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ABSTRACT

COMPREHENSIVE DESIGNS OF INNOVATE SECURE HARDWARE
DEVICES AGAINST MACHINE LEARNING ATTACKS AND POWER

ANALYSIS ATTACKS

Yiming Wen
Old Dominion University, 2020

Director: Dr. Weize Yu

Hardware security is an innovate subject oriented from growing demands of cybersecurity

and new information vulnerabilities from physical leakages on hardware devices. However,

the mainstream of hardware manufacturing industry is still taking benefits of products and

the performance of chips as priority, restricting the design of hardware secure countermea-

sures under a compromise to a finite expense of overheads. Consider the development trend

of hardware industries and state-of-the-art researches of architecture designs, this disser-

tation proposes some new physical unclonable function (PUF) designs as countermeasures

to side-channel attacks (SCA) and machine learning (ML) attacks simultaneously. Except

for the joint consideration of hardware and software vulnerabilities, those designs also take

efficiencies and overhead problems into consideration, making the new-style of PUF more

possible to be merged into current chips as well as their design concepts. While the growth

of artificial intelligence and machine-learning techniques dominate the researching trends of

Internet of things (IoT) industry, some mainstream architectures of neural networks are im-

plemented as hypothetical attacking model, whose results are used as references for further

lifting the performance, the security level, and the efficiency in lateral studies. In addition,

a study of implementation of neural networks on hardware designs is proposed, this realized

the initial attempt to introduce AI techniques to the designs of voltage regulation (VR). All



aforementioned works are demonstrated to be of robustness to threats with corresponding

power attack tests or ML attack tests. Some conceptional models are proposed in the last

of the dissertation as future plans so as to realize secure on-chip ML models and hardware

countermeasures to hybrid threats.
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CHAPTER 1

INTRODUCTION

1.1 HARDWARE SECURITY

What is the trend of computer technology in the next decade? This holds a big question

mark for researchers for almost a century. The answer changes dramatically: from a huge

monster ENIAC to a cute Alexa set, from the rising of Moore’s Law to the prototype of

quantum computer, and even from an Intel 4004 with frequency at 104 kHz to an AMD

Threadripper 3970 with frequency at 4.6GHz. Questions come and go. The secure system,

however, holds its extraordinary vitality in every generation and grows up to a prosperous

subject, cybersecurity, today. Except for traditional software secure methods that are still

under updating to meet our current Internet environment, some innovate hardware-based

threats are recently proposed and request higher demands on hardware designs. Due to the

new hardware attacking methods and the increasing distribution of Internet of things (IoT)

devices, hardware security is proposed as an extended protection solution of conventional

software-based cryptographic system.

Different from conventional software-based threats, hardware threats aim at seeking for

vulnerabilities in signal leakage, design defects, and/or insert malicious hardware devices to

bypass software countermeasures in higher network layers. Due to the design demand for

better performance, most current chip designs tend to think little of protections of hardware

signals. Those physical leakages, in return, can be used for mathematical analysis and for
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further extraction of confidential information. Consequently, some countermeasures are

proposed to hide/encrypt those secrets in physical designs.

Although some models of threats and their countermeasures are presented and proved

to be of potential research value to cybersecurity studies, the industries are still not aware

of the importance of hardware protections in some ways. First of all, the investment-

yield ratio is still the prior consideration of the market. The pursuit of Moore’s law is

not just for the need of higher performance but also for the commercial competition in

the chip market. If a secure hardware design consumes too much system source such as

area, power, heating, etc, the reduction of performance will drive consumers to select other

brands. Moreover, hardware threats have not caused severe secure information panic. This is

mainly because hardware-based attacks are usually stealthy and requires ancillary equipment

to extract and analyze physical signals, which makes information stealing from hardware

difficult to ordinary people. In addition, some hardware attacks like hardware Trojan can

only be implemented during fabrications. This means the reveal of vulnerabilities can only

be achieved by designers. The detection of the information leakage would cause excess costs.

Opposite to the sluggish reaction of the market, hardware threats develop greatly due

to the growth of advanced technologies. On the one hand, some work already proved that

physical threats combined with high-level anti-detection designs are more aggressive to con-

fidential information [8, 9, 10]. On the other hand, machine learning (ML) introduces some

innovate vulnerabilities, giving even more challenges to secure hardware designs [11, 12].

As a result, comprehensive hardware security designs with considerations of both hardware

and software attacks would be the final solution to cater to the market. Limited by those
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conditions, it can be foreseen that future secure hardware devices should be of features that

include but not limit to:

• Design on existing functional devices instead of independent secure hardware modules.

Although independent hardware modules provide more secure protection mechanisms,

the overheads of speed, power, and area require hardware designers to sacrifice some

hardware performance to achieve the encryption standard.

• Considerations of jointly resisting side-channel attacks (SCA) and ML attacks. With

more IoT devices applied and distributed under unsupervised, leaked physical signal

can be targeted and extracted more easily. With the growth of ML technologies,

traditional countermeasures to SCA need to be redesigned to confront ML attacks.

• Detection of hardware Trojan need to be aware. Some pre-implemented hardware

Trojans tend to negate cryptographic modules.

1.2 SIDE-CHANNEL ATTACKS

Oriented from the natural flaws of switching characteristics in modern complementary

metal oxide semiconductors (CMOS), some features or functionality can be analyzed with

leaked physical signals. Depending on measurement equipment that is used by attackers,

heat, power, time delay, and many more measurement dimensions can be monitored by

attackers. Many published papers have proved that side channel attacks are of higher

efficiency to modern encryption systems [13, 14, 15, 16]. Among all attacking techniques of

side channel attacks, power analysis attacks are most referred and studied. Depending on
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complexity of attacks and types of analyzed power, power analysis attacks can be categorized

as simple power analysis, differential power analysis (DPA), and leakage power analysis

(LPA). Fig. 1.1 shows an experimental result of simple power analysis attacks [1]. In this

early study, it has been proved that the Hamming weight of the byte being processed is

proportional to the height of the power consumption pulse. However, due to the awareness

of power analysis attacks, current hardware designs are usually attached with SCA-resistant

designs at either circuit level and architecture level [17]. As a result, DPA and LPA are

mainstream researches of current side-channel attacks in which the former focuses on analysis

of relationship between confidential information and dynamic power consumption while the

latter cares more on mathematical analysis on static power traces. Comparing to DPA

attacks, LPA attacks are more dangerous to our cryptographic systems. Djukanovic et al.

[18] perform LPA attacks on various DPA-resistant logic styles and reveal LPA attacks are

effective in extracting confidential information in both CMOS bit sliced circuits and CMOS

combinational circuits (e.g., S-boxes).

Conventional countermeasures to power analysis attacks emphasize the reduction of de-

pendency of side-channel leakage and power consumption profile. The power consumption,

first of all, can be mitigated by redesigning on CMOS devices. A well designed magnetic

tunnel junction CMOS can produce uniform power consumption during operation [19]. By

introducing user-defined security metric using constrained state assignment, the power foot-

print can be encoded [20], making it impossible to reveal the correlation between confidential

information and leaked power. A multi-core processor combining Random Dynamic Task

Scheduling, Random Dynamic Frequency Scaling, and Random Dynamic Phase Adjustment
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Fig. 1.1: Hamming weight information can be extracted from leaked signal of power con-
sumption [1].

is proved to be of resistance to DPA attacks [21]. Although randomized input can be utilized

to arbitrary initial input values on an AES circuit [22], innovate power analysis methods

using convolutional neural networks [23, 24, 25] are still challenging hardware designers

to push the complexity of secure designs to a higher level. Other than the competition

to advanced attacking approaches, another straits in designing countermeasures to SCA is

the limitation of power budget and area restriction. Some researchers raise their ideas on

low-overhead secure designs to particular side-channel attack method [26, 27]. However, to

design an architecture to obstruct all potential physical leakages is still expensive.

1.3 PHYSICAL UNCLONABLE FUNCTION DEVICES

Physical Unclonable Function (PUF) devices are innovate circuit primitives that exploit

inherent manufacturing profess variations as natural random variables to realize some se-

cure functions in physical level [28]. According to the specific architecture design, different
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physical parameters, such as voltage, time delay, frequency, etc., can be utilized as referred

variables in comparison. In this way, binary input sequences drive the designed PUF prim-

itive to generate random outputs, which form the core security parameter called challenge

response pairs (CRPs). On the basis of the scale of generated CRPs, a weak PUF is defined

as a PUF that generates a countable set of obtainable CRPs, while a PUF primitive that

generate relative infinite CRPs is called strong PUF. With their inherent random feature,

the internal arithmetic logic and characteristic parameter are usually unpredictable until

the measurement collection after fabrication. Thus, each PUF is unique to its circuit layout

and is hard to replicate in practice. This makes PUF devices excellent candidacy in security

applications such as authentication, key generation, and noise generation [28, 29].

Up to date, variant PUF primitives are invented to meet the demand of different scenar-

ios. Arbiter PUF [30] utilize delay features in logic gates and realize early strong PUF. A

SRAM-PUF uses the power-up states of a SRAM cell to realize logical PUF design, making

it a practical ID/key generator in micro-controllers. Besides, ring-oscillator (RO) PUFs are

inspired by its multi-input and lightweight features. It is also widely used as protection

mechanisms in distributed wireless sensor networks.

Nonetheless, associating with the spreading application of PUFs and the design of new

PUF primitives, what we cannot ignore are potential risks under attacks and the demand

of market. Initially, most proposed PUF designs rely on highly linear comparing logic,

which is usually vulnerable to machine learning attacks. Moreover, PUF devices are always

implemented as an independent security unit instead of a functional module that promote

performance of devices. This will obviously introduce considerable overhead and occupy
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system resources. Consider the contradiction to the pursuit of profits, only devices that

requires special protection or are exposed to a vulnerable environment will be allocated

with protections of PUFs. With the quickening spreading of IoT devices, more intelligent

devices will become preys of potential malicious attacks. Consequently, there is an urgent

need for a bran-new design standard for PUFs to accommodate the demand of security and

overhead.

1.4 MACHINE LEARNING

Machine learning (ML) is an interdisciplinary subject that exploits theories of probabil-

ity, statistics, approximation, convex analysis, etc. to endow computers machines to imitate

human’s learning process from prior experience in order to obtain new knowledge or desired

functions. As a cutting edge technology in artificial intelligence, ML has been proved to be

beneficial in applications of medicine, genetics, data mining, and more promising research

fields [31, 32, 33]. According to the demand of tasks, data analysts are capable to design

their own neural networks and inject validating learning data that leads our machines to

achieve particular functions. Those learning processes are usually categorized as super-

vised learning and unsupervised learning that are practical in classification, regression, data

description, etc [34]. With the massive advent of software development environment/kits

[35, 36, 37], to design a customized network is no longer a monopoly to data researchers

and engineers. More educational resources are infused into this field, making ML a booming

industry and the hottest topic today.

However, just like every story that we learned from our history, a rising technology is

a double bladed sword. Except for the excellent performance in the technology revolution,
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we can never ignore potential risks since ML is also a dangerous tool for attackers. As

hardware security engineers, we know more about this. In this section, more details will be

highlighted in how ML is applied in defense and attack mechanisms.

1.4.1 MACHINE LEARNING ATTACKS IN HARDWARE SYSTEM

Early investigations of malicious hardware-based attacks tend to hypothesize that at-

tackers extract physical signals from defects of designs and perform mathematical analysis

according to collected information. Recent studies [38, 39] demonstrate machine learning

models exhibit extensive potentials in data mining and analysis, extensively reducing the

time cost in extracting confidential information from physical signals. Owing to the cruel

environment of competition, devices’ resistance against machine learning attacks is proposed

as a new design criterion to all new secure hardware design. At present, the application of

machine learning attacks are usually categorized into two main aspects. One direction of

attacks attempts to adopt machine learning as auxiliary tools of mathematical analysis in

revealing secret information.

Fig. 1.2 shows an example of profiling attack using ML learning as its modeling tool.

The side-channel signals are initially collected from targeted hardware devices. By injecting

adequate number of input data and objective physical signals which contains potential cor-

relation to confidential information, a training data set is thus established. In this case, the

constructed neural network is regarded as a black box whose learning results may describe

the relationship in given training samples. If the training dataset is large enough and the

network model is well constructed, the trained model should be capable in imitating the

inner logic of the cryptographic chip. By means of ML, attackers will no longer bother to
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(a) (b)

Fig. 1.2: Profiling-based side-channel analysis attack using machine learning as modeling
tools: (a) profiling phase; (b) attack phase [2]

attempt different secret keys or build specific mathematical models. A well-trained model

is sufficient for attackers to manipulate the hardware system as desired.

Another malicious ML attack model that we have to face today is IC overbuilding, a

modeling attack that aims to crack the authentication system of PUF devices. The operation

of data extraction and model training are similar to aforementioned side-channel attacks.

In practice, SVM, logistic regression, and more advanced DNN architectures are used as

cracking models to PUF primitives.

1.4.2 MACHINE LEARNING COUNTERMEASURES IN HARDWARE SE-

CURITY

By contrast, ML possess more extraordinary capabilities in designs of hardware security.
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One remarkable application is the detection of hardware Trojans. By implementing secret

extracting hardware part, hardware Trojans forms malicious inclusions in hardware system

that result in the degradation of performance or the failure of functions in hardware systems

[2]. Due to the increasing globalization of industry have been increasing, more third-party

manufacturers take part in the production of chips, raising risks that malicious inclusions to

be embedded onto the primary design. Hence, the detection of malicious inclusions comes to

be a pivotal mechanism in current hardware manufacture. On the basis of the dependence

of the usage of golden-chips, fabricated chips that is validated as free of the infection of

hardware Trojans, countermeasures to hardware Trojans can be classified as golden-chip

methods and golden-chip free methods. Benefiting from machine learning, the workload of

data analysis and feature extraction is greatly reduced. By using the divergences in power

consumption, [40] exploits support vector machine as a golden-chip based method. An ASIC

based implementation method of hardware Trojans is proposed in [41]. Simultaneously, a

comprehensive detection using SVM, PCA, and side-channel extraction is introduced by

the same team. In addition, more advanced researches of deep neural networks (DNN)

participate in the wrestle of confidential information. [42] introduces a method that op-

timize non-linearity after an initial PCA analysis on hardware Trojans. A BP network is

demonstrated to be efficient in accomplishing multiple Trojan detection works individually

[43]. This also proves neural networks have satisfying performances in self-learning and data

adaptions.
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1.5 HARDWARE TROJANS

Hardware Trojans are malicious hardware inclusions that leak secret information, de-

grade the performance of the system, or cause denial-of-service [2]. With the promotion of

globalization and industrial cooperation, the production of a single chip may always involve

the engagement of third-party companies. Since the confidential information is always of

great appeal to attackers, commercial spies and alike information thieves tend to exploit

state-of-the-art technologies and seek unusual attack approaches and vulnerabilities to steal

confidential information. Under this background, hardware Trojans and their corresponding

detection theories are thus proposed.

Unlike aforementioned non-invasive attack models, like ML attacks and SCA attacks,

hardware Trojans is always implemented during fabrication process. For any ML attack

models or SCA attack models, approaches of data extraction, methods/tools of analysis,

targets of vulnerable architectures are mostly transcendental to designers or security en-

gineers. Based on investigated vulnerabilities or accidents that happens, there are always

countermeasures that obstruct the attack procedure. The detection and removal of hard-

ware Trojans, however, is extremely difficult and troublesome. First of all, those malicious

components can be very small comparing to the whole layout. Liu et al. propose two mali-

cious inclusion designs that only introduce several diodes to achieve effective data extraction

[44]. The scale of Trojans means attackers do not greatly change the function or physical

signals. Thus, it is always difficult to be aware of the existence of Trojans.

Current studies of hardware Trojans pay more attention to detection of particular Trojan

types. And according to usage of golden chips, chips that are free from Trojan infection,
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detection approaches can be categorized as golden chip-based methods and golden chip-free

methods. As the name implies, golden chip-based methods require a bunch of chips that

are validated free from infection. By using secure reference group, the differences between

Trojan-infected chips and golden chips can be easily extracted when comparing physical

divergence in between. [40] utilize the frequency domain components of power consumption

traces as their reference variable and use support vector machine (SVM) to filter infected

chips. A Bayesian method is used to analyze current divergences in two groups [45]. The

execution path delay can also be used as examining variable. By using principle component

analysis (PCA), a divergence in time delay can be detected to categorize Trojan-infected

chips [46]. As for golden chip-free methods, the detection is mostly based on a known

parameter dimension that physical parameters may vary between/among target groups.

[44] utilize PCA as analyzing tool to map transmission power into three dimensional points

and finally classify chip samples into three groups (one Trojan-free and two Trojan infected).

Although a great number of papers are proposed on detection approaches of Trojan chips,

some defects still exist in their detection procedures. First of all, most Trojan detection

methods are proposed with a new Trojan design. Those methods are mostly valid only for

the proposed Trojan chips. Moreover, some Trojan detection method only focus on one

or two physical parameters. And that is under an assumption that attackers are using the

particular Trojan types. As for golden chip-free methods, most proposed work only use PCA

or SVM as feature extraction tools. Those methods do not specify the rationality that uses

ML models. And in reality, if the Trojan type is unknown, there is no guarantee that the

divergence signal can be truly extracted and used for further Trojan detection. Therefore, a
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general golden chip-free detection approach is still the ultimate goal in the research domain

of hardware Trojans.

1.6 OUR CONTRIBUTION

Consider the current development and bottlenecks of PUF devices illustrated in Sec-

tion 1.1. The trends of future secure hardware devices should manage to elevate security

performance against potential attacks by means of hardware and software simultaneously.

In the meantime, the reduction of excess overhead is also an essential consideration. There-

fore, we propose our improved designs of secure hardware devices. Our contribution in this

work is summarized as follows:

• Chapter 2 proposes an innovate design of physical unclonable function device against

machine learning attacks and side channel attacks.

• Chapter 3 investigates features of wave dynamic differential logic (WDDL) and propose

our design of a new PUF primitive against machine learning attacks and power attacks.

• Chapter 4 reviews drawbacks of two former designs and introduces a new floorplan for

PUF primitives, aiming at giving an ultimate solution to non-invasive attacks.

• Chapter 6 designs an innovate hardware Trojan for conventional PUF primitive. A

statistical method is proposed as new golden chip-free detection approach.

• Chapter 5 aims at vulnerabilities in profiling attacks and examine the effectiveness of

a new attack model that jointly use ML models and SCA models.
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• Chapter 7 summarizes all previous chapters and systematically integrates concepts of

designs, vulnerability detection, and performance evaluation into a whole.

• Chapter 8 exhibits reviews of our current work and future research plans after gradu-

ation are mapped out.
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CHAPTER 2

DESIGN AN INNOVATE PHYSICAL UNCLONABLE

FUNCTION DEVICE WITH VOLTAGE REGULATOR

2.1 MOTIVATION

On-chip workload-aware multi-phase voltage regulators (WAMPVRs) is a countermea-

sure to power attacks1. Oriented from voltage regulation techniques, WAMPVRs aims at

mitigating output power profiles while keeping small, fast efficient, high power density, and

robust features of initial voltage regulators [48, 49]. By introducing random sequence control

scheme, the leakage power can be mitigated to an acceptable level as well as keep a high

power conversion efficiency. Converter-gating (CoGa) regulator [3] and converter-reshuffling

(CoRe) regulators [50] are two typical regulating techniques. Fig. 2.1 exhibits the base ar-

chitecture design of CoGa regulator and CoRe regulator. Both architectures adopt similar

layout designs. In CoGa regulation scheme, the pseudo-random number generator (PRNG)

will act according to the change of output power. When the power demand does not change

dramatically, the control signal from the PRNG tends to remain unchanged to maintain

a stable output power profile. In CoRe regulators, however, the PRNG will take former

control signal as references. By keeping changing the input control sequence, the entropy

value of the input sequence is elevated and more randomness can be introduced to protect

the output power to be extracted and analyzed.

