
Clemson University Clemson University

TigerPrints TigerPrints

All Dissertations Dissertations

5-2023

Adversarial Deep Learning and Security with a Hardware Adversarial Deep Learning and Security with a Hardware

Perspective Perspective

Joseph Clements
jfcleme@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

 Part of the Other Computer Engineering Commons

Recommended Citation Recommended Citation
Clements, Joseph, "Adversarial Deep Learning and Security with a Hardware Perspective" (2023). All
Dissertations. 3352.
https://tigerprints.clemson.edu/all_dissertations/3352

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been
accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information,
please contact kokeefe@clemson.edu.

https://tigerprints.clemson.edu/
https://tigerprints.clemson.edu/all_dissertations
https://tigerprints.clemson.edu/dissertations
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/265?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3352&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/3352?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F3352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Adversarial Deep Learning and Security with a
Hardware Perspective

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Engineering

by

Joseph Clements

May 2023

Accepted by:

Dr. Yingjie Lao, Committee Chair

Dr. Long Cheng

Dr. Richard Groff

Dr. Adam Hoover

Dr. Apoorva Kapadia

Abstract

Adversarial deep learning is the field of study which analyzes deep learning in the presence

of adversarial entities. This entails understanding the capabilities, objectives, and attack scenarios

available to the adversary to develop defensive mechanisms and avenues of robustness available to

the benign parties. Understanding this facet of deep learning helps us improve the safety of the

deep learning systems against external threats from adversaries. However, of equal importance, this

perspective also helps the industry understand and respond to critical failures in the technology. The

expectation of future success has driven significant interest in developing this technology broadly.

Adversarial deep learning stands as a balancing force to ensure these developments remain grounded

in the real-world and proceed along a responsible trajectory. Recently, the growth of deep learning

has begun intersecting with the computer hardware domain to improve performance and efficiency

for resource constrained application domains. The works investigated in this dissertation constitute

our pioneering efforts in migrating adversarial deep learning into the hardware domain alongside its

parent field of research.

This work covers two novel perspective: hardware Trojans and hardware watermarks for

deep learning hardware accelerators. A foundational work for both of these perspectives is the

operational backdoor. Backdoor injection in deep learning compromises an intelligent systems by

modifying the system during development to introduce abnormal behaviors which can be activated

by the adversary upon deployment. The operational backdoor uses a fundamentally different vul-

nerability than previous methodologies. Conventional backdoors in deep learning exploits the ability

of the adversary to inject changes in model parameters, architectures, or training procedures. Our

method exploits the vulnerability of deep learning to modifications to its fundamental computational

operations, such as the non-linear activation functions. This unique perspective on injecting back-

doors enables an adversary to compromise a model through deep learning programming frameworks,

ii

firmware updates, or faults in the computational circuits.

Then, we extend the potential of hardware Trojan attacks in the domain of adversarial

deep learning. Hardware Trojans describe modifications to hardware circuitry which inject some

malicious functionality into a hardware design. Modern trends in the production and distribution

of hardware components along a globalized supply chain are highly beneficial to the industry and

largely enable the widespread availability of computing devices. However, the ease of access to a

hardware design and divergent incentives make Hardware Trojans a genuine possibility for those same

computing platforms. Further, the immutability of hardware and the difficulty of identifying Trojan

functionality makes mitigation of such attacks an unsolved problem in the industry. Our research

finds that hardware Trojans can be injected into a hardware platform that is able to compromise a

deep learning model executed on the platform.

Recently, the ease with which an adversary is able to pirate high-value deep learning models

has become a serious concern. Multiple avenues to defend against this vulnerability have been

extended to deep learning from other domains. Watermarks are one such technique that embeds

a signature into the deep learning model such that fraudulent usage of the model can be detected

and remedied. This defense is typically the last line of defense against piracy and so is a critical

tool for deep learning developers. As we incorporate the hardware perspective into deep learning,

protecting high-value deep learning hardware from piracy secures the profit incentives and creative

endeavors that motivate future developments. We tackle this problem in our work by developing a

sophisticated watermarking framework that utilizes a hardware-algorithmic cooperative algorithm

that enables a deep learning hardware developer to inject watermarks into their designs, identify

piracy, and support claims of fraudulent usage.

iii

Dedication

To my wonderful and loving wife, Rose. Thank you for all your support!

iv

Acknowledgments

I would like to express my gratitude and appreciation to my adviser Dr. Yingjie Lao for his

guidance and encouragement throughout this work.

I further extend my gratitude to each of my committee members: Dr. Adam Hoover, Dr.

