372 research outputs found

    Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS

    Get PDF
    Background: Corticospinal tract (CST) degeneration and cortical atrophy are consistent features of amyotrophic lateral sclerosis (ALS). We hypothesised that neurite orientation dispersion and density imaging (NODDI), a multicompartment model of diffusion MRI, would reveal microstructural changes associated with ALS within the CST and precentral gyrus (PCG) ‘in vivo’. Methods: 23 participants with sporadic ALS and 23 healthy controls underwent diffusion MRI. Neurite density index (NDI), orientation dispersion index (ODI) and free water fraction (isotropic compartment (ISO)) were derived. Whole brain voxel-wise analysis was performed to assess for group differences. Standard diffusion tensor imaging (DTI) parameters were computed for comparison. Subgroup analysis was performed to investigate for NODDI parameter differences relating to bulbar involvement. Correlation of NODDI parameters with clinical variables were also explored. The results were accepted as significant where p<0.05 after family-wise error correction at the cluster level, clusters formed with p<0.001. Results: In the ALS group NDI was reduced in the extensive regions of the CST, the corpus callosum and the right PCG. ODI was reduced in the right anterior internal capsule and the right PCG. Significant differences in NDI were detected between subgroups stratified according to the presence or absence of bulbar involvement. ODI and ISO correlated with disease duration. Conclusions: NODDI demonstrates that axonal loss within the CST is a core feature of degeneration in ALS. This is the main factor contributing to the altered diffusivity profile detected using DTI. NODDI also identified dendritic alterations within the PCG, suggesting microstructural cortical dendritic changes occur together with CST axonal damage

    Voxel-wise comparisons of cellular microstructure and diffusion-MRI in mouse hippocampus using 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND)

    Get PDF
    A key challenge in medical imaging is determining a precise correspondence between image properties and tissue microstructure. This comparison is hindered by disparate scales and resolutions between medical imaging and histology. We present a new technique, 3D Bridging of Optically-clear histology with Neuroimaging Data (3D-BOND), for registering medical images with 3D histology to overcome these limitations. Ex vivo 120 × 120 × 200 μm resolution diffusion-MRI (dMRI) data was acquired at 7 T from adult C57Bl/6 mouse hippocampus. Tissue was then optically cleared using CLARITY and stained with cellular markers and confocal microscopy used to produce high-resolution images of the 3D-tissue microstructure. For each sample, a dense array of hippocampal landmarks was used to drive registration between upsampled dMRI data and the corresponding confocal images. The cell population in each MRI voxel was determined within hippocampal subregions and compared to MRI-derived metrics. 3D-BOND provided robust voxel-wise, cellular correlates of dMRI data. CA1 pyramidal and dentate gyrus granular layers had significantly different mean diffusivity (p > 0.001), which was related to microstructural features. Overall, mean and radial diffusivity correlated with cell and axon density and fractional anisotropy with astrocyte density, while apparent fibre density correlated negatively with axon density. Astrocytes, axons and blood vessels correlated to tensor orientation

    Examining the development of brain structure in utero with fetal MRI, acquired as part of the Developing Human Connectome Project