1The content of this Chapter partially has been published in [47].
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Fig. 2.1: CoGa regulator in [3] (8-phase) introduces PRNG to realize the mitigation of
output power profiles.

In the aforementioned architecture of CoRe voltage regulator, the input sequence is under

controlled by a PRNG, which can be served as a binary sequence input. Besides, all flying

capacitors are interleaved with shifted clocks. If we take flying capacitors in each stage as

random outcomes of manufacturing fabrication and the capacitance discrimination can be

detected and compared, the output power should produce a sensible difference even two

identical input sequences are applied on two CoRe voltage regulators. Consequently, CoRe

voltage regulator can be easily redesigned as a new PUF. Since the new PUF is designed

on a functional device, the overhead of the PUF is greatly reduced compared to traditional

SRAM PUF, arbiter PUF, or ring-oscillator (RO) PUF. Those traditional PUF primitives

only provide security features which introduce losses in power and area. In this research,

we would like to provide an innovate thinking of PUF design, by which we can consider

whether we can design and implement PUF primitives on an existing device in our current

computer architecture.
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2.2 BACKGROUND

The workload-aware multi-phase voltage regulators (WAMPVRs) like converter-gating

(CoGa) voltage regulator [3] and converter-reshuffling (CoRe) voltage regulator [50] are

designed based on multi-phase switched capacitor (SC) voltage converters. Integrating

WAMPVRs fully on-chip is an efficient solution for reducing the power conversion loss and

strengthening the robustness of modern ICs against power attacks [3, 50]. As demonstrated

in [3, 50], increasing the total number of phases for the WAMPVRs can result in significant

improvements of the power conversion efficiency and the security against power attacks.

Accordingly, the designs of on-chip voltage regulators with more than 120 phases have been

frequently reported in the recent literatures [51, 52].

In the design of a 2:1 (Input voltage/output voltage = 2:1) 32-phase on-chip SC voltage

converter, the simulated output voltage ripples are shown in Fig. 2.2. Case 1 (as shown

in Fig. 2.2(a)) and Case 2 (as shown in Fig. 2.2(b)) indicate that different number of ac-

tivated phases can generate different output voltage ripple signatures. Furthermore, when

we compare Case 2 with Case 3 in Fig. 2.2(b) and 2.2(c), under the same number of active

phases, the output voltage ripples are also different if the sequences of activation pattern

are different.

In a multi-phase SC voltage converter, the output voltage ripple is extremely sensitive

to the flying capacitance in each sub-phase [3]. Since the flying capacitor in each sub-

phase is identically designed, the physical randomness of the flying capacitor induced by

the fabrication process enables the multi-phase SC converter to be eligible for building PUF

architectures.
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(a)

(b)

(c)

Fig. 2.2: Output voltage ripples of a 2:1 32-phase SC converter. a Case 1: Sequence of 
activation pattern (8 active phases): (7, 12, 13, 18, 20, 25, 27, 31). b Case 2: Sequence of 
activation pattern (16 active phases): (1, 2, 3, 4, 6, 8, 9, 14, 15, 16, 22, 23, 26, 28, 29, 30). 
c Case 3: Sequence of activation pattern (16 active phases): (2, 5, 6, 9, 10, 11, 14, 16, 19, 
23, 24, 26, 28, 29, 30, 32)

2.3 ARCHITECTURE DESIGN

The architecture of a workload-aware multi-phase voltage regulator (WAMPVR)-based

strong PUF primitive is devised in Fig. 2.2. Two identically designed 32-phase switched-

capacitor (SC) voltage converters: Block1 and Block2 are utilized to build the strong PUF
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architecture. The output port of the jth (j = 1, 2, · · · , 32) phase of the SC converter in

Blocki (i = 1, 2) connects with the switch Wi,j. Moreover, a 32-bit phase number generator

(PNG) is utilized to control the activation behaviors of the switches Wi,1,Wi,2, · · · ,Wi,32

to determine the sequences of active phases that are used for building the strong PUF.

For example, if only the switches Wi,2,Wi,5,Wi,12, and Wi,18 are turned on by the PNG,

the output voltage ripples of phase #2, phase #5, phase #12, and phase #18 of the SC

converters are selected for generating the PUF response. Since a 32-bit PNG can generate(
32
0

)
+
(

32
1

)
+
(

32
2

)
+ · · ·+

(
32
32

)
= 232 different activation patterns, therefore, the total number

of raw challenge-to-response pairs (CRPs) of the WAMPVR-based strong PUF primitive

are 232.

As shown in Fig. 2.3, the mismatches of voltage ripple between Vout,1 and Vout,2 are magni-

fied through employing an operational amplifier. Four pipelined SC circuits (SC circuit#1,

· · · , and SC circuit #4, as shown in Fig. 2.3) are utilized to convert the high-frequency

voltage ripple mismatch Va into the critical voltage Va,1 for generating the secret authenti-

cation data B. Furthermore, each SC circuit has four independent working phases: charging

phase, charge-sharing phase, output phase, and discharging phase. For example, as shown

in Fig. 2.3, if SC circuit #1 is in charging phase, the switch S1,1 will be turned on. Then

the positive component of Va will charge the capacitor C1,2 while the negative component

of Va will charge the capacitor C1,1. Once the charging phase ends, the switch S1,1 will be

turned off while the switch S1,2 will be activated to balance the charge of the capacitors

C1,1 and C1,2. After the charge-sharing phase, the SC circuit#1 will output the sampled

critical voltage Va,1 to generate the binary authentication data B by activating the switch
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Fig. 2.3: Architecture of the WAMPVR-based strong PUF primitive (the total number X
of phases in the original WAMPVR is 64, the resistors R1,1, R2,1, R1,2, · · · , and R2,32 are
designed with the same resistance R, and the capacitors C1,1, C1,2, C2,1, · · · , and C4,2 are
also designed with the same capacitance C).

S1,3. If the voltage Va,1 ≥ 0 V, the authentication data B outputs logic value “1”. Other-

wise, B = 0. In the final stage (discharging phase), the residual charge in the capacitors

C1,1 and C1,2 will be cleared to initialize the next data sampling through turning on the S1,4

switches. The main intention of employing discharging phase is to break the correlation

between the current data and the history data against machine-learning attacks. Please

note that in each SC circuit, the behaviors of the switches Sh,1, (h = 1, 2, 3, 4), Sh,2, Sh,3,

and Sh,4 are mutually exclusive. Additionally, as shown in Fig. 2.3, there are two different
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kinds of diodes: back-biased diode Dh,1 and forward-biased diode Dh,2 exist in each SC

circuit. The main role of these diodes is working as a non-linear transformation block to

generate the non-linear output response B against machine-learning attacks, which will be

fully discussed in Section 2.4.

2.4 EVALUATION

2.4.1 PERFORMANCE EVALUATION

Two most significant metrics that are selected to evaluate the PUF characterization

are the inter-Hamming distance (HD) and the intra-HD (reliability) [53, 51, 54]. Inter-HD

measures the distinctness between two different PUF devices while intra-HD (reliability)

represents the stability of a single PUF device under different temperatures and supply

voltages.

In Fig. 2.3, assume the resistors R1,1, R2,1, R1,2, · · · , and R2,32 are designed with a

high resistance R to reduce the overall power consumption of the WAMPVR-based strong

PUF primitive. As a result, under the same process variation, the mismatch rate of these

resistors R1,1, · · · , and R2,32 will be negligible as compared to the mismatch rate of the

flying capacitors in the SC converters. Hence, in Fig. 2.3, the output voltage Vout,i,j of the

jth (j = 1, 2, · · · , 32) phase of the SC converter in Blocki, (i = 1, 2) can be denoted by a

function F , as shown below

Vout,i,j = F

(
Cs
i,j, Vdd, TC , t+ (j − 1)

TS
32

)
(2.1)

where Cs is the flying capacitance of the jth phase of the SC converter in Blocki. Vdd, TC , TS,
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and t, respectively, are the supply voltage, the environmental temperature, the switching

period of the SC converters, and the timing of the 1st phase of the SC converters. Let us

assume the supply voltage Vdd and the environmental temperature TC are time invariant.

As a result, the critical parameters: CS, Vdd, TC , and t are mutually independent. Then the

output voltage Vout,i,j can be approximated as2

Vout,i,j = F

(
Cs
i,j, Vdd, Tc, t+ (j − 1)

Ts
32

)
= F1

(
Cs
i,j

)
× F2 (Vdd)× F3 (Tc)× F4

(
t+ (j − 1)

Ts
32

)
≈

(
m1∑
i1=0

ai1(Ci,j)
i1

)
×

(
m2∑
i2=0

bi2(Vdd)
i2

)
×

(
m3∑
i3=0

ci3(TC)i3

)

×

(
d0

2
+

m4∑
i4=1

di4cos

(
2πi4
TS

(
t+ (j − 1)

TS
32

))

+

m4∑
i4=1

ei4sin

(
2πi4
TS

(
t+ (j − 1)

Ts
32

))

(2.2)

where F1(CS
i,j), F2(Vdd), F3(TC), and F4

(
t+ (j − 1) Ts

32

)
, respectively, are the voltage com-

ponents of Vout,i,j that are determined by CS
i,j, Vdd, TC , and

(
t+ (j − 1) Ts

32

)
.
∑m1

i1=0 ai1(Ci,j)
i1 ,∑m2

i2=0 bi2(Vdd)
i2 , and

∑m3

i3=0 ci3(TC)i3 are the approximated polynomial expansions of F1

(
CS
i,j

)
,

F2 (Vdd), and F3 (TC), respectively. ai1 (i1 = 0, 1, · · · ,m1), bi2 (i2 = 0, 1, · · · ,m2), and

ci3 (i3 = 0, 1, · · · ,m3), respectively, are the coefficients of (Ci,j)
i1 , (Vdd)

i2 , and (TC)i3 . m1,

m2, and m3 are the degrees of the approximated polynomials of F1(CS
i,j), F2(Vdd), and

F3(TC) respectively. d0, d1, · · · ,.m4, e1, e2, · · · , em4 (m4) are the coefficients (degree) of the

2As demonstrated in Fig. 2.2, the output voltage of an SC converter is a periodical signal. Therefore,
the voltage component of Vout,i,j related with the timing t can be unfolded with Fourier series.
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approximated Fourier series of F4

(
t+ (j − 1) Ts

32

)
. If the supply voltage Vdd, the environ-

mental temperature TC , and hte timing t are fixed, through matching the relationship curve

between the capacitance Cs
i,j and the output voltage Vout,i,j, the coefficients a0, a1, · · · , and

the degree m1 for F1(CS
i,j) can be unriddled. The coefficients and the degrees of F2(Vdd),

F3(TC), and F4

(
t+ (j − 1) Ts

32

)
can also be estimated in a similar way.

Once the complete expression of the output voltage Vout,i,j is obtained, the following step

is to model the mismatches of output voltage ripple between Block1 and Block2 in Fig. 2.3.

Assume the 32-bit PNG in Fig. 2.3 generates the 32-bit binary data W = (w1, w2, · · · , w32)2

to select a certain number of active phases of the SC converters for building a strong PUF for

authentication by controlling the activation patterns of the corresponding switches.3 As a

result, by using the Kirchhoff’s law, the voltages Vout,1 and Vout,2 in Fig. 2.3 can, respectively,

be derived as

Vout,1 =

∑32
j=1wjVout,i,j

R
× R∑32

j=1wj

=

∑32
j=1wjVout,i,j∑32

j=1wj

(2.3)

Vout,1 =

∑32
j=1 wjVout,2,j

R
× R∑32

j=1 wj

=

∑32
j=1 wjVout,2,j∑32

j=1wj

(2.4)

3w1, w2, · · · , w32 control the activation behaviors of the switchesW1,W2, · · · ,W32 respectively. If wj = 1,
the switches W1,j and W2,j are turned on, and vice versa.
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Then the voltage ripple mismatch Va in Fig. 2.3 is

Va = Av (Vout,2 − Vout,1) = AV

∑32
j=1 wj (Vout,2,j − Vout,1,j)∑32

j=1 wj
(2.5)

For the WAMPVR-based strong PUF primitive in Fig. 2.3, assume the switching period

of the SC circuits is designed equal to four times of the switching period of the SC converters

and the pulse width of all the switches S1,1, S1,2, · · · , S4,4 in SC circuits is 25%. If SCcircuit1

is in charging phase, the switch S1,1 is in on-state. The voltages V ∗a and V ∗∗a of the capacitors

C1,1 and C1,2 in Fig. 2.3, respectively, are

V ∗a =


Va − Vb , Va ≥ Vb

0 , Va < Vb,

(2.6)

V ∗a =


Va + Vb , Va ≤ Vb

0 , Va > Vb,

(2.7)

where Vb is the forward-biased threshold voltage of the diodes D1,1 and D1,2 in Fig. 2.3.

When SCcircuit 1 enters into output phase, since the capacitors C1,1 and C1,2 are designed

with the same capacitance C, the critical voltage Vc,1 in Fig. 2.3 can be denoted as

Va,1 =

∫ t+Ts
t

C1,1
dV ∗a
dt
dt+

∫ t+Ts
t

C1,2
dV ∗∗a
dt
dt

C1,1 + C1,2

=

∫ t+Ts
t

(
dV ∗a
dt

+ dV ∗∗a
dt

)
dt

2

(2.8)

Therefore, if the critical voltage Va,1 ≥ 0 V, the output binary data B = 1. Otherwise,
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B = 0.

Assume N number of WAMPVRs are utilized for building a strong PUF primitive to

generate the N -bit binary authentication data B̄. As a result, if K strong PUF primitives

are selected for evaluating the uniqueness, the inter-HD E is written as [55]

E =
2

K (K − 1)

K−1∑
k1=1

K∑
k2=k1+1

B̄k1 ⊕ B̄k2

N
× 100% (2.9)

where B̄k1 (k1 = 1, 2, · · · , K − 1) and B̄k2 (k2 = k1 + 1, k1 + 2, · · · , K), respectively, are the

N -bit binary authentication data generated by the kth1 and kth2 strong PUF primitives.

Similarly, for a single PUF primitive, if M number of different environmental settings

are considered, the reliability of the strong PUF primitive G can be expressed as [55]

G =

(
1− 1

M

M∑
l=1

B̄∗0 ⊕ B̄∗l
N

)
(2.10)

where B̄∗0 and B̄∗l are the N -bit binary authentication data generated by the single PUF

primitive under the ideal and lth (l = 1, 2, · · · ,M) environmental setting, respectively.

All of the aforementioned parameters in the mathematical model of the designed WAMPVR-

based strong PUF primitive are extracted from the 130 nm CMOS technology kits in Ca-

dence. As shown in Fig. 2.4, by applying the Monte Carlo simulation into the aforemen-

tioned mathematical model, the inter-HD E of the WAMPVR-based strong PUF primitive

is about 51.3% (Lg = 130 nm). Furthermore, if the scaling of CMOS technology is consid-

ered, through utilizing the mismatch rates of capacitors under different CMOS technologies

from [17], the inter-HD E of the technology-scaled WAMPVR-based strong PUF primitive
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(a) (b)

Fig. 2.4: Performance evaluation for the designed strong PUF primitive. (a) Inter-HD E
versus gate length Lg (K = 100 and N = 32). (b) Reliability G versus supply voltage Vdd
and environmental temperature Tc (M = 50 and N = 32).

can also be predicted. Related experiment results are as shown in Fig. 2.4(a). When the

CMOS technology is scaled from 130 nm to 14 nm, the inter-HD, E is improved from 51.3%

to 50.1%. That indicates a larger capacitance mismatch rate induced by a shorter gate

length enables the WAMPVR-based strong PUF primitive to achieve a better uniqueness.

Additionally, the reliability G of the designed WAMPVR-based strong PUF primitive is

assessed in Fig. 2.4(b). Concluded from results above, the ideal environmental setting for

the strong PUF primitive is: the ambient temperature Tc = 27. As shown in Fig. 2.4(b),

the worst reliability of the designed WAMPVR-based strong PUF primitive is 98.5% when

Vdd = 2.9 V.
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Fig. 2.5: Absolute value r of correlation coefficient between Pin and ∆C versus phase number
X against side-channel attacks.

2.4.2 SECURITY AGAINST SIDE-CHANNEL ATTACKS

Side-Channel Leakage Analysis

If an X-phase (assume X is even) WAMPVR is utilized for devising a strong PUF

architecture, the number of phases in Block1 and Block2 in Fig. 2.3 is X/2. Since all the

phases in Block1 and Block2 are active all the time, the input power of the WAMPVR-based

strong PUF primitive is a constant within a switching period Ts regardless the variations of

process, voltage, and temperature (PVT). However, if the mismatches of the flying capacitors

in the SC converters induced by the random fabrication process are considered, the total

input power Pin of the WAMPVR-based strong PUF primitive within a switching period Ts
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can be expressed as

Pin =
2∑
i=1

X/2∑
j=1

CS
i,jfsV

2
dd (2.11)

where fs is the switching frequency of the SC converters.

Since the attacker may leak the mismatches of the flying capacitors in the SC converters

through analyzing the input power Pin, the absolute value r of correlation coefficient between

the input power Pin and the capacitance mismatch ∆C = CS
2,j−CS

1,j is studied against side-

channel attacks. As shown in Fig. 2.5, the correlation coefficient between Pin and ∆C is

about 0.0037 when the phase number X = 64, which indicates a good robustness against

side-channel attacks. Moreover, if the phase number X increases, the correlation coefficient

between Pin and ∆C will be further reduced against side-channel attacks.

Implementation of Side-Channel Attacks

The main intention of implementation of implementing side-channel attacks on the

WAMPVR-based strong PUF primitive is unriddling the output response B by analyz-

ing the critical side-channel leakage. If the input power Pin of the proposed strong PUF

device is tailored as the critical side-channel leakage, the relationship between the input

power Pin and the output response B needs to be studied when side-channel attacks are

executed. Since the random fabrication process and circuit noise conform to normal distri-

butions [55, 56], if the variations of PVT are considered, the input power Pin can be further
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derived as

Pin =
2∑
i=1

X/2∑
j=1

CS
i,jfsV

2
dd

=
1√

2πXσc
exp

−
(∑2

i=1

∑X/2
j=1 C

S
i,j −XµC

)2

2Xσ2
c


× 1√

2πσf
exp

(
−(fs − µf )2

2Xσ2
c

)

×

(
1√

2π]σc
exp

(
−(Vdd − µv)2

2σ2
v

))2

(2.12)

where µc(σc), µf (σf ), and µv (σv) are the means (standard deviations) of the flying ca-

pacitance, switching frequency, and supply voltage of the proposed strong PUF device,

respectively.