Richard Groff, Dr. Apoorva Kapadia, and Dr. Long Cheng, for their time and interest in this work.

I want to acknowledge Dr. Adam Hoover’s gracious support in helping me develop my professional

writing and presentation skills.

I would finally like to acknowledge the faith and support of my family and the members of

my research group.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 The Impact of Deep Learning . 1
1.2 Dangers of Adversaries in Deep Learning . 4
1.3 Hardware Perspective of Deep Learning . 10
1.4 Novel Perspectives in Deep Learning Security . 12

2 Deep Learning Backdoors through Modifications to Model Operations 14
2.1 A Novel Perspective on Deep Learning Backdoors . 14
2.2 Proposed Backdoor Injection Methodology . 18
2.3 Experimental Evaluations . 25
2.4 Conclusions . 29

3 Compromising Deep Learning with Hardware Trojans 31
3.1 Neural Network Hardware Implementations and Trojans 31
3.2 Injecting Hardware Trojans in Neural Networks . 39
3.3 Experimental Evaluations . 48
3.4 Conclusions . 55

4 Preventing Deep Learning Hardware Piracy with Watermarks 56
4.1 Importance of Watermarking Deep Learning Hardware 56
4.2 Embedding Watermarks in Deep Learning Hardware 58
4.3 Experimental Evaluations . 71
4.4 Conclusions . 80

5 Compromising Embedded Deep Learning Based Security Systems 82
5.1 Security of Deep Learning Based Security Systems 82
5.2 Evaluating the Network Intrusion Detection System 86
5.3 Experimental Evaluations . 89
5.4 Conclusions . 97

vi

6 Conclusions and Furture Directions . 99
6.1 Conclusions . 99
6.2 Related Works . 100
6.3 Future Directions . 102

Bibliography .105

vii

List of Tables

2.1 Summaries of network architectures . 27

3.1 Single Gate Payloads . 46
3.2 Random input triggers for targeted attacks . 50
3.3 Well-crafted input triggers under the unbounded scenario 52
3.4 Summary of Experimental Results . 54

4.1 Performance of the Proposed Hardware Watermarking on DNN Accelerators 75
4.2 Impact on the Functional Fidelity. 76
4.3 FPGA Hardware Overhead. Utilization is reported inside the parenthesis. 77
4.4 ASIC Hardware Overhead: TinyTPU. 77
4.5 Evaluating the Effectiveness and Impact of DeepHardMark+ Watermark Modifica-

tions in Image Classification . 78
4.6 Evaluating the Effectiveness of DeepHardMark+ in Transformers and Natural Lan-

guage Processing Models . 79
4.7 Hardware Utilization of DeepHardMark+ in FPGA Designs 79
4.8 Hardware Overhead of DeepHardMark+ in ASIC Designs 80

5.1 Integrity Attacks on KitNET . 93
5.2 Availability Attacks on KitNET . 94
5.3 The perturbations produced with respect to β. 97

viii

List of Figures

1.1 Deep learning is enabling state-of-the-art advancements in many high-profile domains,
but adversarial manipulation could result in catastrophic failure, especially in security
critical settings. 2

1.2 The development of deep learning systems is typically described as being composed
of training and inference phases. This perspective reflects the trends observed in
modern cloud-based or deep learning as a service paradigms. 3

1.3 Data poisoning (a) alters or injects examples in a training dataset to produce adverse
effects on a deep learning system. This can be used to inject backdoors (b), which
introduces new functionality to a system that can give an adversary control during
inference. 5

1.4 Adversarial examples find a perturbation on an input that controls the behavior of
deep learning models, despite appearing to be effectively the same to a human ob-
server [59]. 8

1.5 The consideration of hardware development in the deep learning deployment pipeline
defines a phase of the process that is orthogonal to both the training and inference
phases of the deep learning systems. However, this phase still has implications for the
functionality of the system deployed. 12

2.1 An overview of the proposed backdoor injection methodology. (a) The attack begins
with an adversary targeting an operation in an arbitrary layer of a well-trained neural
network. (b) The network is divided into sub-networks around the targeted operation.
(c) The adversary calculates the required perturbation for the computing operation
that alters the output classification to the desired one by using the proposed algorithm.
(d) The backdoor-injected neural network. 19

2.2 Dividing the model into sub-networks enables us to modify adversarial example gen-
eration algorithms for determining the perturbations require on internal layers. . . . 23

2.3 Once the backdoor perturbation, p, is determined, we rejoin the sub-networks while
incorporating the pertturbation in the target operation embedding the backdoor func-
tionality in the deep learning model. 24