    Get PDF
    The human brain is an incredibly complex organ, and the study of it traverses many scales across space and time. The development of the brain is a protracted process that begins embryonically but continues into adulthood. Although neural circuits have the capacity to adapt and are modulated throughout life, the major structural foundations are laid in utero during the fetal period, through a series of rapid but precisely timed, dynamic processes. These include neuronal proliferation, migration, differentiation, axonal pathfinding, and myelination, to name a few. The fetal origins of disease hypothesis proposed that a variety of non-communicable diseases emerging in childhood and adulthood could be traced back to a series of risk factors effecting neurodevelopment in utero (Barker 1995). Since this publication, many studies have shown that the structural scaffolding of the brain is vulnerable to external environmental influences and the perinatal developmental window is a crucial determinant of neurological health later in life. However, there remain many fundamental gaps in our understanding of it. The study of human brain development is riddled with biophysical, ethical, and technical challenges. The Developing Human Connectome Project (dHCP) was designed to tackle these specific challenges and produce high quality open-access perinatal MRI data, to enable researchers to investigate normal and abnormal neurodevelopment (Edwards et al., 2022). This thesis will focus on investigating the diffusion-weighted and anatomical (T2) imaging data acquired in the fetal period, between the second to third trimester (22 – 37 gestational weeks). The limitations of fetal MR data are ill-defined due to a lack of literature and therefore this thesis aims to explore the data through a series of critical and strategic analysis approaches that are mindful of the biophysical challenges associated with fetal imaging. A variety of analysis approaches are optimised to quantify structural brain development in utero, exploring avenues to relate the changes in MR signal to possible neurobiological correlates. In doing so, the work in this thesis aims to improve mechanistic understanding about how the human brain develops in utero, providing the clinical and medical imaging community with a normative reference point. To this aim, this thesis investigates fetal neurodevelopment with advanced in utero MRI methods, with a particular emphasis on diffusion MRI. Initially, the first chapter outlines a descriptive, average trajectory of diffusion metrics in different white matter fiber bundles across the second to third trimester. This work identified unique polynomial trajectories in diffusion metrics that characterise white matter development (Wilson et al., 2021). Guided by previous literature on the sensitivity of DWI to cellular processes, I formulated a hypothesis about the biophysical correlates of diffusion signal components that might underpin this trend in transitioning microstructure. This hypothesis accounted for the high sensitivity of the diffusion signal to a multitude of simultaneously occurring processes, such as the dissipating radial glial scaffold, commencement of pre-myelination and arborization of dendritic trees. In the next chapter, the methods were adapted to address this hypothesis by introducing another dimension, and charting changes in diffusion properties along developing fiber pathways. With this approach it was possible to identify compartment-specific microstructural maturation, refining the spatial and temporal specificity (Wilson et al., 2023). The results reveal that the dynamic fluctuations in the components of the diffusion signal correlate with observations from previous histological work. Overall, this work allowed me to consolidate my interpretation of the changing diffusion signal from the first chapter. It also serves to improve understanding about how diffusion signal properties are affected by processes in transient compartments of the fetal brain. The third chapter of this thesis addresses the hypothesis that cortical gyrification is influenced by both underlying fiber connectivity and cytoarchitecture. Using the same fetal imaging dataset, I analyse the tissue microstructural change underlying the formation of cortical folds. I investigate correlations between macrostructural surface features (curvature, sulcal depth) and tissue microstructural measures (diffusion tensor metrics, and multi-shell multi-tissue decomposition) in the subplate and cortical plate across gestational age, exploring this relationship both at the population level and within subjects. This study provides empirical evidence to support the hypotheses that microstructural properties in the subplate and cortical plate are altered with the development of sulci. The final chapter explores the data without anatomical priors, using a data-driven method to extract components that represent coordinated structural maturation. This analysis aims to examine if brain regions with coherent patterns of growth over the fetal period converge on neonatal functional networks. I extract spatially independent features from the anatomical imaging data and quantify the spatial overlap with pre-defined neonatal resting state networks. I hypothesised that coherent spatial patterns of anatomical development over the fetal period would map onto the functional networks observed in the neonatal period. Overall, this thesis provides new insight about the developmental contrast over the second to third trimester of human development, and the biophysical correlates affecting T2 and diffusion MR signal. The results highlight the utility of fetal MRI to research critical mechanisms of structural brain maturation in utero, including white matter development and cortical gyrification, bridging scales from neurobiological processes to whole brain macrostructure. their gendered constructions relating to women

    Neurite orientation and dispersion density imaging (NODDI) detects cortical and corticospinal tract degeneration in ALS