So as to model the relationship between the input power Pin and the output response B,

let us define a function F ∗(Pin) and approximate the function F ∗(Pin) with a polynomial

expansion F ∗∗(Pin) as shown below

F ∗(Pin) ≈
K∗∑
k=0

f ∗k × (Pin)k = F ∗∗(Pin) (2.13)

whereK∗ is the degree of the approximated polynomial and f ∗k is the coefficient of (Pin)k. As-

sume that Z is the number of input power and output response pairs: (Pin,1, B1), (Pin,2, B2),

· · · , and (Pin,Z , BZ) of the proposed strong PUF primitive are selected for analysis, then

the matching error ∆L between the input power Pin and the output response B with the

polynomial expansion F ∗∗(Pin) can be expressed as
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Fig. 2.6: Prediction accuracy r1 of power attacks versus standard deviations δf and δv
after analyzing 1 million input power and output response pairs (The colors and contours
represent the variation values of the prediction accuracy r1. Since the variation values of the
prediction accuracy r1 are around 0.5 and random, that reflects power attacks are unable
to leak critical information on the proposed PUF).

∆L =
Z∑
z=1

(
K∗∑
k=0

f ∗k × (Pin,z)
k −Bz

)2

(2.14)

By minimizing the matching error ∆L with

∂∆L

∂f ∗k
=

(
2
∑(

k∗∑
k=0

f ∗k × (Pin,z)
k −Bz

))
×

K∗∑
k=0

(Pin,z)
k = 0, (2.15)

the optimal K∗, f ∗0 , f ∗1 , · · · , f ∗K∗ can be determined.

The Z number of input power and output response pairs: (Pin,1, B1), (Pin,2, B2), · · · , and

(Pin,z, Bz) of the WAMPVR-based strong PUF primitive with the 130 nm CMOS technology

under the standard deviations σf and σv is simulated in Cadence. As shown in Fig. 2.6, if

power attacks are implemented on the WAMPVR-based strong PUF primitive by exploring



31

(a) (b)

Fig. 2.7: (a) Critical voltage Va,1 versus average capacitance mismatch Q against ML attacks.
(b) Number of diodes P between the switch Sh,1 and the capacitor Ch,x in Fig. 2.3 versus
degree g of the non-linearity of the WAMPVR-based strong PUF primitive.

the input power Pin as the critical side-channel leakage, the maximum prediction accuracy of

the power attacks is about 0.52 even if 1 million input power and output response pairs are

analyzed. That indicates the proposed strong PUF primitive is adequately secure against

the advanced power attacks.

2.4.3 SECURITY AGAINST MACHINE-LEARNING (ML) ATTACKS

Non-Linearity Analysis

The degree of the non-linearity between the input challenges and the output response

is a critical parameter that affects the robustness of a strong PUF against machine-learning

(ML) attacks [57]. For the WAMPVR-based strong PUF primitive in Fig. 2.3, the relation-

ship between the average capacitance mismatch Q and the critical voltage Va,1 is studied.
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The definition of the average capacitance mismatch Q in Fig. 2.3 is

Q =
32∑
j=1

wj
(
CS

2,j − CS
1,j

)
(2.16)

The non-linear relationship between Q and Va,1 can be observed in Fig. 2.7(a) when the

non-linear transformation block that is consist of diodes D1,1, D1,2, D2,1, · · · , D4,2 (as shown

in Fig. 2.3) is enabled. By contrast, a strong linear relationship exists between Q and Va,1

if the non-linear transformation block is removed.

If Y number of different Q values: Q1, Q2, · · · , QY are studied, assume the corresponding

value of the critical voltage Va,1 is: Va,1,1, Va,2,1, · · · , Va,2,Y
(
V ′a,1,1, V

′
a,2,1, · · · , V ′a,2,Y

)
for the

strong PUF with (without) the non-linear transformation block. As a result, the degree g of

the non-linearity of the designed WAMPVR-based strong PUF primitive can be estimated

as [58]

g =
1

2Y

∑Y
j1=1

(
Va,1,j1 − V ′a,1,j1

)2(∑Y
j1=1 V

′
a,1,j1

Y

)2 × 100% (2.17)

To enhance the degree of the non-linearity of the proposed strong PUF device, we can

increase the number of diodes in the non-linear transformation block. For instance, in

Fig. 2.3, only one diode Dh,x (h = 1, 2, 3, 4 and x = 1, 2) exists between the switch Sh,1

and the capacitor Ch,x. If larger number of diodes can be inserted, the degree g of the

non-linearity of the WAMPVR-based strong PUF primitive will be improved (g = 91.79%

when p = 5), as shown in Fig. 2.7(b).
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Linear Regression (LR) Attacks

Linear regression (LR) algorithm [58, 59] is a kind of popular machine-learning (ML)

algorithms that can be explored to uncover the confidential information of a strong PUF

device. For the WAMPVR-based strong PUF primitive as shown in Fig.2.3, there is a

32-bit phase number generator (PNG) W = (w1, w2, · · · , w32)2 that is working as the input

challenge. Accordingly, the main intention of performing ML attacks on the proposed strong

PUF primitive is estimating the relationship between the input challenge W and the output

response B. When the LR algorithm is considered for training the challenge-to-response

pairs (CRPs), the predicted output response B∗ of the proposed strong PUF device under

the input challenge W can be written as

B∗ =
32∑
j=1

Wjθj + θ0 (2.18)

where θ0, θ1, · · · , θ32 are linear coefficients of the LR algorithm.

If n number of CRPs: (W1, B1), (W2, B2), · · · , and (Wn, Bn) are selected as the training

data sets, by considering the lease squares fit rule, the cost function S(θ) of the LR algorithm

can be obtained as

S(θ) =
1

2n

n∑
j1=1

(
32∑
j=1

wj,j1θj + θ0 −Bj1

)2

(2.19)

where wj,j1 is the jth bit of the jth1 input challenge Wj1 . After repeating the gradient descent
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Fig. 2.8: Cost function value S(θ) and prediction accuracy r2 versus number of training
CRPs n for the WAMPVR-based strong PUF primitive under LR attacks (number of diodes
P = 3).

algorithm as shown below

θj := θj − β
∂S(θ)

∂θj

= θj − β
1

n

 n∑
j1=1

(
32∑
j=1

wj,j1θj + θ0 −Bj1

)2
 32∑

j=1

wj,j1

(2.20)

where β is the learning coefficient of the LR algorithm, the critical parameters: θ0, θ1, · · · , θ32

can be estimated.

Fig. 2.8 shows the variations of the cost function value S(θ) and prediction accuracy

r2 of the LR algorithm is below 0.53 after enabling 100, 000 number of CRPs, as shown in

Fig. 2.8. Consequently, the proposed strong PUF primitive is sufficiently robust against ML
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(a)

(b)

Fig. 2.9: Simulated waveforms of the WAMPVR-based strong PUF primitive (X = 32). (a)
Voltages Vout,1 and Vout,2 versus time. (b) Voltage Vout,1 and binary authentication data B
versus time.

attacks.

2.5 CIRCUIT LEVEL SIMULATION

A WAMPVR-based strong PUF architecture is designed and simulated. The waveforms

of the voltages Vout,1 and Vout,2 in Fig. 2.3 that contain the voltage ripple information are

shown in Fig. 2.9(a). By using Monte Carlo simulation, the mismatches of voltage ripple of

Block1 and Block2 in Fig. 2.3 induced by the random mismatches of the flying capacitors
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in the SC converters can be observed in Fig. 2.9(a) obviously. Additionally, as shown in

Fig. 2.9(b), if the voltage Va (as shown in Fig. 2.3) outputs logic value “0”. Moreover, the

non-linear effect induced by the diodes can also be observed in Fig. 2.9(b) if the voltage Va

exhibits a small negative amplitude.

2.6 CONCLUSION

A novel strong PUF architecture is designed based on the on-chip workload-aware multi-

phase voltage regulators (WAMPVRs).Through exploiting the physical randomness of the

flying capacitors in the multi-phase switched-capacitor (SC) voltage converter, the strong

PUF primitive we designed achieves a nearly 51.3% inter-HD and 98.5% reliability. Fur-

thermore, in the WAMPVR-based strong PUF architecture we proposed, an approximated

constant input power is achieved against side-channel attacks while a non-linear transforma-

tion block is utilized to add non-linearity against machine-learning attacks. As demonstrated

in the results, for the designed strong PUF primitive, after enabling 1× 106 (1× 105) items

of data to execute power (machine-learning) attacks, the prediction accuracy is about 0.52

(0.53). By contrast, the prediction accuracy is about 0.98 (0.999) when power (machine-

learning) attacks are performed on the conventional PUF design under the assistance of

26× 103 (39.2× 103) items of data.
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CHAPTER 3

USING BALANCED LOGIC GATES TO DESIGN AN

INNOVATE STRONG PUF IN IOT SECURITY

3.1 MOTIVATION

A PUF primitive is designed on a power delivery system as a countermeasure to both

machine learning attacks and side-channel attacks1. The advantage of the proposed CoRe

PUF design is that by attaching additional collection devices of logical signal, the complex-

ity of remodeling is greatly reduced. Besides, since the PUF is redesigned on an existing

functional device, the overhead is greatly reduced. Comparing to former PUF designs, the

proposed CoRe PUF gives consideration to features of both security and system function.

However, the drawback of the proposed PUF design is still obvious. The PUF primitive,

after all, needs to gain particular input binary sequence whenever the CRP is recorded or

validated. In any case above, the PRNG in the CoRe PUF need to provide particular control

signal. When that happens, the power supply must be cut off in order to realize the authen-

tication of PUFs. Another potential vulnerability is that the defensing to machine learning

attacks and side-channel attacks is “ nonsynchronous”. If attackers are able to acquire

the PUF behavior with hardware Trojan or other approaches, they can easily categorize

collected signal and choose to crack PUF and PRNG one by one. In this section, a new

PUF primitive, WDDL-based AES strong PUF, is introduced to mitigate aforementioned

1The content of this Chapter partially has been published in [60].
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vulnerabilities. Similar to the CoRe PUF, the WDDL-AES PUF is also redesigned on a

functional device which eliminate the overhead when introducing a non-functioning part.

Comparing to the CoRe PUF in Chapter 2, the new technique can introduce more entropy

of input signals against side-channel attacks. And a non-linear function is also added to

enhance the non-linearity of internal logic, which aims to reduce the linear correlation of

CRPs and vulnerabilities to machine learning attacks.

3.2 ARCHITECTURE DESIGN

The internal architecture of a WDDL-based AES strong PUF primitive is shown in

Fig. 3.1. The 128-bit AES2 cryptographic circuit has 16 number of S-boxes in each encryp-

tion round. Since all the S-boxes are fully implemented with WDDL gates, the dynamic

power dissipation of each S-box within a clock period is the same under any input data

regardless of PVT variations. In the WDDL-based AES strong PUF primitive, 16 num-

ber of S-boxes are uniformly divided into four groups: group1, group2, group3, and group4.

As shown in Fig. 3.1, the power supply ports of S-box4(i−1)+1, (i = 1, 2, 3, 4), S-box4(i−1)+2,

S-box4(i−1)+3, and S-box4(i−1)+4 are connected with the line Wi. The 32-bit binary input

data A = (a1, a2, ..., a32)2 is utilized for generating different dynamic power signatures for

the corresponding groups, as shown in Fig. 3.1. A tiny resistor Rin,i is inserted between the

supply voltage source Vdd and the line Wi for sensing the current fluctuations induced by the

load capacitance mismatches in the WDDL-based S-boxes under different input data. If the

resistors Rin,1, Rin,2, Rin,3, and Rin,4 in Fig. 3.1 are designed with the same resistance, the

2The number of CRPs can be further increased if a 196-bit AES or 256-bit AES is utilized for building
the WDDL-based AES strong PUF.
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Fig. 3.1: Architecture of a WDDL-based AES strong PUF primitive (the total number N
of digital input bits of the AES cryptographic circuit is 128).

differences among the electric potentials3 V1(t), V2(t), V3(t), and V4(t) reflect the internal

load capacitance mismatches among group1, group2, group3, and group4. In Fig. 3.1, one

operational amplifier OA1 is selected for magnifying the difference between V1(t) and V2(t)

to generate the critical voltage Vx,1(t) while the other operational amplifier OA2 is utilized

to amplify the difference between V3(t) and V4(t) for outputting the critical voltage Vx,2(t).

Moreover, as shown in Fig. 3.1, a non-linear product function is applied on the voltages

Vx,1(t) and Vx,2(t) to generate another critical voltage Vc(t) that can be used for achieving

the high non-linear output responses against machine-learning attacks.

3Vi(t) is the electric potential of the line Wi where t is the timing, as shown in Fig. 3.1
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Fig. 3.2: Waveform of control signal of the switch Si1,j (CLK is the clock signal of the input
data A. Si1,j = 1 represents the switch Si1,j is in on-state, and vice versa).

Once the critical voltage Vc(t) is obtained, the following step is converting the analog

voltage Vc(t) into the digital confidential data B for authentication. As shown in Fig. 3.1,

three flying capacitors C1, C2, and C3 are utilized for sampling the DC component of Vc(t)

within each clock period. The waveform of control signal of the switch Si1,j, (i1, j = 1, 2, 3) is

shown in Fig. 3.2. The switched-capacitor circuit in Fig. 3.1 has three basic working phases:

charging phase, output phase, and discharging phase. For instance, if the flying capacitor

C1 is in charging phase, the switch S1,1 is in on-state while the switches S1,2 and S1,3 are in

off-state, as shown in Fig. 3.2. Consequently, the flying capacitor C1 will have been charged

by the critical voltage Vc(t) for a clock period. However, when the charging phase ends, the

flying capacitor C1 will be switched to output phase. The switch S1,2 will be activated to
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output the DC component Vc,1 of Vc(t) within a clock period to generate the binary secret

data B by using a hysteresis comparator. If Vc,1 ≥ Vref = 0 V, the output binary data

B = 1. Otherwise, B = 0. After the output phase, the flying capacitor C1 will enter into

the last working phase: discharging phase. The DC voltage Vc,1 of the flying capacitor C1

is discharged to 0 V to initialize the next sampling behavior by activating the switch S1,3.

Please kindly note that only one of the switches (S1,1, S1,2, and S1,3) is active under any

timing, as shown in Fig. 3.2.

For the switched-capacitor circuit in Fig. 3.1, the behaviors of the flying capacitors C1,

C2, and C3 are mutually exclusive. For instance, when the flying capacitor C1 is in charging

phase, the flying capacitors C2 and C3 are in output phase and discharging phase, respec-

tively, as shown in Fig. 3.2. Therefore, the critical analog voltage Vc(t) can be continuously

converted into the digital binary data B through utilizing the switched-capacitor circuit.

3.3 PERFORMANCE EVALUATION

In the designed WDDL-based AES strong PUF as shown in Fig. 3.1, the transient

power consumption Pk(A
∗
k, t) and current Ik(A

∗
k, t) of the kth, (k = 1, 2, ..., 16) WDDL-

implemented S-box (S-boxk) within a clock period of group1, respectively, can be denoted

as

Pk(A
∗
k, t) = fcV

2
1 (t)

α∑
ω=1

Cω,k(A
∗
k, t), (3.1)

Ik(A
∗
k, t) = fcV1(t)

α∑
ω=1

Cω,k(A
∗
k, t) (3.2)

where fc is the clock frequency of the input data and A∗k is the 8-bit input data of S-boxk
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that is written as A∗k = (a8(k−1)+1, ..., a8k)2 and A∗l+4g = A∗l , (l = 1, 2, 3, 4 and g = 0, 1, 2, 3),

as shown in Fig. 3.1. α is the total number of 0 → 1 transitions happened in the S-boxk

under the input data A∗k while Cω,k(A
∗
k, t) is the load capacitance of the ωth, (ω = 1, 2, ..., α)

WDDL gate in S-boxk that is related with the ωth 0 → 1 transition under the input data

A∗k at the timing t. Since the clock frequency fc has an approximated linear relationship

with the environmental temperature Te and the supply voltage Vdd, respectively, the clock

frequency fc can be approximated as [61]

fc ≈
fc,0(a0 + a1Te)(b0 + b1Vdd)

(a0 + a1Te,0)(b0 + b1Vdd,0)
(3.3)

where fc,0 is the clock frequency under the ideal environmental temperature Te,0 and supply

voltage Vdd,0. a0 and a1 (b0 and b1) are the coefficients of linear approximation of the

environmental temperature Te (supply voltage Vdd).

By utilizing the equation V1(t) = Vdd−Rin,1

∑4
k=1 Ik(A

∗
k, t) that is derived from Fig. 3.1,

the supply voltage V1(t) of group1 is approximated as

V1(t) ≈ Vdd

1 +
∑4
k=1

∑α
ω=1 fc,0(a0+a1Te)(b0+b1Vdd)Cω,k(A∗k,t)Rin,1

(a0+a1Te,0)(b0+b1Vdd,0)

. (3.4)

Similarly, the supply voltages of the rest groups: V2(t), V3(t), and V4(t) can also be deter-

mined by following the aforementioned steps.

Once V1(t), V2(t), V3(t), and V4(t) are obtained, the critical voltages Vx,1(t) and Vx,2(t)
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in Fig. 3.1, respectively, can be determined as

Vx,1(t) = Av,1(V2(t)− V1(t)) + Ac,1
V2(t) + V1(t)

2
, (3.5)

Vx,2(t) = Av,2(V4(t)− V3(t)) + Ac,2
V3(t) + V4(t)

2
(3.6)

where Av,1 (Av,2) and Ac,1 (Ac,2) are the differential gain and the common-mode gain of the

operational amplifier OA1 (OA2), respectively. In Fig. 3.1, if the switching period of the

switches S1,1, ..., S3,3 is designed three times of the clock period of the input data A, the

DC component Vc,1 of the critical voltage Vc(t) within a clock period can be derived as

Vc,1 =

∫ (n+1)Tc

nTc

Vc(t)dt =

∫ (n+1)Tc

nTc

Vx,1(t)Vx,2(t)dt (3.7)

where Tc is the clock period and n, (n = 0, 1, 2, ...) represents the number of the clock period.

If Vc,1 ≥ Vref = 0 V, the output binary data B = 1. Otherwise, B = 0.

In order to model the relationship between the input challenge A and the output response

B for the proposed WDDL-based AES strong PUF, the next step that needs to be finished

is to determine the function Cω,k(A
∗
k, t). So as to do the analysis in a more efficient way, let

us write Cω,k(A
∗
k, t) as

Cω,k(A
∗
k, t) = C∗ω,k(A

∗
k)C

∗∗
ω,k(t) (3.8)

where C∗ω,k(A
∗
k) is the component of the ωth load capacitance in S-boxk that is determined

by the input data A∗k while C∗∗ω,k(t) is the component of the ωth load capacitance in S-boxk
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determined by the timing t. C∗∗ω,k(t) can be denoted as

C∗∗ω,k(t) =


1 , t = tω + nTc

0 , Otherwise

(3.9)

where tω represents the activation timing within the 1st clock period for the ωth load

capacitor that is related with the ωth 0 → 1 transition. Since (3.9) indicates C∗∗ω,k(t) is a

period signal, C∗∗ω,k(t) can be approximately unfolded with Fourier series as shown below

C∗∗ω,k(t) ≈
c0,ω

2
+

n1∑
h=1

(ch,ωcos
2πh

Tc
t+ dh,ωsin

2πh

Tc
t) (3.10)

where c0,ω, c1,ω, ..., cn1,ω, d1,ω, ..., dn1,ω (n1) are the coefficients (degree) of the approximated

Fourier series of C∗∗ω,k(t).If we discretize the time region [nTc, (n + 1)Tc) with n2 number of

timing points, the values of timing t are nTc, (n+ 1
n2

)Tc, (n+ 2
n2

)Tc, · · · , (n+ n2−1
n2

)Tc. For a

WDDL-based S-box, the total load capacitance is a constant α within a clock period under

different input data. As a result, we can obtain c0,ω = 2α/n2 with

∫ (n+1)Tc

nTc

(
α∑
ω=1

C∗∗ω,k(t))dt ≈
∫ (n+1)Tc

nTc

(
c0,ω

2
+

n1∑
h=1

(ch,ωcos
2πh

Tc
t+ dh,ωsin

2πh

Tc
t))dt

=

∫ (n+1)Tc

nTc

c0,ω

2
dt =

c0,ω

2
Tc = α

Tc
n2

. (3.11)

When the coefficient c0,ω is obtained, the values of the rest parameters can also be

estimated. Before determining the values of the rest parameters, two n1-dimension vectors

Cω = [c1,ω, ..., cn1,ω] and Dω = [d1,ω, ..., dn1,ω] need to be defined, and two n1 × n2 matrices
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M1 and M2 can be, respectively, set as . . .