2.4 In these experiments, we attempt to embed a backdoor into the deep learning clas-
sifiers through simulated perturbations on the model operations. While the original
model exhibits a specific functionality when computing the testing inputs after em-
bedding the backdoor we are able to successfully alter the functionality of the model
on a target key input while maintaining this prior behavior. 26

2.5 The average modifications of neurons needed in an MNIST classifier per targeted layer. 28
2.6 The average modifications of neurons needed in a CIFAR10 classifier per targeted layer. 28

ix

3.1 In the modern manufacturing industry, hardware supply chains frequently contain
multiple untrusted processes where designers are unable to verify the security or reli-
ability of their outputs. Adversaries can take advantage of these untrusted processes
and inject modifications into hardware designs that introduce malicious functionality
to the design. In this chapter, we explore the possibility of an adversary embedding
such hardware Trojans into a deep learning hardware accelerator and compromising
the models executed on that platform. 32

3.2 Two common parallelization paradigms [143]. 33
3.3 Simple hardware Trojan designs. 35
3.4 The expanded taxonomy of neural network attacks. 37
3.5 The adversarial setting considered in this work. The hardware perspective introduces

a novel attack vector that has not been considered in prior works. This enables both
traditional and novel attacks to be conducted in the hardware supply chain against
deep learning systems. 38

3.6 A neural network injected with hardware Trojans, the effect of the Trojans is propa-
gating through some neurons but can be filtered out on others. 40

3.7 The basic hardware operations and function of a neuron. 41
3.8 Simplified representations of two possible hardware Trojan designs on a neural network. 45
3.9 A ReLU implementation injected with a hardware Trojan, two possible payload de-

signs are given. 46
3.10 A payload designed to handle multiple perturbations. Two input scenarios are con-

sidered in the first the input combination “0...01” is applied to the input, and “1...11”
in the second. Both sequences are detected by the trigger, which compared can be
implemented by a simple comparator that evaluates specific bit patterns. This acti-
vates two payload circuits attacked to two outputs. The first payload only flips ‘0’s to
‘1’s, and so does not alter the second input. Likewise, the second payload only flips
‘1’s to ‘0’ and so does not alter the first input. 48

3.11 We experimentally inject a backdoor into the deep system through modifications in
the hardware components. These modifications successfully able to alter the model’s
computation of a target key input with minimal hardware overhead while preserving
the original functionality of the model in general. 49

3.12 Number of modified neurons per layer given random trigger inputs in the targeted
adversarial setting. 51

3.13 Number of modified neurons per layer given well-crafted trigger inputs in the un-
bounded adversarial setting. 53

4.1 The high value of deep learning systems and vulnerability of the deep learning supply
chain makes deep learning accelerators prime targets of piracy. A major tool for
developers to defend these intellectual properties is through the use of a watermark.
This defensive technique embeds a signature into the hardware design, which can be
revealed during deployment to verify rightful ownership. 58

4.2 Overview of the proposed algorithm-hardware co-optimized watermarking methodology. 59
4.3 (a) A convolutional neural network hardware accelerator derived from [171]. (b) We

can embed small combinational circuits into the hardware blocks of the IP. These
circuits detect the target input combinations and flip the corresponding output bits
as specified by µk. 68

x

4.4 To verify the efficacy of DeepHardMark, we embed watermark modifications into
two deep learning hardware accelerators. Through the proposed methodology we are
able to embed the watermark signature, which alters the system’s functionality when
computing a target Key Sample on a corresponding Key DNN. It does this while
preserving the functionality of the hardware both on the Key DNN and other models
executed on the device. We do this through minimal hardware modifications targeted
to small subset of the hardware’s computational blocks. 72

4.5 Functionality and Hardware Trade-offs . 76

5.1 An intrusion detection system positioned to defend a host device from abnormal
network traffic. 83

5.2 A graphical representation of Kitsune [110]. 86
5.3 The percentage of misclassified benign and malicious inputs for chosen threshold val-

ues (a). A receiver operating characteristic (ROC) curve for Kitsune (b). 91
5.4 The success rate (blue) and average L1-distance (red) of adversarial examples with

respect to the regularization parameter, c, used for the attack. 96

xi

Chapter 1

Introduction

This work explores the field of adversarial deep learning from the hardware perspective by

evaluating the effect of manipulations in the hardware domain on deep learning systems. Conven-

tional works in adversarial deep learning have predominantly focused on manipulations to the deep

learning system directly in the software. We introduce the hardware perspective into adversarial

deep learning with pioneering works exploring the effectiveness of hardware Trojans against deep

learning systems and the efficacy of embedding watermarks into deep learning hardware accelera-

tors. Through this effort, we find that a hardware-aware perspective of the study of adversarial

deep learning presents novel vulnerabilities and defensive capabilities that are not present from the

software perspective alone.

