883 research outputs found

    IMPLEMENTATION OF A HARDWARE TROJAN CHIP DETECTOR MODEL USING ARDUINO MICROCONTROLLER

    Get PDF
    These days, hardware devices and its associated activities are greatly impacted by threats amidst of various technologies. Hardware trojans are malicious modifications made to the circuitry of an integrated circuit, Exploiting such alterations and accessing the level of damage to devices is considered in this work. These trojans, when present in sensitive hardware system deployment, tends to have potential damage and infection to the system. This research builds a hardware trojan detector using machine learning techniques. The work uses a combination of logic testing and power side-channel analysis (SCA) coupled with machine learning for power traces. The model was trained, validated and tested using the acquired data, for 5 epochs. Preliminary logic tests were conducted on target hardware device as well as power SCA. The designed machine learning model was implemented using Arduino microcontroller and result showed that the hardware trojan detector identifies trojan chips with a reliable accuracy. The power consumption readings of the hardware characteristically start at 1035-1040mW and the power time-series data were simulated using DC power measurements mixed with additive white Gaussian noise (AWGN) with different standard deviations. The model achieves accuracy, precision and accurate recall values. Setting the threshold proba¬bility for the trojan class less than 0.5 however increases the recall, which is the most important metric for overall accuracy acheivement of over 95 percent after several epochs of training

    Homomorphic Data Isolation for Hardware Trojan Protection

    Full text link
    The interest in homomorphic encryption/decryption is increasing due to its excellent security properties and operating facilities. It allows operating on data without revealing its content. In this work, we suggest using homomorphism for Hardware Trojan protection. We implement two partial homomorphic designs based on ElGamal encryption/decryption scheme. The first design is a multiplicative homomorphic, whereas the second one is an additive homomorphic. We implement the proposed designs on a low-cost Xilinx Spartan-6 FPGA. Area utilization, delay, and power consumption are reported for both designs. Furthermore, we introduce a dual-circuit design that combines the two earlier designs using resource sharing in order to have minimum area cost. Experimental results show that our dual-circuit design saves 35% of the logic resources compared to a regular design without resource sharing. The saving in power consumption is 20%, whereas the number of cycles needed remains almost the sam

    Comprehensive Designs of Innovate Secure Hardware Devices against Machine Learning Attacks and Power Analysis Attacks

    Get PDF
    Hardware security is an innovate subject oriented from growing demands of cybersecurity and new information vulnerabilities from physical leakages on hardware devices. However, the mainstream of hardware manufacturing industry is still taking benefits of products and the performance of chips as priority, restricting the design of hardware secure countermeasures under a compromise to a finite expense of overheads. Consider the development trend of hardware industries and state-of-the-art researches of architecture designs, this dissertation proposes some new physical unclonable function (PUF) designs as countermeasures to side-channel attacks (SCA) and machine learning (ML) attacks simultaneously. Except for the joint consideration of hardware and software vulnerabilities, those designs also take efficiencies and overhead problems into consideration, making the new-style of PUF more possible to be merged into current chips as well as their design concepts. While the growth of artificial intelligence and machine-learning techniques dominate the researching trends of Internet of things (IoT) industry, some mainstream architectures of neural networks are implemented as hypothetical attacking model, whose results are used as references for further lifting the performance, the security level, and the efficiency in lateral studies. In addition, a study of implementation of neural networks on hardware designs is proposed, this realized the initial attempt to introduce AI techniques to the designs of voltage regulation (VR). All aforementioned works are demonstrated to be of robustness to threats with corresponding power attack tests or ML attack tests. Some conceptional models are proposed in the last of the dissertation as future plans so as to realize secure on-chip ML models and hardware countermeasures to hybrid threats