M1 =



cos(2πn) · · · cos(2π(n+ n2−1
n2

))

cos(4πn) · · · cos(4π(n+ n2−1
n2

))

...
. . .

...

cos(2n1πn) · · · cos(2n1π(n+ n2−1
n2

))


, (3.12)

M2 =



sin(2πn) · · · sin(2π(n+ n2−1
n2

))

sin(4πn) · · · sin(4π(n+ n2−1
n2

))

...
. . .

...

sin(2n1πn) · · · sin(2n1π(n+ n2−1
n2

))


. (3.13)

By utilizing (3.9), (3.10), (3.12), and (3.13), we can acquire

C(0) +MT
1 C

T
ω +MT

2 D
T
ω = C∗∗∗ω (3.14)

where the two n2×1 matrices C(0) and C∗∗∗ω are [2α/n2, 2α/n2, ..., 2α/n2]T and [C∗∗ω,k(nTc), C
∗∗
ω,k((n+

1
n2

)Tc), ..., C
∗∗
ω,k((n+ n2−1

n2
)Tc)]

T , respectively. If n1 is set as n2/2, by solving (3.14), the rest

coefficients: c1,ω, ..., cn1,ω, d1,ω, ..., dn1,ω can be determined.

Eventually, assume the capacitance mismatch of a WDDL gate induced by the process

variations is β. If a Monte Carlo simulation is selected to evaluate the performance of

the WDDL-based AES strong PUF, the capacitance function C∗ω,k(A
∗
k) will approximately

conform to a normal distribution N ∼ (C0, (
β
6
)2) where C0 is the identically designed load
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Fig. 3.3: Dynamic current profile of group1 (Four number of WDDL-based S-boxes are used.
A1, A2, and A3 are three different 32-bit binary data).

capacitance. Likewise, if the resistance (common-mode gain) mismatch of two identically

designed input resistors (operational amplifiers) impacted by the process variations is β1

(β2), the resistances of Rin,1, ..., Rin,4 (common-mode gains Ac,1 and Ac,2) in Fig. 3.1 will

also have an approximated normal distribution N ∼ (R0, (
β1
6

)2) (N ∼ (0, (β2
6

)2)) where R0

is the identically designed resistance for Rin,1, ..., Rin,4 under the Monte Carlo simulation.

Therefore, if K number of WDDL-based AES strong PUFs are utilized to generate the

K-bit output response B and M number of K-bit WDDL-based AES strong PUFs are used

to generate the challenge-to-response pairs (CRPs), the inter-hamming distance (HD) H of

the WDDL-based AES strong PUF can be determined by using the aforementioned model.

Similarly, if a single WDDL-based AES strong PUF is assessed under different environmental

temperatures and supply voltages, the reliability G of the WDDL-based AES strong PUF

can also be estimated by considering the environmental temperature Te and the supply

voltage Vdd with normal distributions.
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(a) (b)

Fig. 3.4: Performance evaluation for the WDDL-based AES strong PUF. (a) Inter-HD H
versus identically designed resistance R0 (M = 100 and K = 10). (b) Reliability G versus
supply voltage Vdd and environmental temperature Te (M = 50 and K = 10).

A 128-bit AES cryptographic circuit is designed and simulated in Cadence with the 130

nm CMOS technology kits. As shown in Fig. 3.3, when the input data A = (a1, a2, ..., a32)2

make transitions from A1 to A2 and from A2 to A3, group1 in Fig. 3.1 exhibits a constant

dynamic current if a standard simulation4 is enabled. That indicates the WDDL-based S-

box has a constant dynamic power consumption under different input data regardless of the

variations of PVT. However, if a Monte Carlo simulation5 is performed, the dynamic current

signature of the WDDL-based S-box varies when the input data change. The simulation

results demonstrate that the random load capacitance mismatches in WDDL gates can

achieve different dynamic current signatures for authentication.

By combining the values of the critical parameters that are extracted from the 130

nm CMOS technology node in Cadence with the aforementioned mathematical model, the

4Standard simulation means the simulation neglects the variations of process, voltage, and temperature
(PVT).

5Monte Carlo simulation represents the variations of process are included in the simulation.
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performance of the proposed WDDL-based AES strong PUF can be assessed. As shown in

Fig. 3.4(a), the inter-HD H of the WDDL-AES strong PUF approaches the ideal value 50%

when the identically designed resistance R0 increases from 1 Ω to 10 Ω. That indicates a

higher R0 enables the WDDL-based AES strong PUF to achieve a better uniqueness due to

a larger variance of physical randomness. In addition, the reliability G of the WDDL-based

AES strong PUF is shown in Fig. 3.4(b). The worst reliability G is about 97.7% (Vdd =1.0

V and Te =27 ◦C) when the ideal environmental setting is: the supply voltage Vdd,0 =1.2 V

and the environmental temperature Te,0 =27 ◦C.

As shown in Fig. 3.1, the proposed WDDL-based AES strong PUF contains 32 input

challenge bits: a1, a2, ..., a32 and 1 output response bit: B. When the strong PUF chip is

utilized for authentication, 1000 random input challenges out of the 232 total possible input

challenges can be selected for generating 1000 output response bits. Under the 1000 given

input challenges, if the attacker predicts the 1000 output response bits with a 0.5 random

guess probability, only about 500 output response bits may be matched. In contrast, when

the host predicts the 1000 output response bits under the assistance of the stored CRPs,

over 970 output response bits can be matched since the worst reliability of the proposed

strong PUF is over 97% (as shown in Fig. 3.4(b)).

For the proposed WDDL-based AES strong PUF, its uniqueness is closed to the ideal

value (50%) as shown in Fig. 3.4(a). Under such a condition, if 1000 stochastic input

challenges are used for creating 1000 output response bits to achieve authentication, the

probability of obtaining the same 1000 output response bits for two different strong PUF

chips is around 1/21000. This indicates it is impossible to receive the same 1000 output
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(a) (b)

Fig. 3.5: Two logic gates share the same power supply. (a) Regular logic gates. (b) WDDL
gates.

response bits in practice even if millions of chips are manufactured.

Aging issues are inevitable for hardware security primitives like silicon PUFs. Com-

monly, negative bias temperature instability (NBTI), hot carrier injection (HCI), and time

dependent dielectric breakdown (TDDB) [62] are the three critical mechanisms that cause

unreliable issues to silicon PUFs. However, as compared to other regular strong PUFs such

as arbiter PUFs, the proposed strong PUF is more robust against aging-induced reliability

issues. The plausible explanation is that the proposed strong PUF utilizes a large number of

logic gates (about 24270) to generate the random load capacitance mismatches. Hence, it is

deemed to output the reliable output response even though a small amount of capacitance

mismatch is altered by the aging issues.

3.4 ROBUSTNESS AGAINST POWER ATTACKS

To leak the critical information of the WDDL-based AES strong PUF, power attacks
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may be deployed by the attacker to estimate the relationship between the input power and

the output response of the strong PUF. Hence, so as to demonstrate the proposed PUF

is sufficiently robust against power attacks, in this Section, the input power entropy of the

proposed PUF is fully analyzed and an advanced power attack is performed on the proposed

PUF to explore the relationship between the input power and the output response.

3.4.1 INPUT POWER ENTROPY ANALYSIS

Input power entropy is a significant metric to quantify the robustness of a system against

power attacks [63, 64]. For the proposed WDDL-based AES strong PUF in Fig. 3.1, the

attacker may perform a power attack on it through monitoring and analyzing its power

trace. In order to simplify the power attack, the attacker may dynamically alter the input

data A∗k of the single S-boxk while maintaining a constant input data for the rest of the

S-boxes. As a result, only the single S-boxk exhibits the high dynamic power dissipation

that may leak the critical information to the attacker. Accordingly, for power attacks, the

security of a single WDDL-based S-box dominates the security of the WDDL-based AES

strong PUF. As shown in Fig. 3.5(a), two regular logic gates connect with the same power

source V . When the output Z1 of the regular logic gate #1 makes a transition from 0 to

1 and the output Z2 of the regular logic gate #2 is kept a constant, the transient current

I of the power source V is I = f@
c V C

@
1 where f@

c is the clock frequency of the logic gates

and C@
1 is the load capacitance of the regular logic gate #1. Hence, C@

1 can be determined

as C@
1 = I/(f@

c V ) and the load capacitance C@
2 of the regular logic gate #2 can also be

estimated in a similar way. That indicates the internal parameters of the regular logic gates

can be leaked to the attacker without much effort by utilizing the power analysis.
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However, for the WDDL gates in Fig. 3.5(b), the case is quite different. The four

different transient current signatures: I∗1 , I∗2 , I∗3 , and I∗4 of the power source V induced by

four different output logic transitions are summarized in Table I. By considering Fig. 3.5(b)

and Table I, the below equation (3.15) is obtained with

f@
c V



1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1





C@
1,1

C@
1,2

C@
2,1

C@
2,2


=



I∗1

I∗2

I∗3

I∗4


(3.15)

where C@
1,1, C@

1,2, C@
2,1, and C@

2,2 are the corresponding load capacitance values in Fig. 3.5(b).

After solving (3.15), we can obtain

C@
1,1 − C@

1,2 = I∗1 − I∗3 , (3.16)

C@
2,1 − C@

2,2 = I∗2 − I∗4 . (3.17)

Therefore, even if the power analysis is performed on the WDDL gates, a large amount of

uncertainty is still existing among the internal parameters: C@
1,1, C@

1,2, C@
2,1, and C@

2,2.

In a WDDL-based S-box, assume X number of WDDL gates connect with the same

power source. As demonstrated above, by using the power analysis, the attacker can only

determine the load capacitance mismatch between the output and the complementary output

for each WDDL gate. Since the capacitance mismatch of two identically designed load

capacitors in the WDDL gates induced by the process variations is β, let us assume the
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TABLE 3.1: Four different transient current signatures: I∗1 , I∗2 , I∗3 , and I∗4 induced by four
different output logic transitions of Fig. 3.5(b).

load capacitance C ∈ [C0 − β
2
, C0 + β

2
]. If N1 number of different load capacitance values

are existing in the WDDL gates, the j1th, (j1 = 1, 2, ..., N1) load capacitance value Cj1 and

the corresponding probability P (Cj1), respectively, are

Cj1 = (C0 −
β

2
) +

j1 − 1

N1 − 1
β, (3.18)

P (Cj1) ≈
1√

2π β
6

exp(− (Cj1−C0)2

2(β
6

)2
)∑N1

j1=1
1√

2π β
6

exp(− (Cj1−C0)2

2(β
6

)2
)
. (3.19)

Assume the load capacitance mismatch of the i2th, (i2 = 1, 2, ..., X) WDDL gate in the

WDDL-based S-box is ∆Ci2 . Then the probability P ∗(Cj1 , Cj1 + ∆Ci2) of the i2th WDDL

gate with the load capacitance Cj1 of the output and the load capacitance Cj1 + ∆Ci2 of the

complementary output can be written as

P ∗(Cj1 , Cj1 + ∆Ci2) =


P (Cj1 )∑N2
j1=1 P (Cj1 )

, j1 = 1, 2, ..., N2

0 , Otherwise

(3.20)
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Fig. 3.6: Loss ratio E∗∗ of input power entropy versus number of different load capacitance
values N1 for the WDDL-based AES strong PUF against the power attack.

where N2 and P (Cj1)/(
∑N2

j1=1 P (Cj1)), respectively, are

N2 = [
β −∆Ci2

β
(N1 − 1)] + 1, (3.21)

P (Cj1)∑N2

j1=1 P (Cj1)
≈

exp(−
(Cj1

−C0)
2

2(
β
6 )2

)

∑N1
j1=1 exp(−

(Cj1
−C0)

2

2(
β
6 )2

)

∑N2

j1=1(
exp(−

(Cj1
−C0)

2

2(
β
6 )2

)

∑N1
j1=1 exp(−

(Cj1
−C0)

2

2(
β
6 )2

)
)

. (3.22)

Therefore, the input power entropy E of the WDDL-based AES strong PUF after per-

forming the power attack is estimated as

E = −
X∑
i2=1

N1∑
j1=1

P ∗(Cj1 , Cj1 + ∆Ci2)log
P ∗(Cj1 ,Cj1+∆Ci2 )

2 . (3.23)

However, before performing the power attack on the WDDL-based AES strong PUF, the
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load capacitance Cj1 and complementary load capacitance Cj2 , (j2 = 1, 2, ..., N1) of the i2th

WDDL gate in the WDDL-based S-box are independent. Hence, the original input power

entropy E∗ of the WDDL-based AES strong PUF is

E∗ = −X
N1∑
j2=1

N1∑
j1=1

P (Cj1)P (Cj2)log
P (Cj1 )P (Cj2 )

2 . (3.24)

As a result, the loss ratio E∗∗ of input power entropy of the WDDL-based AES strong

PUF after performing the power attack can be defined as E∗∗ = (E/E∗)× 100%. As shown

in Fig. 3.6, the maximum loss ratio of the input power entropy of the WDDL-based AES

strong PUF with the 130 nm CMOS technology node is less than 25% after executing the

power attack. Moreover, when the CMOS technology node is scaled from 130 nm to 14 nm

by using the process mismatch data from [17], the corresponding maximum loss ratio can

be reduced below 15%. Accordingly, the WDDL-based AES strong PUF exhibits a good

theoretical resilience against power attacks. However, to guarantee the WDDL-based AES

strong PUF is sufficiently robust against power attacks in practice, a state-of-the-art power

attack is studied on the proposed PUF in Section 3.4.2.

3.4.2 STATE-OF-THE-ART POWER ATTACK ON THE PROPOSED PUF

The main intention of performing power attacks on the WDDL-based AES strong PUF

is precisely predicting the output response B by measuring the corresponding input power

Pin of the PUF. If the mathematical function f(Pin) is used to map the relationship between

the input power Pin and the output response B, under the assistance of Taylor series, the
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relationship between B and Pin can be expressed as

B = f(Pin) =
∞∑
i3=0

di3f(Pin)/d(Pin)i3

i3!
(Pin)i3

≈
m∑
i4=0

λi4(Pin)i4 (3.25)

where m is the approximated degree of the Taylor series and the coefficient λi4 , (i4 =

0, 1, ...,m) of (Pin)i4 is

λi4 =
di4f(Pin)/d(Pin)i4

i4!
. (3.26)

Since the output response B is a binary data, two critical parameters B∗ and B∗∗ can

be utilized by the attacker to predict the output response B = 0 and B = 1, respectively.

The parameters B∗ and B∗∗ can, respectively, be defined as

B∗ =

m1∑
i5=0

λ∗i5(Pin)i5 , (3.27)

B∗∗ =

m2∑
i6=0

λ∗∗i6 (Pin)i6 (3.28)

where m1 (m2) is the degree of the series
∑m1

i5=0 λ
∗
i5

(Pin)i5 (
∑m2

i6=0 λ
∗∗
i6

(Pin)i6) and λ∗i5 , (i5 =

0, 1, ...,m1) (λ∗∗i6 , (i6 = 0, 1, ...,m2)) is the coefficient of (Pin)i5 ((Pin)i6).

Assume n3 number of input power and output response pairs (IPORP) have been gath-

ered by the attacker to perform the power attack on the proposed PUF. Furthermore, within

the n3 number of IPORP, assume there are n4 number of IPORP with the output response

equals to 0: (Pin,1, 0), (Pin,2, 0), ..., (Pin,n4 , 0) and n3 − n4 number of IPORP with the
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Fig. 3.7: Prediction accuracy r of the power attack under the parameters B∗ and B∗∗ versus
degrees m1 and m2 of the series (n3 = 1, 000, 000).

output response equals to 1: (Pin,n4+1, 1), (Pin,n4+2, 1), ..., (Pin,n3 , 1). As a result, if the

IPORP (Pin,1, 0), (Pin,2, 0), ..., (Pin,n4 , 0) and (Pin,n4+1, 1), (Pin,n4+2, 1), ..., (Pin,n3 , 1) are

used for predicting the output response B = 0 and B = 1, respectively, the two critical

parameters B∗ and B∗∗, respectively, are modified as

B∗ =

n4∑
j3=1

m1∑
i5=0

λ∗i5(Pin,j3)
i5 , (3.29)

B∗∗ =

n3−n4∑
j4=1

m2∑
i6=0

λ∗∗i6 (Pin,j4)
i6 . (3.30)

To maximize the prediction accuracy of the power attack on the WDDL-based AES

strong PUF, the objective function of the optimization is obtained as

max (B∗∗ −B∗)2 = (

n3−n4∑
j4=1

m2∑
i6=0

λ∗∗i6 (Pin,j4)
i6 −

n4∑
j3=1

m1∑
i5=0

λ∗i5(Pin,j3)
i5)2. (3.31)
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The input power values Pin,j3 , Pin,j4 ∈ [Pmin, Pmax] where Pmin and Pmax are the minimum

power dissipation and maximum power dissipation of the WDDL-based AES strong PUF,

respectively. So as to estimate the values of the coefficients λ∗i5 and λ∗∗i6 in (3.31), the partial

differential equations of (B∗∗ −B∗)2 need be set to 0. Consequently, we can acquire



2(B∗∗ −B∗)∂(B∗∗−B∗)
∂λ∗∗0

...

2(B∗∗ −B∗)∂(B∗∗−B∗)
∂λ∗∗m2

2(B∗∗ −B∗)∂(B∗∗−B∗)
∂λ∗0

...

2(B∗∗ −B∗)∂(B∗∗−B∗)
∂λ∗m1



=



0

...

0

0

...

0



. (3.32)

Fig. 3.7 shows the relationship between the prediction accuracy r of the power attack on

the 130 nm CMOS WDDL-based AES strong PUF and the degrees m1 and m2 of the series.

After analyzing 1 million number of IPORP, the maximum prediction accuracy r of the

power attack is still below 55%. The result reflects it is difficult for the attacker to disclose

the confidential information of the WDDL-based AES strong PUF through exploring the

power leakage of the PUF.

3.5 RESILIENCE AGAINST MACHINE-LEARNING ATTACKS

Despite the present silicon PUFs may be effective for protecting IoT against some spe-

cific malicious attacks like hardware reverse engineering attacks [65, 66], one of the most

significant security concerns of the current silicon PUFs is the resilience against machine
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learning attacks [57, 58, 67]. As far as we know, high linear relationships exist between

the input challenges and the output responses for most conventional silicon PUFs such as

ring-oscillator (RO) PUFs [4, 68], arbiter PUFs [69, 57], and clock PUFs [70], which cause

them extremely vulnerable to machine-learning attacks. For the WDDL-based AES strong

PUF, to assess the corresponding security level against machine-learning attacks, the degree

of the non-linearity of the PUF is evaluated and three different deep-learning attacks are

performed on the PUF in the following subsections.