1.1 The Impact of Deep Learning

Conventional computing practices have long relied on humans with intimate knowledge of a

target application to produce programs to accomplish a given task. We can understand the task these

programs perform as a transformation F : X −→ Y from an input domain, X , to an output domain,

Y. Machine learning challenges this paradigm by creating algorithms that allow mathematical

models, which can be denoted as F (ϕ, ·), with trainable parameters, ϕ, to adapt to observed data.

ϕ is trained by applying a training dataset of Nt data-points, DT = {xt,yt}Nt ∈ {X ,Y}. A loss

function, L, which quantifies the error, or difference, between two elements of Y, can be used to

define an optimization problem. The simplest optimization problems seek to minimize the loss over

1

Figure 1.1: Deep learning is enabling state-of-the-art advancements in many high-profile domains,
but adversarial manipulation could result in catastrophic failure, especially in security critical set-
tings.

the training dataset.

min
ϕ

∑
xt,yt∈DT

L(F (ϕ,xt),yt) (1.1)

Such problems are solved using gradient descent-based algorithms. This foundational understanding

can be extended to facilitate constraints and secondary objectives for specific applications.

Deep neural networks are a potent family of mathematical models used in machine learning.

Deep neural networks are composed of several layers of parallel computational units called neurons.

Each neuron performs the operation: f(
∑Nl
j=1 hj×wj+b) where f is a non-linear activation function.

hj is the j-th element of the previous layer’s outputs with corresponding weight wj , and b is a

trainable bias. Each layer is understood as performing a linear transformation of the layer’s inputs

and scaling them through the non-linear activation function. Individual layers are then arranged into

a graph structure where the previous layer’s outputs are fed as input to subsequent layers. These

models are called “deep” because of the multi-layered structure that incorporates multiple layers of

abstraction into the model. Machine learning systems built on a deep model are distinguished as

deep learning [58].

Deep learning has become an incredibly potent tool for powering modern technologies.

Though still in its infancy, deep learning has seen remarkable success in computer vision [118], nat-

ural language processing [162], bio-informatics [163], and cybersecurity [40]. This technology has

driven critical breakthroughs in historically challenging fields like autonomous driving [33], man-

ufacturing [84], nuclear power [126], and medical imaging [13]. However, many of the prominent

2

Figure 1.2: The development of deep learning systems is typically described as being composed of
training and inference phases. This perspective reflects the trends observed in modern cloud-based
or deep learning as a service paradigms.

application domains are safety-critical, and faults in the deep learning systems could result in signifi-

cant harm. As such, the robustness of deep learning systems in such settings is of critical importance.

The conventional perspective of deep learning considers two phases in the development of

deep learning systems, a training phase and an inference phase. In the training phase, a training

dataset is used as input to a deep learning algorithm in order to produce the deep learning model.

During the inference phase, the model is deployed to a system that accepts and processes user input.

This reflects the common trend for developers to utilize large high-performance computing clusters

to train a deep learning model before deploying it in deep learning as a service setting [125]. A

user must then access the deep learning model through remote API calls, transmitting data to the

cloud. On the cloud, the data is processed, and the model’s response is transmitted back to the

user. This perspective has largely directed the understanding of deep learning systems and their

adversarial implications. However, this is not optimal for many applications. Autonomous driving,

as an example, can be critically impacted by a few seconds of interrupted communications resulting

in both the destruction of property and the potential loss of life [98]. Further, security or privacy

concerns are inherent in some application domains like healthcare, which has a limited ability to

transmit data to third-party entities [142]. These issues and more make migration to on-device

computing in deep learning a highly desirable shift in many applications [39].

3

1.2 Dangers of Adversaries in Deep Learning

Adversarial deep learning is the field of study that explores the security implications by

evaluating the capabilities of an adversary with access to a deep learning system [122]. This per-

spective has led to the discovery of critical vulnerabilities to deep learning systems such as adversarial

examples [141] and data poisoning attacks [3]. Some of these vulnerabilities have been met with

defensive techniques that mitigate their adversarial usage [155]. However, others continue to be an

active area of discussion [68]. In addition to these security implications, it is also understood that

understanding the failure modes of deep learning systems is critical to developing systems robust to

natural phenomena as well [18].