    Get PDF
    BACKGROUND: Corticospinal tract (CST) degeneration and cortical atrophy are consistent features of amyotrophic lateral sclerosis (ALS). We hypothesised that neurite orientation dispersion and density imaging (NODDI), a multicompartment model of diffusion MRI, would reveal microstructural changes associated with ALS within the CST and precentral gyrus (PCG) ‘in vivo’. METHODS: 23 participants with sporadic ALS and 23 healthy controls underwent diffusion MRI. Neurite density index (NDI), orientation dispersion index (ODI) and free water fraction (isotropic compartment (ISO)) were derived. Whole brain voxel-wise analysis was performed to assess for group differences. Standard diffusion tensor imaging (DTI) parameters were computed for comparison. Subgroup analysis was performed to investigate for NODDI parameter differences relating to bulbar involvement. Correlation of NODDI parameters with clinical variables were also explored. The results were accepted as significant where p<0.05 after family-wise error correction at the cluster level, clusters formed with p<0.001. RESULTS: In the ALS group NDI was reduced in the extensive regions of the CST, the corpus callosum and the right PCG. ODI was reduced in the right anterior internal capsule and the right PCG. Significant differences in NDI were detected between subgroups stratified according to the presence or absence of bulbar involvement. ODI and ISO correlated with disease duration. CONCLUSIONS: NODDI demonstrates that axonal loss within the CST is a core feature of degeneration in ALS. This is the main factor contributing to the altered diffusivity profile detected using DTI. NODDI also identified dendritic alterations within the PCG, suggesting microstructural cortical dendritic changes occur together with CST axonal damage

    Bringing Anatomical Information into Neuronal Network Models

    Full text link
    For constructing neuronal network models computational neuroscientists have access to wide-ranging anatomical data that nevertheless tend to cover only a fraction of the parameters to be determined. Finding and interpreting the most relevant data, estimating missing values, and combining the data and estimates from various sources into a coherent whole is a daunting task. With this chapter we aim to provide guidance to modelers by describing the main types of anatomical data that may be useful for informing neuronal network models. We further discuss aspects of the underlying experimental techniques relevant to the interpretation of the data, list particularly comprehensive data sets, and describe methods for filling in the gaps in the experimental data. Such methods of `predictive connectomics' estimate connectivity where the data are lacking based on statistical relationships with known quantities. It is instructive, and in certain cases necessary, to use organizational principles that link the plethora of data within a unifying framework where regularities of brain structure can be exploited to inform computational models. In addition, we touch upon the most prominent features of brain organization that are likely to influence predicted neuronal network dynamics, with a focus on the mammalian cerebral cortex. Given the still existing need for modelers to navigate a complex data landscape full of holes and stumbling blocks, it is vital that the field of neuroanatomy is moving toward increasingly systematic data collection, representation, and publication

    Regional microstructural organization of the cerebral cortex is affected by preterm birth.

    Get PDF
    Objectives: To compare regional cerebral cortical microstructural organization between preterm infants at term-equivalent age (TEA) and healthy full-term newborns, and to examine the impact of clinical risk factors on cerebral cortical micro-organization in the preterm cohort. Study design: We prospectively enrolled very preterm infants (gestational age (GA) at birth\u3c32 \u3eweeks; birthweight\u3c1500 \u3eg) and healthy full-term controls. Using non-invasive 3T diffusion tensor imaging (DTI) metrics, we quantified regional micro-organization in ten cerebral cortical areas: medial/dorsolateral prefrontal cortex, anterior/posterior cingulate cortex, insula, posterior parietal cortex, motor/somatosensory/auditory/visual cortex. ANCOVA analyses were performed controlling for sex and postmenstrual age at MRI. Results: We studied 91 preterm infants at TEA and 69 full-term controls. Preterm infants demonstrated significantly higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices suggesting delayed maturation of these cortical areas. Additionally, postnatal hydrocortisone treatment was related to accelerated microstructural organization in the prefrontal and somatosensory cortices. Conclusions: Preterm birth alters regional microstructural organization of the cerebral cortex in both neurocognitive brain regions and areas with primary sensory/motor functions. We also report for the first time a potential protective effect of postnatal hydrocortisone administration on cerebral cortical development in preterm infants

    Beyond Crossing Fibers: Tractography Exploiting Sub-voxel Fibre Dispersion and Neighbourhood Structure