3.5.1 ASSESSMENT OF NON-LINEARITY

When it comes to a strong PUF, the degree of the non-linearity between the input

challenge and the output response is a critical parameter to reflect the robustness of the

strong PUF against machine-learning attacks [71, 57]. Moreover, the linear matching error is

a commonly used parameter that represents the degree of the non-linearity of a system [58].

Since Cω,k(A
∗
k, t) represents the ωth load capacitance in S-boxk that is related with the ωth

0→ 1 transition under the input data A∗k at the timing t of the WDDL-based AES strong

PUF, the total load capacitance mismatch ∆Cω(A∗k) between group1 and group2 in Fig. 3.1

within a clock period is

∆Cω(A∗k) =

∫ (n+1)Tc

nTc

(
4∑

k=1

Cω,k(A
∗
k, t)−

8∑
k=5

Cω,k(A
∗
k, t))dt. (3.33)

Similarly, the total load capacitance mismatch ∆C
′
ω(A∗k) between group3 and group4 in
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Fig. 3.1 within a clock period can also be obtained as

∆C
′

ω(A∗k) =

∫ (n+1)Tc

nTc

(
12∑
k=9

Cω,k(A
∗
k, t)−

16∑
k=13

Cω,k(A
∗
k, t))dt. (3.34)

Assume the load capacitance mismatches ∆Cω(A∗k) and ∆C
′
ω(A∗k) with a linear function

are utilized to generate a parameter V ∗c,1 as shown below to match the DC component Vc,1

of the critical voltage Vc(t)

V ∗c,1 = γ2∆Cω(A∗k) + γ1∆C
′

ω(A∗k) + γ0 (3.35)

where γ2, γ1, and γ0 are the coefficients of the linear function. If Y number of different

input data A∗k: A
∗
k,1, A∗k,2, ..., A∗k,Y are used for evaluating the degree of the non-linearity of

the WDDL-based AES strong PUF, the normalized linear matching error ε is

ε =

∑Y
y=1(γ2∆Cω(A∗k,y) + γ1∆C

′
ω(A∗k,y) + γ0 − Vc,1,y)2

2Y (
∑Y
y=1(γ2∆Cω(A∗k,y)+γ1∆C′ω(A∗k,y)+γ0)

Y
)2

(3.36)

where Vc,1,y, (y = 1, 2, ..., Y ) is the yth value of the critical voltage Vc,1 under the input data

A∗k,y. By minimizing the linear matching error ε with ∂ε/∂γz = 0, (z = 0, 1, 2), the minimal

linear matching error εmin and the coefficients: γ2, γ1, and γ0 can be determined.

As shown in Fig. 3.8, the minimal linear matching error εmin is about 1023% for the 130

nm CMOS WDDL-based AES strong PUF against machine-learning attacks. Additionally,

the security of the WDDL-based AES strong PUF against machine-learning attacks can be

further predicted when the CMOS technology node is scaled from 130 nm to 14 nm by using
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Fig. 3.8: Minimal linear matching error εmin versus gate length Lg for the WDDL-based
AES strong PUF against machine-learning attacks (Y = 100, 000).

the process mismatch data from [17], as illustrated in Fig. 3.8.

3.5.2 DEEP-LEARNING ATTACKS ON THE PROPOSED PUF

Artificial neural network (ANN) attacks are a kind of popular deep-learning attacks that

were chosen by prior works [58, 72, 73] to study the resilience of a PUF against machine-

learning attacks. In this paper, three different ANN architectures: regular ANN, forward

ANN, and backward ANN are designed for performing deep-learning attacks on the WDDL-

based AES strong PUF, as shown Fig. 3.9.

For the proposed PUF, the input challenge A = (a1, a2, ..., a32)2 is a 32-bit binary data

and the output response B is a binary bit. Therefore, in the regular ANN as shown in

Fig. 3.9(a), a0, a1, ..., a32 are set as the input layer and B is set as the output layer to model

the relationship between the input challenge and the output response of the proposed PUF.

However, since the WDDL-based AES strong PUF exploits the characteristic of dynamic
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(a) (b) (c)

Fig. 3.9: Three different artificial neural network (ANN) architectures for performing deep-
learning attacks on the WDDL-based AES strong PUF. (a) Regular ANN. (b) Forward
ANN. (c) Backward ANN..

power dissipation, the output data not only depend on the current input data but also are

affected by the history data [74, 75]. Thus, two more advanced ANN architectures: forward

ANN (as shown in Fig. 3.9(b)) and backward ANN (as shown in Fig. 3.9(c)) are proposed

to further explore the relationship between the input and the output of the PUF. For the

forward ANN, the previous 32-bit input challenge (a@
1 , a@

2 , ..., a@
32)2 is in conjunction with

the current 32-bit input challenge (a1, a2, ..., a32)2 are set as the input layer. By contrast,

the last output response B@ is reused to train the backward ANN.

In Fig. 3.9, s number of hidden layers exist in each ANN architecture and the k1th,

(k1 = 1, 2, ..., s) hidden layer layer has uk1 number of neurons. Assume the weight of the

neuron es,k2 , (k2 = 1, 2, ..., us) that corresponds to the output layer B is xs,k2 . Then the cost

function ∆f of the regular ANN and forward ANN can be denoted as

∆f = (
us∑
k2=1

es,k2xs,k2 + Ls −B)2 (3.37)
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Fig. 3.10: Prediction accuracy r∗ versus number of training CRPs n∗ for the WDDL-based
AES strong PUF under thee different deep-learning attacks (s = 3, u1 = 15, u2 = 30, and
u3 = 20).

where Ls is the unit bias of the sth hidden layer. Likewise, the cost function ∆f ∗ of the

backward ANN is derived as

∆f ∗ = (
us∑
k2=1

es,k2xs,k2 + Ls + ∆xB@ −B)2 (3.38)

where ∆x is the weight of last output response B@. By applying the backpropagation

and gradient descent algorithms into the ANNs, the ANNs can be trained with a reasonable

number of challenge-to-response pairs (CRPs) to predict the output response of the WDDL-

based AES strong PUF under a certain input challenge.

If the ReLU function is selected for the ANNs, as shown in Fig. 3.10, even if 1 million

number of CRPs are enabled for training, the prediction accuracies of the three different
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deep-learning attacks on the 130 nm CMOS WDDL-based AES strong PUF are below 56%.

The result demonstrates that the proposed PUF is adequately robust against the state-of-

the-art machine-learning attacks.

3.6 CONCLUSION

A wave dynamic differential logic (WDDL)-based AES strong PUF is proposed as a

highly reliable and secure hardware primitive for authentication. By utilizing the WDDL

gates and the non-linear product math function, the WDDL-based AES strong PUF prim-

itive achieves a nearly 50.7% inter-HD and 97.7% reliability while maintaining a low loss

ratio of input power entropy (< 25%) against power attacks and a huge linear matching

error (1032%) against machine-learning attacks.
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CHAPTER 4

A NOVEL PUF PRIMITIVE FOR GENERAL PROTECTION

AGAINST NON-INVASIVE ATTACKS ON IOT DEVICES

4.1 MOTIVATION

In Chapter 2 and Chapter 3, two innovate PUF primitives are proposed: Converter-

reshuffling (CoRe) PUF exploits a mature power delivery device as the fundamental ar-

chitecture of PUF primitive, while WDDL gate PUF utilizes a SCA-resistant logic gate

to accomplish the PUF design1. Both designs achieve comprehensive designs against ma-

chine learning attacks and side-channel analysis attacks. Meanwhile, by means of adopting

existing hardware architecture to design new PUFs, both designs successfully integrated

two hardware security primitives and are of resilience to non-invasive attacks. Nonetheless,

based on investigations to side-channel attacks, attackers can perform SCA attacks with

either input power or output power [77]. In this case, attackers may perform SCA analysis

attack according to power traces from both ends and examine the correlation coefficients to

select a more vulnerable power signal. This requires us to insert SCA-resistant modules on

both ends of vulnerable devices. Simultaneously, in previous designs, only linear regression

(LR) attacks and simple machine learning models are examined. According to Fig. 2.7(a),

the insertion of hardware devices only induces limited promotion of non-linearity. Conse-

quently, a novel PUF architecture against non-invasive attacks is proposed in this chapter,

aiming to impede the non-invasive attacks essentially.

1The content of this Chapter partially has been published in [76].
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Fig. 4.1: Conceptual model of proposed comprehensive countermeasure to ML attacks and
SCA attacks. Both ends of the cryptographic circuit is protected by a ML model. The
uncertainty is retained by the keys stored/inserted on the cryptographic circuit.

The conceptual prototype can be found in Fig. 4.1. The conception is based on an

assumption that the cryptographic circuit, like AES circuit, is relative non-modelized. With

the uncertainty induced by random keys, the cryptographic circuit cannot be modeled by

simple machine learning attacks. However, since the operation of AES circuit is proved to be

vulnerable side-channel attacks [78], two side-channel-resistant models are thus implemented

on both ends of the AES model. Since the uncertainty is introduced by keys of AES

circuit, the frontend signal and the backend signal of the entire architecture should retain

uncertainty to attackers, which finally result in failures in both machine learning attacks and

SCA analysis attacks. In this chapter, we would focus on the prototype design and think of

possible vulnerable attack models. At the same time, we would evaluate the robustness to

higher level attack models comparing to LR attacks and simple ML attacks.

4.2 WORKING PRINCIPLE OF THE PROPOSED PUF

Fig. 4.2(a) shows a diagram of a conventional PUF chip under machine learning attacks.

Since both the input challenge C1 and the output response R1 are exposed to the adversary

directly, the PUF chip-1 can be cracked by machine learning attacks through training a

reasonable number of CRPs. If we explore the design by connecting a conventional PUF

circuit in series with an AES circuit to build a new PUF: hybrid PUF, as shown in Fig. 4.2(b),
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(a) (b) (c)

Fig. 4.2: Three different PUF chips under machine learning or side-channel attacks. (a)
Conventional PUF (PUF chip-1). (b) Hybrid PUF (PUF chip-2). (c) Key-updating (KU)
AES-embedded PUF (PUF chip-3).

the adversary may not be able to unriddle the secret information of the conventional PUF via

machine learning attacks directly. However, the hybrid PUF in Fig. 4.2(b) is not sufficiently

secure. The primary reason is that the output data R2 of the AES is exposed to the

adversary, therefore, the secret key Kc of the AES may be leaked to the adversary by

analyzing the correlation between the output data R2 and a certain physical leakage of the

PUF chip-2 if a side-channel attack is executed. Once the secret key Kc of the AES is

leaked, the output response R1 of the conventional PUF will also be disclosed. As a result,

the conventional PUF in Fig. 4.2(b) can be uncovered by training the (C1, R1) pairs with

machine learning attacks ultimately.

So as to eliminate the threats from both side-channel and machine learning attacks, a

key-updating (KU) AES embedded PUF is proposed as shown in Fig. 4.2(c). The novel and

innovative PUF architecture is secure against machine learning attacks, without increasing

the degree of non-linearity between the CRPs. As indicated in Fig. 4.2(c), an AES circuit is

embedded between two conventional PUF circuits and the output response R1 of the PUF

#1 circuit is encrypted by the AES circuit to provide the input challenge R2 to the PUF
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#2 circuit. Since the output response R1 of the PUF #1 and the input challenge R2 of the

PUF #2 are concealed, the adversary is incapable of performing machine learning attacks

on either of the two PUF circuits.

Another novel idea is proposed to eliminate the threat of side-channel attacks, which does

not rely on the existing countermeasures. It is proposed to add a real-time key-updating

function to the architecture that combines the output response R1 of the PUF #1 with

the stored secret key Kc of the AES to create the actual key Ka
c used by the AES circuit

(Ka
c = R1 ⊕Kc). This is illustrated in Fig. 4.2(c). Since the input data R1 and the output

data R2 of the AES are unknown to the adversary and the actual secret key Ka
c of the AES

is updating in real-time, the adversary is unable to execute side-channel attacks to reveal

the stored secret key Kc.

4.3 ROBUSTNESS AGAINST MACHINE LEARNING ATTACKS

For an m-bit KU AES-embedded PUF as shown in Fig. 4.2(c), the input data/output

data of the PUF 1, the AES, and the PUF 2, respectively, are C1/R1, R1/R2, and R2/R3.

If the input challenge C1 is set as C1 = (c1,1, c1,2, · · · , c1,m)2, the relationship between the

input challenge C1 and the output response R1 of the PUF 1 can be preliminarily modeled
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as

R1 =C1 × E1 = (c1,1, c1,2, · · · , c1,m)×

e1,1 · · · e1,m

e2,1 · · · e2,m

...
. . .

...

em,1 · · · em,m


=

(
m∑
i=1

c1, iei,1, · · · ,
m∑
i=1

c1, iei,1

) (4.1)

where E1 is the m × m matrix which represents the operation induced by the PUF 1 in

Fig. 4.2(c). ei,j , (i, j = 1, 2, · · · ,m) is the element of the matrix E1. Since the output data

R1 of the PUF 1 should be a binary data, the output dataR1 = (
∑m

i=1 c1, iei,1, · · · ,
∑m

i=1 c1, iei,1)

as shown in (4.1) needs to be normalized by a step function u(x,∆x) as shown below

u(x,∆x) =


1 , x ≥ ∆x

0 , x < ∆x

(4.2)

where ∆x is the critical point of the step function u(x,∆x). As a result, the output data

R1 of the PUF 1 under the normalization of the step function u(x,∆x) can be precisely

determined as

R1 = u(C1 × E1,∆x1)

=

(
u

(
m∑
i=1

c1, iei,1,∆x1

)
, · · · , u

(
m∑
i=1

c1, iei,m,∆x1

)) (4.3)

where ∆x1 is the critical point associated with the PUF 1.
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Similarly, the accurate output data R2 of the AES in Fig. 4.2(c) can also be derived as

R2 = u(u(C1 × E1,∆x1)× A,∆x0) (4.4)

where ∆x0 is the critical point related with the AES and A is the m×m matrix that denotes

the math operation processed by the AES circuit as shown below (ai, j(C1) is the element

in matrix A)

A =



a1,1(C1) · · · a1,m(C1)

a2,1(C1) · · · a1,m(C1)

...
. . .

...

am,1(C1) · · · a1,m(C1)


. (4.5)

Kindly note that the actual secret key Ka
c of the AES in Fig. 4.2(c) is updated by the

internal confidential data R1 in realtime, thus the element ai, j(C1) varies under a different

input challenge C1.

Once the output data R2 of the AES is obtained, the m-bit output response R3 of the

KU AES-embedded PUF in Fig. 4.2(c) under the input challenge C1 is expressed as

R3 = u(R2 × E2,∆x2)

= u (u (u (C1 × E1,∆x1)× A,∆x0)× E2,∆x2)

(4.6)

where ∆x2 is the critical point associated with the PUF 2 and E2 is the corresponding m×m
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TABLE 4.1: A CNN structure for modeling PUF primitives.

matrix induced by the PUF 2 that is written as (e∗i,j is the element in matrix E2)

E2 =



e∗1,1 · · · e∗1,m

e∗2,1 · · · e∗2,m
...

. . .
...

e∗m,1 · · · e∗m,m


. (4.7)

4.3.1 CONVOLUTIONAL NEURAL NETWORK (CNN) ATTACKS ON PUF

PRIMITIVES

Convolutional neural networks (CNNs) are a kind of advanced machine learning algo-

rithms that can be explored to reveal the secret information. If a CNN attack is performed

on a 128-bit regular PUF: arbiter PUF, the detailed CNN architecture for modeling the ar-

biter PUF is illustrated in Table 4.1. The 128-bit input challenge C1 = (c1,1, c1,2, · · · , c1,128)2

of the arbiter PUF is transformed into a 8 × 16 × 1 matrix to establish the input training

data for the CNNs. Moreover, the most significant bit (MSB) of the output response of the

arbiter PUF is selected as the output training data for the CNN structure in Table 4.1.

In layer 1 (convolutional layer) of the CNNs, the 8 × 16 × 1 input matrix is changed
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into a 6 × 14 × 64 intermediate matrix, as shown in Table 4.1. The size of the 64 filters

(K) and activation function used in layer 1, respectively, are 3 × 3 and ReLU. In layer 2,

a max pooling operation is executed on the obtained 6 × 14 × 64 matrix to generate the

3× 7× 64 matrix. The main intention of executing max pooling is reducing the matrix size

and maintaining the critical features.

As shown in Table 4.1, in layer 3 and layer 4, a dropout operation and a flatten operation

are performed. Then the 1×1×1344 array is acquired when the flatten operation is finished.

The dropout probability that is used in layer 3 is set as 0.25. Furthermore, from layer 5 to

layer 9, dense operation and dropout operation are executed in the CNNs alternately. The

sizes of the output arrays of layer 5, layer 6, layer 7, and layer 8 are achieved as 1×1×1024,

1×1×1024, 1×1×512, and 1×1×512, respectively. The corresponding dropout probability

in layer 6 and layer 8 is selected as 0.75. Eventually, in the output of layer 9, the 1× 1× 2

array that is used for classifying the MSB of the output response as “0” or “1” is created.

Kindly note that the activation functions selected in layer 5, layer 7, and layer 9, respectively,

are ReLU, ReLU, and Softmax. The optimizer and loss function of the CNN training are

chosen with Adam and categorical cross-entropy, respectively. Additionally, the batch size

of the CNN training is optimized with 50.

A 128-bit KU AES-embedded PUF and a 128-bit arbiter PUF are simulated in Cadence

with the 130 nm IBM CMOS technology kit, respectively. Kindly note that the simulated

KU AES-embedded PUF consists of two 128-bit arbiter PUF circuits and one 128-bit AES

circuit. In addition, the corresponding CRPs of these two PUFs are also extracted from

Cadence simulation. As shown in Fig. 4.3, when the CNN attack is executed on the 128-bit



72

(a) (b)

Fig. 4.3: Training result of the CNN structure in Table 4.1 for modeling the MSB of the 128-
bit arbiter PUF (100,000 number of CRPs are enabled for training). (a) Accuracy versus
number of epochs. (b) Loss versus number of epochs.

TABLE 4.2: Training Results of the CNN structure for modeling the MSB of the 128-bit
KU AES-embedded PUF (number of epochs is 20).

arbiter PUF, after training about 1× 105 data, the training (testing) accuracy is obtained

as 0.934 (0.927) and the corresponding training (testing) loss is 0.225 (0.234) when the

number of epochs is set as 20. By contrast, even if 1 million data are enabled for training,

the training/testing accuracy of the CNNs for modeling the 128-bit KU AES-embedded

PUF is still around 0.5, as shown in Table 4.2. Hence, the KU AES-embedded PUF we

propose exhibits a good robustness against the regular CNN attacks.
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(a) (b)

Fig. 4.4: (a) AES in the KU AES-embedded PUF. (b) Equivalent PUF architecture for the
KU AES-embedded PUF.

4.3.2 NEW CONVOLUTIONAL NEURAL NETWORK (CNN) ATTACKS ON

THE PROPOSED PUF PRIMITIVE

In Section 4.3.1, since the stored key Kc in Fig. 4.2(c) is assumed to be unknown to the

adversary, the conventional CNN attacks attempt to disclose the confidential information of

the KU AES-embedded PUF by regarding the PUF as a black box. However, if the secret

key Kc is leaked, a novel CNN attack may be tailored to model the confidential information

of the KU AES-embedded PUF.

