve signal-to-noise ratio of neural responses in the primary 

visual cortex (Zinke et al., 2006).  
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The finding that for a perceived figure the strength of neural activity and the functional 

connectivity (synchrony) between neurons in the primary visual cortex prior the textured 

figure-ground presentation is stronger than for a not perceived figure (Supèr at el., 2003a), 

exemplifies a role of cortical state in stimulus perception. In other words, activity 

immediately (~100 msec and not earlier) preceding the onset of the figure-ground stimulus 

relates to the animal's perception of the figure. Apparently, the visual cortex has to quickly 

attain an appropriate state before the sensory information enters the cortex. It appears that 

the different states of the brain preceding stimulus onset (receptive vs. unreceptive, so to 

say) have little or no effect on the early activity that is evoked by the stimulus, but are 

specifically associated with the occurrence of later recurrent interactions between areas 

(Supèr et al., 2003a).  

During the later stages when figure-ground modulation develops the characteristics of 

synchronous activity changes. Still, it does not show an increase or a difference in high 

frequency components for figure and ground responses. This means that synchrony does 

not represent a neural correlate of figure-ground segregation, which is consistent with 

psychophysical (Kiper et al., 1996; Farid & Adelson, 2001), and other neurophysiological 

studies (Lamme & Spekreijse, 1998; Shadlen & Movshon, 1999; Bair et al, 2001; Thiele & 

Stoner, 2003). It is inconsistent, however, with a substantial amount of literature suggesting 

that synchronous activity has a role in high level processes such as perceptual organization, 

attention, sensory-motor binding, and consciousness (see Engel & Singer, 2001). The 

modulations in high frequency synchrony relate to perceptual grouping of local feature 

combinations, which in a figure-ground stimulus are similar for figure and ground textures. 

In other words the receptive fields of the recorded cells that are located in the centre of the 

figure are covered on average by identical local features as when they are located on the 

background. Thus no differences are expected in high frequency synchrony which may 

provide a plausible explanation for the absence of synchrony modulation in figure-ground 

task.  

12. Conclusion 

To sum up, the visual system uses feedforward suppression for figure-ground 

segmentation. It turns out that global inhibition is an important ingredient for figure-ground 

organization although it includes also a feedback component. The latter controls figure-

ground segregation by influencing the neural firing patterns of feedforward projecting 

neurons, enhancing figure responses and further suppressing background responses which 

results in a stronger figure-ground signal. 
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