    Get PDF
    In this paper we propose a novel algorithm which leverages models of white matter fibre dispersion to improve tractography. Tractography methods exploit directional information from diffusion weighted magnetic resonance (DW-MR) imaging to infer connectivity between different brain regions. Most tractography methods use a single direction (e.g. the principal eigenvector of the diffusion tensor) or a small set of discrete directions (e.g. from the peaks of an orientation distribution function) to guide streamline propagation. This strategy ignores the effects of within-bundle orientation dispersion, which arises from fanning or bending at the sub-voxel scale, and can lead to missing connections. Various recent DW-MR imaging techniques estimate the fibre dispersion in each bundle directly and model it as a continuous distribution. Here we introduce an algorithm to exploit this information to improve tractography. The algorithm further uses a particle filter to probe local neighbourhood structure during streamline propagation. Using information gathered from neighbourhood structure enables the algorithm to resolve ambiguities between converging and diverging fanning structures, which cannot be distinguished from isolated orientation distribution functions. We demonstrate the advantages of the new approach in synthetic experiments and in vivo data. Synthetic experiments demonstrate the effectiveness of the particle filter in gathering and exploiting neighbourhood information in recovering various canonical fibre configurations and experiments with in vivo brain data demonstrate the advantages of utilising dispersion in tractography, providing benefits in practical situations. © 2013 Springer-Verlag

    Probing brain microstructure with multidimensional diffusion MRI: Encoding, interpretation, and the role of exchange

    Get PDF
    Diffusion MRI (dMRI) is a non-invasive probe of human brain microstructure. It is a long-standing promise to use dMRI for ‘in vivo histology’ and estimate tissue quantities. However, this faces several challenges. First, the microstructure models used for dMRI data are based on assumptions that may cause erroneous interpretations. Also, probing neurites in gray matter assumes high microscopic diffusion anisotropy in both axons and dendrites, which is not supported by evidence. Furthermore, dMRI data analysis typically ignores diffusional exchange between microscopic environments. This thesis investigates and addresses these challenges using ‘multidimensional’ dMRI techniques that vary additional sequence encoding parameters to obtain new information on the tissue. In Paper I, we optimized an acquisition protocol for filter exchange imaging (FEXI). We found slow rates of diffusional exchange in normal brain tissue. In patients with gliomas and meningiomas, faster exchange was tentatively associated with higher tumor grade. In Paper II, we used tensor-valued diffusion encoding to test the NODDI microstructure model. The NODDI assumptions were contradicted by independent data and parameter estimates were found to be biased in normal brain and in gliomas. The CODIVIDE model combined data acquired with different b-tensor shapes to remove NODDI assumptions and reduce the susceptibility to bias. In Paper III, we used tensor-valued diffusion encoding with multiple echo times to investigate challenges in estimating neurite density. We found that microscopic anisotropy in the brain reflected axons but not dendrites. We could not separate the densities and T2 values of a two-component model in normal brain, but we did detect different component T2 values in white matter lesions. Microstructure models ranked regions from normal brain and white matter lesions inconsistently with respect to neurite density. In Paper IV, we optimized an acquisition protocol for tensor-valued diffusion encoding with multiple echo times. The data allowed removing all assumptions on diffusion and T2 relaxation from a two-component model. This increased the measurable parameters from two to six and reduced their susceptibility to bias. Data from the normal brain showed different component T2 values and contradicted common model assumptions. In Paper V, we used tensor-valued diffusion encoding in malformations of cortical development. Lesions that appeared gray matter-like in T1- and T2-weighted contrasts featured white matter-like regions with high microscopic diffusion anisotropy. We interpreted these regions as myelin-poor white matter with a high axonal content. By primarily reflecting axons and not dendrites or myelin, microscopic anisotropy may differentiate tissue where alterations to myelin confound conventional MRI contrasts. In Paper VI, we used SDE with multiple diffusion times in patients with acute ischemic stroke. Subacute lesions exhibited elevated diffusional exchange that predicted later infarction. MD reduction was partially reversible and did not predict infarction. Diffusional exchange may improve definition of ischemic core and identify additional patients for late revascularization
    • …
    corecore