When the secret key Kc is leaked, the exact relationship between the input data R1 and

the output data R2 of the AES in Fig. 4.4(a) will be revealed. In other words, the secret

m×m matrix A associated with the AES is always exposed to the adversary. As a result,

only two PUF matrices E1 and E2 in (4.6) are unknown to the adversary. To simplify the

CNN attack, if the matrix E1 is selected with an m × m identity matrix I and the critical
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TABLE 4.3: Training results of the new CNN attack for modeling the MSB of the 128-bit
KU AES-embedded PUF (number of epochs is 20).

point ∆x1 is set as 0.5, (4.6) becomes

R3 = u(u(u(C1 × I, 0.5)× A,∆x0)× E3,3 ) (4.8)

where E3 and ∆x3, respectively, are the m × m matrix and critical point induced by an

equivalent PUF circuit. Since C1 × I × A × E3 is equal to C1 × A × E3, a new PUF

architecture as shown in Fig. 4.4(b) can be devised to emulate the KU AES-embedded PUF

if the secret key Kc is disclosed.

In Fig. 4.4(b), PUF 3 is the equivalent PUF circuit that is related with the matrix E3

in (4.8). Furthermore, the output data R2 of the AES in Fig.4.4(a) can be unriddled since

the input data C1 and secret key Kc of the AES are open for the adversary. Accordingly,

a CNN attack can be performed on the equivalent PUF circuit: PUF 3 because its CRPs:

(R∗2, R3) are available for training. Once the PUF 3 is cracked, the adversary is able to

predict output response R3 under any input challenge C1.

Table4.3 shows the results of the new CNN attack on the 128-bit KU AES-embedded

PUF if the adversary knows the stored key Kc. The corresponding training/testing accuracy

can be over 0.9. Consequently, the most significant security concern for the KU AES-

embedded PUF is preventing the secret key Kc from being leaked to the adversary.
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4.4 RESILIENCE AGAINST SIDE-CHANNEL ATTACKS

For the KU AES-embedded PUF we propose, the input data R1 and output data R2 of

the AES in Fig. 4.2(c) are unknown to the adversary. As a result, to implement side-channel

attacks on the KU AES-embedded PUF to reveal the stored key Kc, the adversary can only

analyze the correlation between the input challenge C1/output response R3 in Fig. 4.2(c)

and the physical leakages of the PUF chip.

Power attacks [50, 79, 80] are a kind of side-channel attacks that are widely used by

the adversary to disclose the secret key of a cryptographic circuit through monitoring the

correlation between the processed data and the power dissipation of the cryptographic cir-

cuit. For the m-bit KU AES-embedded PUF in Fig. 4.2(c), the input data R1 of the AES

is (u (
∑m

i=1 c1,iei,1,∆x1) , · · · , u (
∑m

i=1 c1,iei,m,∆x1))2 as shown in (4.3). Suppose the m-bit

stored key Kc of the KU AES-embedded PUF is Kc = (kc,1, kc,2, · · · , kc,m)2, the actual key

Ka
c of the AES in Fig. 4.2(c) becomes

Ka
c = R1 ⊕Kc

=

(
u

(
m∑
i=1

c1,iei,1,∆x1

)
⊕ kc,1, · · · , u

(
m∑
i=1

c1,iei,m,∆x1

)
⊕ kc,m

)
2

(4.9)

As a result, the real secret key Ka
c will be updated in real-time if different input challenge

values: (c1,1, c1,2, · · · , c1,m)2 are enabled.

When a power attack is performed on the KU AES-embedded PUF, the adversary may

combine the input challenge with the hypothesized keys to predict the power dissipation

of the PUF at first. Then the correlation analysis will be executed between the predicted
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(a) (b)

Fig. 4.5: Simulations of power attacks (hamming-weight (HW) model is used). (a) Absolute
value of correlation coefficient (AVCC) versus possible keys for leaking an 8-bit sub-key of
the 128-bit unprotected AES cryptographic circuit after inputting 1,000 number of data. (b)
AVCC versus possible keys for leaking an 8-bit sub-key of the 128-bit KU AES-embedded
PUF after inputting 1 million number of data.

power and the measured power to estimate the secret key. Fig. 4.5 shows the results of

simulated power attacks for (a) a 128-bit unprotected AES cryptographic circuit and (b)

the 128-bit KU AES-embedded PUF. As shown in Fig. 4.5(a), the 8-bit secret sub-key 96 of

the unprotected AES circuit is disclosed after inputting 1,000 plaintexts of data. However,

for the AES-embedded PUF, the secret sub-key 96 is masked from being leaked to the

adversary even if 1 million plaintexts are enabled, as shown in Fig. 4.5(b). In addition,

the absolute value of correlation coefficient (AVCC) of the correct key 96 in Fig. 4.5(b) is

two orders of magnitude lower than the AVCC of the correct key 96 in Fig. 4.5(a). The

primary reason is that the actual secret key in the embedded PUF is updating in real-time

which greatly weakens the correlation between the processed data and the power dissipation

against power attacks.
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(a) (b)

Fig. 4.6: Performance evaluation for the 128-bit KU AES-embedded PUF. (a) Uniqueness
U and randomness R versus technology node Lg. (b) Reliability G versus supply voltage
Vdd and ambient temperature Ta (Lg = 130 nm).

4.5 PERFORMANCE EVALUATION

Commonly, uniqueness, randomness, and reliability are the three most significant param-

eters for assessing the performance of a designed PUF [4, 47]. To evaluate the performance

of the proposed PUF, A 128-bit KU AES-embedded PUF is designed and simulated in Ca-

dence software with the 130 nm CMOS technology kit. Moreover, Monte Carlo simulations

are executed on the designed PUF in Cadence to emulate the random fabrication process.

As shown in Fig. 4.6(a), the uniqueness U is improved from 52.4% to 50.4% if the CMOS

technology node Lg is scaled from 130 nm to 14 nm; while the randomness R improves from

47.1% to 49.5%. In addition, Fig. 4.6(b) shows the worst reliability of the embedded PUF is

about 97.4% when the supply voltage is 1.0 V. The simulation results manifest the proposed

PUF has excellent uniqueness, randomness, and reliability.
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4.6 CONCLUSION

A novel PUF-AES-PUF architecture in conjunction with a key-updating technique is

utilized to design a state-of-the-art PUF primitive that is able to resist non-invasive attacks.

The proposed PUF not only has excellent uniqueness (52.4%), randomness (47.1%), and

reliability (97.4%) but also maintains a high security level (> 1 million data) against both

side-channel and machine learning attacks.



79

CHAPTER 5

HARDWARE TROJAN-BASED MALICIOUS ATTACKS ON

PHYSICAL UNCLONABLE FUNCTION SENSORS

5.1 MOTIVATION

In previous sections, three PUF primitives are proposed. Aiming at mainstream non-

invasive attack models, all three models may resolve security problems in their respective

domains1. According to different application scenarios, we believe those proposed work can

adopt most security demands in the protection of physical confidential signals. However,

the study of physical unclonable function primitives is only one aspect of the whole domain

of hardware security. However, it is always said, “The easiest way to capture a fortress is

from within.” Is there any way that attackers can bypass all external protection mechanisms

and steal confidential messages from within? This talks about another pivotal subject in

hardware security, hardware Trojans (HTs).

After considering all potential malicious attacks, a hardware system should be mounted

with countermeasures to SCA attacks, ML attacks, and HT attacks, as is shown in Fig. 5.1.

In this architecture, a key hardware element should put in the middle of the whole archi-

tecture, while its frontend and backend are SCA-resistant models which prevent steals and

analyses of physical signal leakages. For the sake of reducing vulnerabilities to modeling

attacks, some uncertainty should be injected to the system. In addition, on the basis of

1The content of this Chapter partially has been published in [81].
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Fig. 5.1: A conceptual sketch of a hardware system that is well protected by countermeasures
to ML attacks, SCA attacks, and HT attacks.

the layout and analysis approach, the detection of hardware Trojans can be executed after

fabrication or in real-time. Since hardware Trojans are always implemented during fabri-

cations and can be implemented in any chips. In this chapter, we make a more general

assumption that hardware Trojans are implemented on a PUF primitive. On the one hand,

the design of hardware Trojans need to consider well of the architecture design. If the Tro-

jan is designed for a protection module, attackers do not bother to adjust their design for a

new architecture. And this will make their attacks more general and more effective. On the

other hand, the implementation of security module is enough for stealing data. Considering

the overhead of security modules, hardware devices may not implement redundant counter-

measures. On account of the assumption, a hardware Trojan design will be proposed in this

chapter, which aims at stealing information processed by a PUF primitive. In the mean-

time, a detection approach will be presented. The detection is a golden-chip free method

which utilize mathematical analysis as its detection tool. To some extent, golden-chip free

approach is more practical to conventional method with golden chips. We hope this method

may be generalized to adapt to more Trojan detection situations.
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(a) (b)

Fig. 5.2: (a) Architecture of a ROPUF [4]. (b) Oscillating frequencies versus supply voltage
for a ROPUF under the same input challenge [4]

5.2 REVIEW OF RING OSCILLATOR PUF (ROPUF) SENSOR

5.2.1 VULNERABILITIES IN CONVENTIONAL ROPUF DESIGNS

In a ROPUF, as shown in Fig. 5.2(a), k number of ring oscillators are utilized to output

the cipher responses. Despite the k number of ring oscillators are identically designed,

the oscillating frequency of each ring oscillator is different under the random fabrication

process. As a result, if two multiplexers are used to select two different ring oscillator loops,

the unpredictable mismatch of the oscillating frequency of the two selected ring oscillator

loops can be converted into the digital cipher data. For example, in Fig. 5.2(a), assume the

ring oscillator loops RO1 and RO2 are selected by the top multiplexer (mux) and the bottom

multiplexer under a certain input challenge, respectively. If the oscillating frequency of RO1

is higher or equal to the oscillating frequency of RO2, the output response r = 1. Otherwise,

the output response r = 0.

As shown in Fig. 5.2(b), if the same challenge is applied into the ROPUF, strong linear

relationships exist between the supply voltage and the oscillating frequencies. However,
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Fig. 5.3: Classic Arbiter PUF using path-swapping switches [5].

due to the affects of the random fabrication process, the slope of the frequency-voltage

curve of each ring oscillator in the ROPUF is different. In other words, different supply

voltages can achieve different frequency mismatches. Consequently, a one-to-one relation-

ship is established between the supply voltage and the output cipher data under the same

input challenge, as shown in Fig. 5.2(b). Moreover, since all the physical quantities like

temperature [82], pressure [83], and light luminosity [84] can be sensed and converted into

voltage signals without much effort, the ROPUF sensor is able to encrypt the sensed physical

quantity against the regular malicious attacks.

5.2.2 MACHINE LEARNING ATTACK ON A PUF PRIMITIVE

In this proposed work, we propose to design a hardware Trojan inclusion to extract crit-

ical confidential information in a PUF primitive. Therefore, a pivotal problem in this work

is after extracting system information with a Trojan, how to approximate the generation of

challenge response pairs (CRPs) with a further training in neural networks.

Some existing works made efforts in attack PUF primitives via convolutional neural

networks (CNN). In a paper that is proposed in 2016 [85], authors managed to use machine
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Fig. 5.4: CRPs data transformation and extension [6].

learning algorithm to crack an arbiter PUF using variant machine learning algorithm. The

basic architecture of arbiter PUF is proposed in Fig. 5.3. In the proposed architecture,

the input signal is c[0] to c[n], which use switch arrays to select signal paths for two input

signals. Kindly note that the input signal is split into two paths at the origin, while each

switch in the chain will select one signal to pass the top channel and the other signal will

pass the lower channel. Due to the fabrication variations among all switches, the overall

passing time for two split signals will exhibit a tiny mismatch at the end of the chain. As a

result, the arbiter in the end is then used to sense the arrival of trigger signals in two paths

and decide the response output at the port r. In such case, for a particular input node

c[i], its followed challenge signal c[i+ 1] will inherit the accumulated time delay in previous

challenge node c[i]. As a result, adjacent input challenge nodes are of sequential correlation

induced by time delay. On the other hand, since the output response r is mechanically

generated by the challenge input. The output response will be then of sequential correlation

in adjacent output nodes as well. Therefore, in theory, using CNN as attack mechanism to

a PUF primitive is rational.
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Fig. 5.5: Basic architecture of a 128-bit Trojan-infected ROPUF

In addition to [85], some other works also make efforts in cracking PUF with CNN

networks. [6] proposed a CRP transformation and expansion technique for an arbiter PUF.

Their extension mechanism is as shown in Fig. 5.4. Their method is to decompose delay

signature between two adjacent input nodes, while in a further extension, by shifting bits

of Xi and Yi, the delay signature will be then formatted as two-dimensional image. By

using the extended data as input and the response as output, authors apply CNN as attack

models for the proposed arbiter PUF and assert this data modeling method is more effective.

In this work, we would use a similar CNN architecture to perform modeling attack on the

ROPUF.

5.3 DESIGN OF TROJAN-INFECTED ROPUF

The vulnerability of a ROPUF sensor is the high linear relationship between the supply

voltage and the oscillating frequency of a single ring oscillator loop. If the critical oscillating

frequency in the ROPUF is disclosed to the adversary through utilizing a Trojan circuit,

the adversary may estimate the variations of the supply voltage and the physical quantity
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(a) (b)

Fig. 5.6: (a) Architecture of the Trojan trigger1. (b) Architecture of the Trojan trigger2

by monitoring the variations of the leaked oscillating frequency.

The basic architecture of a 128-bit Trojan-infected ROPUF is shown in Fig. 5.5. There

are two Trojan triggers: Trojan trigger1 and Trojan trigger2 in the embedded Trojan circuit.

When the Trojan trigger1 is activated, the enable signal EN in Fig. 5.6(a) will activate the

switch W11 and deactivate the switch W12 to output the original clock signal fc to activate

the Trojan counter and 128-bit register in Fig. 5.5. As a result, as shown in Fig. 5.5, the

oscillating frequency fi of the ith, (i = 1, 2, ..., k) ring oscillator loop ROi in the ROPUF

is extracted by the inserted Trojan counter. The output of the Trojan counter is a 128-bit

binary data (a1, a2, ..., a128)2 or a1 : a128 that includes the information of the oscillating

frequency fi. Subsequently, the 128-bit binary data a1 : a128 is fed into the 128-bit register

to generate the 128-bit critical output data b1 : b128, as shown in Fig. 5.5. However, if the

Trojan trigger1 is inactive, EN in Fig. 5.6(a) turns off the switch W11 and turns on the

switch W12 to generate the high voltage Vdd to deactivate the sequential circuits: Trojan

counter and 128-bit register in Fig. 5.5. In such a case, the dynamic power dissipation of the

embedded Trojan circuit will be significantly reduced to evade the regular Trojan detection.
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Fig. 5.6(b) shows the architecture of the Trojan trigger2.The Trojan trigger2 consists of

a D flip-flop, an inverter, and two switches. The primary role of the D flip-flop is achieving

the frequency division. When the Trojan trigger2 is activated by the adversary, the enable

signal EN in Fig. 5.6(b) becomes 1, thus the D flip-flop will output a new clock signal fT

whose frequency is a half of the frequency of the original clock signal fc. Moreover, since

the EN signal activates the switch W21 and deactivates the switch W22 in Fig. 5.6(b), the

Trojan trigger2 outputs the clock signal fT . Hence, the clock signal fT turns on/off the

switches S1 : S128 and the switches S∗1 : S∗128 in Fig. 5.5 alternately. Ultimately, in Fig. 5.5,

the output response r∗1 : r∗128 will become r1 : r128, b1 : b128, r1 : r128, b1 : b128, ... once the

Trojan trigger2 is activated. This indicates the information of the oscillating frequency fi

can be disclosed covertly in the output response of the Trojan-infected ROPUF.

However, if the Trojan trigger2 is inactive, the EN signal turns off the switch W21 and

turns on the switch W22 in Fig. 5.6(b) to output the high voltage Vdd. Under such a

condition, in Fig. 5.5, the switches S1 : S128 will be turned on while the switches S∗1 : S∗128

will be turned off. Accordingly, the 128-bit output response r∗1 : r∗128 of the Trojan-infected

ROPUF is equal to the 128-bit output response r1 : r128 of the Trojan-free ROPUF. This

means the Trojan-infected ROPUF behaves as a regular ROPUF when the Trojan trigger1

and Trojan trigger2 are inactive.
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5.4 RETRIEVAL OF CONFIDENTIAL DATA

5.4.1 DISCLOSURE OF CONFIDENTIAL DATA WITH HARDWARE TRO-

JAN ATTACKS

To successfully uncover the secret information of a 128-bit Trojan-infected ROPUF sen-

sor, the adversary needs to perform regular wireless attacks to obtain the 128-bit input

challenge C = c1 : c128 and output response R∗ = r∗1 : r∗128 of the Trojan-infected ROPUF at

first. Next, the adversary may activate the Trojan trigger1 and Trojan trigger2 in Fig. 5.5

to reveal the information of the critical oscillating frequency fi via wireless communication.

When the Trojan trigger1 in Fig. 5.5 is activated, the Trojan trigger1 will generate the

original clock signal fc to drive the sequential circuits: Trojan counter and 128-bit register.

Hence, the analog oscillating frequency fi is converted into a 128-bit digital data a1 : a128

under the assistance of the Trojan counter. Furthermore, the role of the 128-bit register is

delaying the signal a1 : a128 with a clock period. This means the output data b1 : b128 of the

128-bit register is equal to the previous value of a1 : a128.

In Fig. 5.5, if the Trojan trigger2 is activated by the adversary, it will output a new

clock signal fT to control the activation patterns of the switches S1 : S128 and S∗1 : S∗128.

Kindly note that the frequency ratio between the new clock signal fT and the original clock

frequency fc is designed as 1:2. Under such a condition, the data sequence that is sent out by

the Trojan-infected ROPUF in Fig. 5.5 is r1(t) : r128(t), a1(t) : a128(t), r1(t+Tc) : r128(t+Tc),

a1(t + Tc) : a128(t + Tc), r1(t + 2Tc) : r128(t + 2Tc), a1(t + 2Tc) : a128(t + 2Tc), · · · where t

is the timing and Tc is the period of the clock signal fc. Therefore, the information of the

critical oscillating frequency fi can be extracted in the output response of the Trojan-infected
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Fig. 5.7: Detailed structure of the CNNs with two convolutional layers for cracking the
128-bit Trojan-infected ROPUF

ROPUF once the Trojan trigger1 and Trojan trigger2 are activated.

5.4.2 DISCLOSURE OF CONFIDENTIAL DATA WITH MACHINE LEARN-

ING ATTACKS

As introduced in Section 5.4.1, under the assistance of the hardware Trojan attacks, the

adversary is capable of acquiring the 128-bit input challenge c1 : c128, actual output response

r1 : r128, and oscillating frequency information a1 : a128 of the Trojan-infected ROPUF by

activating the embedded Trojan circuit. Next, the adversary may use machine learning tech-

niques to model the Trojan-infected ROPUF with the leaked data. Once Trojan-infected

ROPUF is cracked by machine learning techniques, the adversary can deactivate the em-

bedded Trojan circuit and is able to predict the variations of the sensed data at any time.

To study machine learning attacks on the Trojan-infected ROPUF, a state-of-the-art

machine learning algorithm, CNN, is chosen for modeling the exact relationship among

c1 : c128, r1 : r128, and a1 : a128.