    DeMiST: Detection and Mitigation of Stealthy Analog Hardware Trojans

    Full text link
    The global semiconductor supply chain involves design and fabrication at various locations, which leads to multiple security vulnerabilities, e.g., Hardware Trojan (HT) insertion. Although most HTs target digital circuits, HTs can be inserted in analog circuits. Therefore, several techniques have been developed for HT insertions in analog circuits. Capacitance-based Analog Hardware Trojan (AHT) is one of the stealthiest HT that can bypass most existing HT detection techniques because it uses negligible charge accumulation in the capacitor to generate stealthy triggers. To address the charge sharing and accumulation issues, we propose a novel way to detect such capacitance-based AHT in this paper. Secondly, we critically analyzed existing AHTs to highlight their respective limitations. We proposed a stealthier capacitor-based AHT (fortified AHT) that can bypass our novel AHT detection technique by addressing these limitations. Finally, by critically analyzing the proposed fortified AHT and existing AHTs, we developed a robust two-phase framework (DeMiST) in which a synchronous system can mitigate the effects of capacitance-based stealthy AHTs by turning off the triggering capability of AHT. In the first phase, we demonstrate how the synchronous system can avoid the AHT during run-time by controlling the supply voltage of the intermediate combinational circuits. In the second phase, we proposed a supply voltage duty cycle-based validation technique to detect capacitance-based AHTs. Furthermore, DeMiST amplified the switching activity for charge accumulation to such a degree that it can be easily detectable using existing switching activity-based HT detection techniques.Comment: Accepted at ACM Hardware and Architectural Support for Security and Privacy (HASP) 202

    Emerging Security Threats in Modern Digital Computing Systems: A Power Management Perspective

    Get PDF
    Design of computing systems — from pocket-sized smart phones to massive cloud based data-centers — have one common daunting challenge : minimizing the power consumption. In this effort, power management sector is undergoing a rapid and profound transformation to promote clean and energy proportional computing. At the hardware end of system design, there is proliferation of specialized, feature rich and complex power management hardware components. Similarly, in the software design layer complex power management suites are growing rapidly. Concurrent to this development, there has been an upsurge in the integration of third-party components to counter the pressures of shorter time-to-market. These trends collectively raise serious concerns about trust and security of power management solutions. In recent times, problems such as overheating, performance degradation and poor battery life, have dogged the mobile devices market, including the infamous recall of Samsung Note 7. Power outage in the data-center of a major airline left innumerable passengers stranded, with thousands of canceled flights costing over 100 million dollars. This research examines whether such events of unintentional reliability failure, can be replicated using targeted attacks by exploiting the security loopholes in the complex power management infrastructure of a computing system. At its core, this research answers an imminent research question: How can system designers ensure secure and reliable operation of third-party power management units? Specifically, this work investigates possible attack vectors, and novel non-invasive detection and defense mechanisms to safeguard system against malicious power attacks. By a joint exploration of the threat model and techniques to seamlessly detect and protect against power attacks, this project can have a lasting impact, by enabling the design of secure and cost-effective next generation hardware platforms

    A survey on security analysis of machine learning-oriented hardware and software intellectual property

    Get PDF
    Intellectual Property (IP) includes ideas, innovations, methodologies, works of authorship (viz., literary and artistic works), emblems, brands, images, etc. This property is intangible since it is pertinent to the human intellect. Therefore, IP entities are indisputably vulnerable to infringements and modifications without the owner’s consent. IP protection regulations have been deployed and are still in practice, including patents, copyrights, contracts, trademarks, trade secrets, etc., to address these challenges. Unfortunately, these protections are insufficient to keep IP entities from being changed or stolen without permission. As for this, some IPs require hardware IP protection mechanisms, and others require software IP protection techniques. To secure these IPs, researchers have explored the domain of Intellectual Property Protection (IPP) using different approaches. In this paper, we discuss the existing IP rights and concurrent breakthroughs in the field of IPP research; provide discussions on hardware IP and software IP attacks and defense techniques; summarize different applications of IP protection; and lastly, identify the challenges and future research prospects in hardware and software IP security

    Adversarial Deep Learning and Security with a Hardware Perspective

    Get PDF
    Adversarial deep learning is the field of study which analyzes deep learning in the presence of adversarial entities. This entails understanding the capabilities, objectives, and attack scenarios available to the adversary to develop defensive mechanisms and avenues of robustness available to the benign parties. Understanding this facet of deep learning helps us improve the safety of the deep learning systems against external threats from adversaries. However, of equal importance, this perspective also helps the industry understand and respond to critical failures in the technology. The expectation of future success has driven significant interest in developing this technology broadly. Adversarial deep learning stands as a balancing force to ensure these developments remain grounded in the real-world and proceed along a responsible trajectory. Recently, the growth of deep learning has begun intersecting with the computer hardware domain to improve performance and efficiency for resource constrained application domains. The works investigated in this dissertation constitute our pioneering efforts in migrating adversarial deep learning into the hardware domain alongside its parent field of research
    • …
    corecore