The detailed architecture of the CNNs for modeling the Trojan-infected ROPUF is de-

signed as shown in Fig. 5.7. The input challenge c1 : c128 and actual output response r1 : r128
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of the Trojan-infected ROPUF are selected for training the CNNs. In Fig. 5.7, a 16×16×1

matrix A that contains the information of c1 : c128 and r1 : r128 is established as the input

training data of the CNNs. Furthermore, the oscillating frequency information a1 : a128 is

extracted for generating the output training data of the CNNs. By converting the binary

data a1 : a128 into the decimal data ω, we can obtain ω as ω =
∑128

j=1 aj2
j−1. Suppose the

minimum and maximum values of ω are ωmin and ωmax, respectively. Therefore, if there are

N number of different values for the decimal data ω, the i1th, (i1 = 1, 2, ..., N) value ωi1

can be derived as

ωi1 =
i1 − 1

N − 1
(ωmax − ωmin) + ωmin. (5.1)

As shown in Fig. 5.7, the devised CNNs include two convolutional layers. Firstly, when

36 number of 3×3 filters perform the convolution operation on the 16×16×1 input matrix

A with the ReLU function, the matrix A is converted into a 14× 14× 36 matrix. Then the

14× 14× 36 matrix is transformed into the 7× 7× 36 matrix after executing a max pooling

operation to extract the critical features. Subsequently, a dropout operation transforms the

7 × 7 × 36 matrix into another 7 × 7 × 36 matrix with a 0.25 probability. These are the

operations that are achieved in the 1st convolutional layer.

In the 2nd convolutional layer, as shown in Fig. 5.7, convolution operation, max pooling

operation, and dropout operation are performed on the newest 7×7×36 matrix to create a

6× 6× 36 matrix, the 3× 3× 36 matrix, and a 3× 3× 36 matrix, sequentially. Kindly note

that the size of the filters used in the 2nd convolutional layer is 2× 2 and the corresponding

dropout probability is set as 0.25.
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(a) (b)

Fig. 5.8: Training result of the devised CNNs with 100,000 number of training data (the
batch size of the training is set as 100 and N is chosen as 10). (a) Accuracy versus number
of epochs. (b) Loss versus number of epochs

Once the latest 3 × 3 × 36 matrix in Fig. 5.7 is generated, under the assistance of the

flatten operation, the 1 × 1 × 324 array is created. Moreover, after executing dense and

dropout operations on the new created 1 × 1 × 324 array sequentially, two intermediate

1 × 1 × 512 arrays are acquired, as indicated in Fig. 5.7. The probability for this dropout

operation is set as 0.75. Eventually, when the last dense operation is implemented on the

latest 1 × 1 × 512 array with a Softmax function, the 1 × 1 × N array that is used for

classification can be obtained. Kindly note that the 1×1×N array stores the probabilities:

p1, p2, ..., pN for all the possible values of ωi1 : ω1, ω2, ..., ωN to realize classification. For

example, if p1 is the highest probability among all the probabilities: p1, p2, ..., pN , the output

of the CNNs is selected as ω1. Similarly, if pN shows the highest value, the CNNs set the

corresponding output as ωN .

To demonstrate the effectiveness of the CNN attack on the proposed Trojan-infected

ROPUF, the training data need to be collected at first. A 130 nm and 128-bit CMOS
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Fig. 5.9: Architecture of the Trojan-infected ROPUF sensor for sensing the dynamic current
of an AES cryptographic circuit

Trojan-infected ROPUF is simulated in Cadence. By triggering the embedded Trojan cir-

cuit, the input challenge c1 : c128, actual output response r1 : r128, and oscillating frequency

information a1 : a128 of the Trojan-infected ROPUF can be extracted from Cadence. As a

result, the training data of the CNNs can be acquired from the Cadence simulation. In the

CNN training, the loss function and optimizer are chosen with categorical crossentropy and

adam, respectively. After enabling 100,000 data to train the CNNs, as shown in Fig. 5.8, the

training (testing) accuracy and loss are about 0.929 (0.910) and 0.203 (0.205), respectively,

when the number of epochs is 60. Furthermore, as indicated in Table 5.1, if the number

of training data for the CNNs is increased from 100,000 to 200,000, the training accu-

racy/testing accuracy (TRA/TEA) increases and the training loss/testing loss (TRL/TEL)

decreases. However, when the number of training data is further increased from 200,000 to

500,000, the TRA/TEA decreases. That indicates 500,000 training data may cause an “over-

fitting” problem to the designed CNNs. Therefore, as shown in Table 5.1, machine learning

techniques are capable of achieving over 0.94 (0.92) TRA (TEA) on the Trojan-infected

ROPUF.
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TABLE 5.1: Training results of the CNNs with different number of training data (number
of epochs is 60 and batch size is 100)

5.4.3 DISCLOSURE OF CONFIDENTIAL DATA WITH SIDE-CHANNEL AT-

TACKS

Side-channel attacks [17, 63, 79] are a kind of powerful non-invasive attacks that can

be utilized by the adversary to leak the secret information of ICs through analyzing the

correlation between the processed data and the physical leakages of the ICs (i.e. power

dissipation, electromagnetic emission, and timing information). In order to demonstrate

that leaking the critical frequency fi of the Trojan-infected ROPUF sensor as mentioned

in Section 5.3 is sufficient to retrieve the confidential information of IoT, a representative

example about implementing side-channel attacks on the Trojan-infected ROPUF sensor is

analyzed in this Section.

Advanced encryption standard (AES) is a popular algorithm that can be utilized to

encrypt the critical data against the adversary [17, 79]. Fig. 5.9 shows an architecture of

the Trojan-infected ROPUF sensor that is used for monitoring the variations of the dynamic

current of an AES cryptographic circuit. Assume the secret key and plaintext of the AES

cryptographic circuit are Kc and P , respectively. When different plaintexts are inputted into

the AES cryptographic circuit sequentially, the dynamic current Id of the AES cryptographic

circuit varies all the time. If a resistor R0 is selected to sense the variations of the dynamic
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current Id of the AES cryptographic circuit, as shown in Fig. 5.9, the output critical voltage

Vref can be denoted as

Vref = Vdd − IdR0 (5.2)

where Vdd is the voltage of the power source. Moreover, as shown in Fig. 5.9, a low-dropout

(LDO) voltage regulator is utilized to manipulate the supply voltage VS of the Trojan-

infected ROPUF. However, since the LDO regulator is controlled by the critical voltage

Vref , the relationship between the supply voltage VS and the critical voltage Vref in Fig. 5.9

is determined as

VS = (1 +
R1

R2

)Vref (5.3)

where R1 and R2 are the biased resistances of the LDO regulator.

As mentioned in Section 5.2, linear relationships exist between the supply voltage and

the oscillating frequencies of the ring oscillators of the ROPUF. Therefore, the oscillating

frequency fi of the ith ring oscillator loop ROi in the ROPUF can be precisely derived as

fi = λiVS + βi = λi(1 +
R1

R2

)Vref + βi

= λi(1 +
R1

R2

)(Vdd − IdR0) + βi = G(Id) (5.4)
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where λi and βi are the slope and constant of the frequency-voltage curve of ROi in the

ROPUF, respectively. G(Id) is the linear function that is used to represent the relationship

between the dynamic current Id and the critical frequency fi. For the Trojan-infected

ROPUF sensor as shown in Fig. 5.9, the critical frequency fi is leaked to the adversary via

the inserted Trojan circuit and machine learning techniques. As a result, the adversary may

obtain the confidential information of the AES cryptographic circuit through analyzing the

variations of the critical frequency fi.

If the adversary selects the side-channel analysis to retrieve the secret key Kc of the

AES cryptographic circuit in the Trojan-infected ROPUF sensor, the correlation between

the input plaintext P and the leaked frequency fi is likely to be explored by the adversary.

Assume X number of different plaintexts: P1, P2, ..., PX are inputted into the AES crypto-

graphic circuit, the corresponding dynamic current values of the AES cryptographic circuit

are: Id,1, Id,2, ..., Id,X . Then the correlation between P1, P2, ..., PX and Id,1, Id,2, ..., Id,X

can be explored to disclose the secret key Kc with the side-channel analysis. However, since

the critical frequency fi strongly correlates with the dynamic current Id as shown in (3),

the correlation between P1, P2, ..., PX and G(Id,1), G(Id,2), ..., G(Id,X) can also be studied

to retrieve the secret key Kc.

As to the Trojan-free ROPUF sensor, conversely, the critical frequency fi is unknown

to the adversary. If the side-channel analysis is performed on the Trojan-free ROPUF

sensor, the adversary may analyze the correlation between the input plaintexts of the AES

cryptographic circuit and the output cipher responses of the ROPUF to estimate the secret

key Kc.
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(a) (b)

Fig. 5.10: Absolute value of correlation coefficient (AVCC) versus all the possible keys for
the ROPUF sensors under the side-channel analysis (Hamming-weight model is used). (a)
Trojan-infected ROPUF sensor with 3,000 input plaintexts. (b) Trojan-free ROPUF sensor
with 1 million input plaintexts

Both the Trojan-free and Trojan-infected ROPUF sensors are simulated in Cadence

with the 130 nm CMOS technology kits. A 128-bit AES cryptographic circuit acts as the

sensing load for both the Trojan-free and Trojan-infected ROPUF sensors in the simulations.

As shown in Fig. 5.10(a), if the side-channel analysis is applied on the Trojan-infected

ROPUF sensor by exploring the correlation between P1, P2, ..., PX and G(Id,1), G(Id,2), ...,

G(Id,X), only 3,000 plaintexts are sufficient to leak the secret key 24 that corresponds to a

substitution-box (S-box) of the AES cryptographic circuit due to the leakage of the critical

frequency fi. By contrast, as shown in Fig. 5.10(b), even if 1 million plaintexts are enabled

on the Trojan-free ROPUF sensor, the secret key 24 corresponds to the S-box of the AES

cryptographic circuit is successfully masked from being disclosed to the adversary since no

critical leakage is available for the adversary.
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5.5 TROJAN DETECTION

In a Trojan-free ROPUF IoT sensor, the original physical quantity is sensed and con-

verted into a critical voltage signal at first. Then both the critical voltage signal and the

input challenge are encrypted by the Trojan-free ROPUF to generate the output cipher data.

Subsequently, the cipher data will be sent to the host via wireless communication. Once

the cipher data are received by the host, the values of the original physical quantity can

be deciphered through checking the stored look-up table (LUT) of the Trojan-free ROPUF.

Since the physical quantity commonly conforms to a Gaussian distribution [17, 86], the host

is able to obtain Gaussian distributed sensed data after deciphering the received cipher data.

By contrast, for a Trojan-infected ROPUF IoT sensor, the case is different. As shown in

Fig. 5.5, when the embedded Trojan circuit is inactive, the Trojan-infected ROPUF behaves

like a Trojan-free ROPUF. As a result, the host is also capable of acquiring Gaussian dis-

tributed sensed data. However, once the embedded Trojan circuit is activated, as mentioned

in Section 5.4.1, the Trojan-infected ROPUF will send false cipher data to the host. After

deciphered the false cipher data, the obtained data are closer to random data that may not

conform to a Gaussian distribution.

To verify the effectiveness of the proposed Trojan detection methodology, the architec-

ture as shown in Fig. 5.9 is studied as the representative sample. When two different cases:

an AES cryptographic circuit with a Trojan-free ROPUF sensor and an AES cryptographic

circuit with a Trojan-infected ROPUF sensor are selected for studying the Trojan detection,

the sensed data is the dynamic current Id of the AES cryptographic circuit. After execut-

ing two independent tests: Test #1 and Test #2 on these two cases, the corresponding
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(a) (b)

Fig. 5.11: Distributions of the sensed data after executing two independent tests (each test
contains 5,000 sensed data). (a) An AES cryptographic circuit with a Trojan-free ROPUF
sensor. (b) An AES cryptographic circuit with a Trojan infected ROPUF sensor

distributions of the sensed data are obtained in Fig. 5.11. As indicated in Fig. 5.11(a),

the sensed dynamic current Id of an AES cryptographic circuit with a Trojan-free ROPUF

sensor well conforms a Gaussian distribution. Conversely, for an AES cryptographic circuit

with a Trojan-infected ROPUF sensor, Fig. 5.11(b) shows the sensed dynamic current Id

complies with a non-Gaussian distribution. Accordingly, by monitoring the distribution of

the sensed data in real-time, the Trojan-infected ROPUF sensor chips will be identified.

5.6 CONCLUSION

A hardware Trojan attack is performed in the ring oscillator PUF (ROPUF) sensors of

IoT by embedding a sequential Trojan circuit into the chip to leak the critical frequency to

the adversary. As demonstrated in the result, after leaking 200,000 critical data by triggering

the embedded Trojan circuit, the Trojan-infected ROPUF can be precisely modeled under

the assistance of machine learning techniques. Additionally, by monitoring the distribution
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of the sensed data received from each IoT sensor in real-time, the Trojan-infected ROPUF

sensor chips can be successfully detected.
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CHAPTER 6

COMBINING SIDE-CHANNEL ANALYSIS AND MACHINE

LEARNING MODELS IN EFFICIENT ATTACKS ON XOR

PUFS

6.1 MOTIVATION

In Chapter 2 and Chapter 3, two PUF designs are proposed to enhance the non-linear

relationship between input challenge and output response1. The main reason is that under

the hard limitation of hardware resources, the most effective approach to promote the PUF

security is to increase the non-linearity [88, 89, 90]. So as to improve the degree of non-

linearity between input challenge and output response against ML attacks, XOR PUFs

[91, 92] were proposed by using XOR functions to process the corresponding output response.

One thing that needs to be emphasized is that the increasing of algorithm complexity cannot

confront all machine learning attacks. However, under the same network scale and cracking

time, if a PUF is designed with a more complex non-linear algorithm, attackers may spend

more time and effort on the data analysis.

To some extent, a simple convolutional neural network (CNN) model may not be efficient

to an XOR PUF with complex non-linear algorithm. The plausible explanation is that the

CNN attack is unable to extract the critical correlation among the N input challenge bits

of the XOR PUF since the N input challenge bits are mutually independent. However,

1The content of this Chapter partially has been published in [87].
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if a SCA attack is performed prior to CNN attack, will some non-linearity be reduced or

eliminated, and result in a vulnerability to further CNN attacks? In this short section, a

hybrid attack model is performed on a XOR PUF to examine its robustness to the novel

hybrid attack model.

6.2 PRINCIPLE OF SC-ASSISTED CNN ATTACK

Fig. 6.1 shows the fundamental architecture of a 128-bit arbiter XOR PUF. The 128-bit

input challenge (c1, c2, ..., c128)2 is fed into four identically designed PUF blocks: arbiter PUF

#1, arbiter PUF #2, arbiter PUF #3, and arbiter PUF #4, respectively. Due to the affects

of random fabrication process, these four PUF blocks generate four different responses: r1,

r2, r3, and r4, as shown Fig. 6.1. Eventually, an XOR operation is performed on r1, r2, r3,

and r4 to create the output response R of the XOR arbiter PUF (R = r1 ⊕ r2 ⊕ r3 ⊕ r4).

If a regular CNN attack is executed to model the relationship between the input challenge

(c1, c2, ..., c128)2 and the output response R of the XOR arbiter PUF, the 128-bit input

challenge (c1, c2, ..., c128)2 will be processed by convolution operations. Unfortunately, no

significant features can be extracted after applying the convolution operations since there

is no correlation among the 128 input challenge bits: (c1, c2, ..., c128)2.

In order to generate highly correlated input challenge bits to significantly improve the

efficacy of CNN attack on the 128-bit XOR arbiter PUF, SC analyses can be utilized

to pre-process the 128 uncorrelated input challenge bits: (c1, c2, ..., c128)2. In the pro-

posed SC-assisted CNN attack, the 128-bit input challenge (c1, c2, ..., c128)2 is added to a

128-bit intermediate data (a1, a2, ..., a128)2 to generate the 128 correlated input challenge

bits: (c∗1, c
∗
2, ..., c

∗
128)2 where c∗i = ci ⊕ ai, (i = 1, 2, ..., 128). Suppose the input challenge
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(c1, c2, ..., c128)2 is uniformly divided into m groups, the input challenge of the kth, (k =

1, 2, ...,m) group can be denoted as (c(k−1) 128
m

+1, c(k−1) 128
m

+2, ..., ck 128
m

)2. As a result, the corre-

lated input challenge of the kth group can be derived as (c∗
(k−1) 128

m
+1
, c∗

(k−1) 128
m

+2
, · · · , c∗

k 128
m

)2 =

(c(k−1) 128
m

+1 ⊕ a(k−1) 128
m

+1, c(k−1) 128
m

+2 ⊕ a(k−1) 128
m

+2, ..., ck 128
m
⊕ ak 128

m
)2.

To obtain the optimum (a(k−1) 128
m

+1, a(k−1) 128
m

+2, ..., ak 128
m

)2 for achieving the target chal-

lenge sequence (c∗
(k−1) 128

m
+1
, c∗

(k−1) 128
m

+2
, · · · , c∗

k 128
m

)2 with the maximum correlation, SC anal-

yses can be deployed to realize the optimization. Since (a(k−1) 128
m

+1, a(k−1) 128
m

+2, ..., ak 128
m

)2

is a 128
m

-bit binary data, we can hypothesize 2128/m possible values from (0, 0, ...., 0)2 to

(1, 1, ...., 1)2 for it. Assume the power consumption of the 128-bit XOR arbiter PUF is Pd.

If n number of different (c(k−1) 128
m

+1, c(k−1) 128
m

+2, ..., ck 128
m

)2 values are inputted into the 128-

bit XOR arbiter PUF, the corresponding n number of different Pd values can be collected.

Suppose hamming-weight (HW) model is selected for executing the SC analyses, the cor-

relation between
∑128/m

j=1 c(k−1) 128
m

+j ⊕ a(k−1) 128
m

+j and Pd can be studied for estimating the

optimum (a(k−1) 128
m

+1, a(k−1) 128
m

+2, ..., ak 128
m

)2. When 2128/m different correlation coefficients

are acquired by hypothesizing 2128/m possible values for (a(k−1) 128
m

+1, a(k−1) 128
m

+2, ..., ak 128
m

)2,

the possible value that corresponds to the highest correlation coefficient is regarded as the

optimum (a(k−1) 128
m

+1, a(k−1) 128
m

+2, ..., ak 128
m

)2 value. Under such a condition, the 128-bit in-

termediate data (a1, a2, ..., a128)2 can be fully determined through applying the SC analyses

on each group individually. Moreover, the total computational complexity for estimating

(a1, a2, ..., a128)2 is m× 2128/m.

After executing the SC analyses on the 128-bit XOR arbiter PUF, the new 128-bit input

challenge (c∗1, c
∗
2, ..., c

∗
128)2 can be generated. To study the correlation among c∗1, c∗2, ..., c∗128,
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Fig. 6.1: Basic architecture of a 128-bit XOR arbiter PUF (r1, r2, r3, r4, and R are single
bit data)

(a) (b)

Fig. 6.2: Correlation analyses for the original input challenge (c1, c2, ..., c128)2 and new input
challenge (c∗1, c

∗
2, ..., c

∗
128)2. (a) Correlation coefficient (between c∗1 and

∑128
i=1 c

∗
i ) and compu-

tational complexity versus number of group m. (b) Correlation coefficient verus ith bit for
Case A, Case B, and Case C (m = 16)

two new correlation coefficients: r(c∗i ,
∑128

i=1 c
∗
i ) and r(c∗i ,

∑128/m
j=1 c∗

[ i×m
128

]× 128
m

+j
) need to be de-

fined. r(c∗i ,
∑128

i=1 c
∗
i ) represents the correlation coefficient between the ith bit: c∗i and the HW

of all the bits:
∑128

i=1 c
∗
i . Similarly, r(c∗i ,

∑128/m
j=1 c∗

[ i×m
128

]× 128
m

+j
) denotes the correlation coeffi-

cient between the ith bit: c∗i and the HW of the group that includes c∗i :
∑128/m

j=1 c∗
[ i×m
128

]× 128
m

+j
.

The 128-bit XOR arbiter PUF as shown in Fig. 6.1 is designed and simulated in Cadence

with the 130 nm CMOS technology kit. The architecture of the four identically designed

PUF blocks in Fig. 6.1 is chosen from [93]. Moreover, the SC analyses are executed on the
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128-bit XOR arbiter PUF by extracting the correlation between the input challenge and the

power consumption of the PUF from the simulation. As shown in Fig. 6.2(a), a balanced

correlation coefficient 0.2258 and computational complexity 4096 can be achieved for the

new input challenge (c∗1, c
∗
2, ..., c

∗
128)2 if the number of groups m is chosen as 16. In Fig. 6.2(b),

three different cases: Case A, Case B, and Case C are analyzed. Case A (Case B) reflects

the correlation coefficient between the ith bit and the HW of all the bits related with the

original input challenge (c1, c2, ..., c128)2 (new input challenge (c∗1, c
∗
2, ..., c

∗
128)2). When we

compare Case A and Case B, it is apparent that the correlation coefficients among all the

input challenge bits are significantly increased after applying the SC analyses. Furthermore,

Case C in Fig. 6.2(b) represents the correlation coefficient between the ith bit and the HW

of the group that includes c∗i associated with (c∗1, c
∗
2, ..., c

∗
128)2. If Case B and Case C are

selected for comparison, it demonstrates that the correlation among the neighbor data in

the new input challenge (c∗1, c
∗
2, ..., c

∗
128)2 is strongly reinforced. This strong correlation can

be used for improving the efficiency of CNN attack on the XOR arbiter PUF.

6.3 COMPARISON BETWEEN THE PROPOSED ATTACK AND A

REGULAR CNN ATTACK

As demonstrated in Fig. 6.2(a), if the number of groups m is set as 16, the optimum

SC analyses can be realized. In such a case, if a CNN attack is executed to process the

correlated input challenge (c∗1, c
∗
2, ..., c

∗
128)2, the 32 × 4 × 1 matrix C∗ as shown in Fig. 6.3

is created as the input training data for the CNNs. Kindly note that the challenge bits

within group #1, group #2, ... group #16 are placed together in the matrix C∗. The

primary intention is maximizing the correlation among the neighbor data for assisting the

convolution operations. In the convolutional stage, 32 number of 3× 3 filters are performed
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Fig. 6.3: Convolutional layer of the SC-assisted CNN attack for modeling the 128-bit XOR
arbiter PUF

on the matrix C∗ to generate a 30× 2× 32 matrix D with the convolution operations and

a ReLU function, as shown in Fig. 6.3. For instance, the element d1,1,1 of the matrix D in

Fig. 6.3 can be written as

d1,1,1 = max{0,
6∑

h=1

d∗1,1,1,hc
∗
h} (6.1)

where d∗1,1,1,1, d∗1,1,1,2, ..., d∗1,1,1,6 are the 6 parameters of the filter that are related with the

element d1,1,1. After executing the max pooling operation, the 30 × 2 × 32 matrix D is

transformed into the 15× 1× 32 matrix E, as shown in Fig. 6.3. Then a dropout operation

is used for converting the 15× 1× 32 matrix E into another 15× 1× 32 matrix E∗ with a

0.2 dropout probability. These aforementioned steps are achieved in the convolutional layer

of the CNNs.
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(a) (b)

Fig. 6.4: Training result of the SC-assisted CNN attack on the 128-bit XOR arbiter PUF.
(a) Accuracy versus number of epochs. (b) Loss versus number of epochs

So as to classify the output response R of the 128-bit XOR arbiter PUF with a high

logic value ”1” or a low logic value ”0”, the 15 × 1 × 32 matrix E∗ needs to be converted

into a 1×1×2 array ultimately. To achieve this goal, in the designed CNNs, the 15×1×32

matrix E∗ is converted into the 1× 1× 480 array, a 1× 1× 720 array, a 1× 1× 720 array,

and a 1× 1× 2 array by using a flatten operation, a dense operation, a dropout operation,

and a dense operation, respectively. The dropout probability of the last dropout operation

is set as 0.8 and a Softmax function is used in the final dense operation.

To train the CNNs that are used for executing the SC-assisted CNN attack, the corre-

sponding loss function and optimizer are chosen as binary crossentropy and adam, respec-

tively. The batch size for the CNN training is optimized with 100. As shown in Fig. 6.4(a),

after enabling 150,000 training data, the SC-assisted CNN attack is able to achieve a 0.984

(0.982) training (testing) accuracy on the 128-bit XOR arbiter PUF when the number of

epochs is chosen as 40. Fig. 6.4(b) shows the corresponding training (testing) loss is about
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(a) (b)

Fig. 6.5: Training result of the regular CNN attack on the 128-bit XOR arbiter PUF. (a)
Accuracy versus number of epochs. (b) Loss versus number of epochs

0.006 under such a training (testing) accuracy.

If a regular CNN attack is performed on the 128-bit XOR arbiter PUF, the input training

data needs to be replaced with the original input challenge (c1, c2, ..., c128)2. This means the

elements of the 32× 4× 1 matrix C∗ in Fig. 6.3 are substituted with c1, c2, ..., c128. After

training the CNNs associated with the regular CNN attack with 150,000 data, the training

(testing) accuracy is about 0.658 (0.633) if the number of epochs is set as 40, as shown in

Fig. 6.5(a). Moreover, Fig. 6.5(b) reflects a much higher training (testing) loss will occur

under the regular CNN attack.

6.4 CONCLUSION

A novel side-channel (SC)-assisted convolutional neural network (CNN) attack is pro-

posed in this letter to model non-linear PUFs: XOR PUFs. By utilizing SC analyses to add

strong correlation among the input training data, the training/testing accuracy of the CNN
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attack is improved over 0.98. By contrast, the training/testing accuracy of a regular CNN

attack is about 0.64 without the assistance of the strong correlation.
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CHAPTER 7

CONCLUSION

Physical unclonable function (PUF) research is a core topic in the domain of hardware

security. Workload aware multi-phases voltage regulator (WAMPVR) PUFs utilize capac-

itance differences as compared parameter and introduce serial diode sets to increase the

non-linearity in voltage signals. Wave dynamic differential logic (WDDL) PUF introduce

an existing side-channel-resistant hardware component into PUF design. By utilizing a non-

linear function on circuit level, the power entropy is greatly promoted, enhancing the PUF

resilience to ML attacks and SCA attacks. Although both PUF designs are proved to be

robust to non-invasive attacks. The usage of non-linear function, however, introduces more

randomness in circuit function, providing additional stability and robustness against more

advanced ML attack models.

Compared to WAMPVR PUF and WDDL PUF, the conceptual design of PUF-AES-

PUF architecture considers more vulnerable leakage paths of confidential information. If

a cryptographic circuit is planed in the middle of the circuit, both input power trace and

output power trace are obscure to attackers. While one end of both PUFs are not open to

attackers, attackers can no longer perform modeling attacks solely on a single protection

mechanism. The uncertainties induced by secret key also enhance the PUF robustness to

deep neural network (DNN) models.

Suppose the PUF primitive is implemented with an unwilling Trojan inclusion in the
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fabrication process, the relationship between input physical signal and output digital re-

sponses are revealed to attackers. Comparing to an integral PUF protection, the Trojan

inclusion eliminates most uncertainties on devices, resulting in a vulnerability to ML mod-

eling attacks and succedent SCA attacks. If the existence of Trojan can be aware of, since

the Trojan will alter the electrical signal in an unnatural manner, the sensed data will no

longer conform to Gaussian distribution. Thus, the statistical method is effective in the

detection of hardware Trojans.

In addition, to some floorplans with simple or single protection mechanisms, a profiling

attack model jointly using ML attack models and SCA attack approach can easily penetrate

the secure hardware model. With the participance of SCA approach, more circuit features

are extracted from leakage signals. The possibility to crack non-linear XOR PUF is thus

promoted to 0.98, comparing to the accuracy of 0.65 under a simple CNN attack model.
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CHAPTER 8

FUTURE WORK

8.1 MACHINE LEARNING-BASED PHYSICAL UNCLONABLE

FUNCTION (PUF)-LIKE MODULES

In the whole dissertation, all subjects are around the concept to enhancing the internal

algorithm logic/non-linearity against ML attacks and/or SCA attacks. To a certain extent,

the enhancement of algorithm does increase the robustness to both attack models. However,

the comparison logic, after all, is based on two sets of hardware modules. Any increments in

algorithm complexity will result in additional consumption in area, power budget, etc. As

an engineer in hardware security, our ultimate goal is to use resources as little as possible to

resolve potential threats ultimately. Therefore, based on the same topic of PUF, is there any

solution that holds confidentiality, flexibility, and expansibility at the same time? Under

this assumption, we believe the combination of ML algorithms and PUF primitives can be

a promising research topic in this area.

First of all, same as all cryptographic-purpose system, the architecture of all PUF prim-

itive are public, while the concrete variable/key details of inner components are kept as

secret information. This theory does not only facilitate the information exchange in crypto-

graphic system, but also enables hardware designers take advantage of known secret inner

components in their architecture designs. However, in view of current hardware architecture

and hardware security theory, the bottleneck of PUF industry is the rigid restriction of area

and power budget stipulate the scale of PUF as well as its internal algorithm complexity.
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Fig. 8.1: Conceptual floorplan of neural network PUF-like module.

Under this situation, a PUF primitive may always be compromised with a modeling attack

under a finite time complexity. In addition, from the perspective of all proposed PUF de-

signs, all uncertainties are fixed when the PUF layout is decided. In accompany with a

finite algorithm complexity, the series of Taylor expansion cannot be too large, resulting in

vulnerabilities in differential cryptanalysis and linear cryptanalysis. And that is also why

we introduce artificial uncertainty dimensions in Chapter 4. Furthermore, with the advent

of machine learning algorithm and quantum computers in the foreseeable future, all current

cryptographic algorithms with fixed complexity or finite uncertainties may be cracked with

more advanced modeling algorithms.

In view of all aforementioned problems, one promising future work is to exploit machine
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learning architecture as PUF-like hardware architecture. Please kindly note that the concep-

tual architecture is not simply from manufacture uncertainties as conventional designs. As

is shown in Fig. 8.1 is conceptual floorplan of neural network PUF-like module. Similar to

regular PUF architecture, the input layer and the output layer stipulate the dimension of the

challenge signal and response signal. The hidden layer forms the internal arithmetic logic of

the PUF module. Different from regular neural network architecture, not all nodes in hidden

layers are utilized, as well as their corresponding connection weights. Comparing to conven-

tional PUF architecture, the conceptual PUF-like module has following features. First, the

architecture is analogous to field programming gate array (FPGA). Since not all internal

logic/arithmetic nodes will be used, hardware designers can decide which nodes/weights are

to be used in either training process or validation process. Besides, the growth of machine

learning algorithms makes it possible to embed NN-based hardware module into chip lay-

outs. Once the NN module is embedded onto hardware architectures, Node weights of the

network module can be rewritten in execution. This means the network module can be

designed for multi-purposes. If the system asks for a key or an authentication code, the

neural network can terminate the regular work for several cycles and generate some pairs of

CRPs. This greatly reduces the overhead that introduces a non-systematical functional unit

into hardware designs. Last but not least, more uncertainty dimensions will be introduced

with this design. On the one hand, the number of input nodes and output nodes are uncer-

tain. Hardware designers can design their specific mappings from challenges to responses,

which gives great degree of freedom in security designs. On the other hand, since the usage

of nodes are not fixed. Even attackers are able to compromise one network architecture,
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security supervisors can always alter the network structure or change connection weights

as new safety strategies. Although some details in realizations are not well considered, this

conceptual architecture can still be one promising research directions in the future.

8.2 LOW/REDUCED OVERHEAD PHYSICAL UNCLONABLE

FUNCTION DEVICES

Similar to every innovate idea and designs in hardware industry, PUF primitives, after

all, are still hardware devices and is of commodity value attributes. Except for the infinite

pursuit on security attributes, another crucial design principle of PUF is the reduction

of excess overhead on area, power, and all other physical dimensions that may degrade the

overall performance of the computer system. Though protection mechanisms on the software

system also requires the actual impact as few as possible, comparing to the total resources

on hardware architectures, software security strategies, like AES and RSA cryptography,

possesses relative unlimited computational resources and can be optimized on the algorithm

level. A more real question that the PUF industry has to face is no matter how efficient

the PUF can be exploited as hardware security strategies, if the degradation of performance

is not negligible, any PUF-based security chip will be weak in market competitions. As

the final tradeoff in the market place, PUF, as an additional security module, is the first

one to be sacrificed. Eventually, the last but not least barrier before PUF devices can be

negotiated to large-scale applications is the overhead problem.

In previous sections, most words underline the promotion of security of PUF against

potential attacking models, to be specific, ML attacks and SCA attacks. In Chapter 2

and Chapter 3, we manage to exploit existing hardware architectures or mechanisms as the
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Fig. 8.2: Illustration of PUF realization using on-chip scan structure [7].

basis of innovate PUF primitives. And in Chapter 4, our strategy is to use existing low-

overhead designs (RO PUF) and essential security modules (AES cryptographic circuit) to

reconstruct a PUF logic. Since all architecture designs utilize existing modules on system, no

discussions are developed in details on further reducing consumption on hardware resources

in hardware system, though we equally believe the overhead problem is not negligible in more

severe security markets in the touchable future. However, considering hardware threats are

already proposed and studied by both researchers and “evils behind computers”, we cannot

wait for the emergence of attacks, and not until then did we equip our hardware system

with PUF primitives. Therefore, we choose to investigate the feasibility of most accessible

architectures at first and regard the deduction of resource usage as future works.

According to accessible literatures, early discussions on low overhead PUF designs are

no later than 2008 [94], though designs of PUF primitives can be traced back to seven years

before [95]. Early works also do not mention too much on power/area budgets, while they

mostly assert the execution time of security authentication is a small proportion comparing

to the time of system usage. A meaningful work on PUF overhead exhibits an experimental
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result on a scanPUF [7], as is shown in Fig. 8.2. In the proposed work, the PUF is realized

on a scan mechanism on two flip-flop paths. And users use experiments on FPGA imple-

mentation to prove the innovate PUF consume 11.17% excess area compared to conventional

RO-PUF, while the overall power budget is elevated by 9.65%. In a more recent work, by

introducing mechanism of self-regulation and reconfiguration, [96] designs an inverter-based

PUF with zero-overhead stabilization scheme. Based on our current work, the security at-

tribute is still our priority in PUF designs, in which we are aiming to an ultimate and general

solution to all current malicious attacks in hardware system. As a result, one possible re-

search work in the future should be the overhead reduction of our current PUF-AES-PUF

architecture, since it is believed to be most robustness in all our current designs. Another

possible work can be the arithmetic redesign on PUF comparison. As is stated in previous

sections, the non-linearity is a key factor in evaluating PUF performance. We may think of

a low-overhead comparison system that balance the resource budget and the non-linearity

simultaneously.
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[23] B. Hettwer, S. Gehrer, and T. Güneysu, “Profiled power analysis attacks using con-

volutional neural networks with domain knowledge,” in International Conference on

Selected Areas in Cryptography, pp. 479–498, Springer.

[24] A. Raychowdhury, “Machine learning in profiled side-channel attacks and low-overhead

countermeasures,” 2019.

[25] G. Yang, H. Li, J. Ming, and Y. Zhou, “Convolutional neural network based side-

channel attacks in time-frequency representations,” in International Conference on

Smart Card Research and Advanced Applications, pp. 1–17, Springer.

[26] R. Giterman, M. Wicentowski, O. Chertkow, I. Sever, I. Kehati, Y. Weizman, O. Keren,

and A. Fish, “Power analysis resilient SRAM design implemented with a 1% area

overhead impedance randomization unit for security applications,” in ESSCIRC 2019

- IEEE 45th European Solid State Circuits Conference (ESSCIRC), pp. 69–72, Sep.

2019.

[27] D. Das, S. Maity, S. B. Nasir, S. Ghosh, A. Raychowdhury, and S. Sen, “High efficiency

power side-channel attack immunity using noise injection in attenuated signature do-

main,” in 2017 IEEE International Symposium on Hardware Oriented Security and

Trust (HOST), pp. 62–67, May 2017.

[28] G. E. Suh and S. Devadas, “Physical unclonable functions for device authentication

and secret key generation,” in 2007 44th ACM/IEEE Design Automation Conference,

pp. 9–14, IEEE, 2007.

[29] Y. Wen and W. Yu, “Machine learning-resistant pseudo-random number generator,”

Electronics Letters, vol. 55, no. 9, pp. 515–517, 2019.



119

[30] J. W. Lee, Daihyun Lim, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas, “A

technique to build a secret key in integrated circuits for identification and authentication

applications,” in 2004 Symposium on VLSI Circuits. Digest of Technical Papers (IEEE

Cat. No.04CH37525), pp. 176–179, June 2004.

[31] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis,

“Machine learning applications in cancer prognosis and prediction,” Computational

and structural biotechnology journal, vol. 13, pp. 8–17, 2015.

[32] M. W. Libbrecht and W. S. Noble, “Machine learning applications in genetics and

genomics,” Nature Reviews Genetics, vol. 16, no. 6, pp. 321–332, 2015.

[33] J. Gao, “Machine learning applications for data center optimization,” 2014.

[34] P. Harrington, Machine learning in action. Manning Publications Co., 2012.

[35] P. N. Ramkumar, H. S. Haeberle, S. M. Navarro, A. A. Sultan, M. A. Mont, E. T.

Ricchetti, M. S. Schickendantz, and J. P. Iannotti, “Mobile technology and telemedicine

for shoulder range of motion: validation of a motion-based machine-learning software

development kit,” Journal of shoulder and elbow surgery, vol. 27, no. 7, pp. 1198–1204,

2018.

[36] J. Gu, Y. Liu, Y. Gao, and M. Zhu, “OpenCL caffe: Accelerating and enabling a

cross platform machine learning framework,” in Proceedings of the 4th International

Workshop on OpenCL, pp. 1–5, 2016.

[37] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.

[38] X. Xu and W. Burleson, “Hybrid side-channel/machine-learning attacks on PUFs: A

new threat?,” in 2014 Design, Automation & Test in Europe Conference & Exhibition

(DATE), pp. 1–6, IEEE, 2014.
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[74] W. Yu and S. Köse, “Security implications of simultaneous dynamic and leakage power

analysis attacks on nanoscale cryptographic circuits,” Electronics Letters, vol. 52, no. 6,

pp. 466–468, 2016.

[75] M. Alioto, L. Giancane, G. Scotti, and A. Trifiletti, “Leakage power analysis attacks:

A novel class of attacks to nanometer cryptographic circuits,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 57, no. 2, pp. 355–367, 2009.

[76] Y. Wen, S. F. Ahamed, and W. Yu, “A novel puf architecture against non-invasive

attacks,” in 2019 ACM/IEEE International Workshop on System Level Interconnect

Prediction (SLIP), pp. 1–5, June 2019.

[77] G. Hospodar, B. Gierlichs, E. De Mulder, I. Verbauwhede, and J. Vandewalle, “Machine

learning in side-channel analysis: a first study,” Journal of Cryptographic Engineering,

vol. 1, no. 4, p. 293, 2011.



124
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