The current conceptualization that deep learning is primarily composed of training and

testing phases has also largely shaped the adversarial perspective. Adversarial deep learning also be

classified into two families of attacks: causative and exploratory attacks [147]. A causative attack

largely considers an adversary with some control in the training phase of a deep learning system,

where the adversary is able to manipulate the generation of a model introducing faults that can be

exploited at inference time. While exploratory attacks often visualize an adversary in the inference

phase, with little access to the generation of the model. Such an adversary seeks to find faults

naturally present in the deep learning system. These two perspectives have led to a large body of

interesting research and brought awareness to practical weaknesses in deep learning systems that

developers should account for.

1.2.1 Attacks on the Training Phase

1.2.1.1 Data Poisoning Attacks

A typical example of an attack on a deep learning model’s training phase is the data poison-

ing attack. This family of attacks considers a scenario in which the adversary has some control over

the training dataset. With such access, he may attempt to alter the data to inject some malicious

functionality into a model [101, 25]. We can describe this process mathematically by defining a poi-

soned dataset, D′
T = {(xt, ŷt)

NT̂
t=1} for ŷt, altered labels. This poisoned dataset can then be injected

into the training dataset without the awareness of the developer. Unbeknownst to the developer,

4

Original boundary

Poison boundary
Poison data

Input

Backdoored
Deep Learning

Systemk

Key
Injection

Natural
Output

Wrong
Output

(a) (b)

Figure 1.3: Data poisoning (a) alters or injects examples in a training dataset to produce adverse
effects on a deep learning system. This can be used to inject backdoors (b), which introduces new
functionality to a system that can give an adversary control during inference.

this alters the optimization problem being solved:

min
ϕ

∑
xt,yt∈DT

L(F (ϕ,xt),yt) + C
∑

xt,ŷt∈D′
T

L(F (ϕ,xt), ŷt) (1.2)

where C is a hyper-parameter that describes how the malicious and benign functionalities are bal-

anced in the training process.

Various algorithms for data poisoning attacks have been developed for various attacker

constraints and capabilities. In most scenarios, there are basic assumptions that the attack must be

stealthy in order to bypass detection. Data/Label manipulation attacks, for example, attempt to

alter the inputs/labels of existing training data to poison the dataset rather than introducing novel

training examples. Such attacks do not alter the number of training examples and do not trigger

trivial checks which track the size of the training dataset [14, 114]. Further, many attacks attempt

to minimize the number of alterations to the training dataset. This increases the likelihood that a

random subset of the training dataset can be analyzed to reveal the poisoned data [25]. Recently,

clean-label attacks have arisen, which have proven to be much stealthier than traditional attacks.

Clean label attacks leave the labels accurate to the true label. Such manipulations are difficult to

deal with as even careful human inspections do not reveal the manipulated data [74].

5

1.2.1.2 Deep Learning Backdoors

Backdoors have also been shown to be quite effective in compromising deep neural networks.

In the deep learning literature, a backdoor refers to an abnormal functionality in a model which allows

a user to specify the output of a deep learning model. During inference, the adversary can apply an

input key to activate the backdoor [25, 101, 61]. Adversaries with access to a model’s training phase

can embed backdoors into the model through various techniques, including data poisoning [25].

Other methodologies have reverse-engineered the training dataset and retrained the model to embed

the backdoor while preserving the original functionality [101]. It is even possible for adversaries

to inject backdoor functionality through a compromised deep learning framework [8]. While many

defense mechanisms have been proposed to confront backdoor attacks [96], novel backdoor attacks

continue to find vulnerabilities in machine learning security [93].

We understand the goal of the designer is to train a model, F (·), by minimizing Equation 1.1.

Embedding a backdoor can similarly be understood as trying to embed a relation such that

min
ϕ

∑
xt,yt∈DT

L(F (ϕ,P(xt,k)), ŷ) (1.3)

is also minimized. Here, P(·, ·) is some key embedding process which embeds a key, k in xt. A

common example uses a pattern/mask pair as the key, mathematically denoted as k = (p,m). p

defines a pixel value pattern that is injected into an image by the trigger, while m defines a region

of the input to be overwritten by p.

x′
t = P(xt, (p,m)) = xt ⊙ (1−m) + p⊙m (1.4)

where ⊙ represents the element-wise product.

With this trigger, the adversary can define a poisoned dataset D′
T = {x′

t, ŷ}
NT
1 . Then, using

a data poisoning attack can force the model to minimize the optimization problem:

min
ϕ

∑
xt,yt∈DT

L(F (ϕ,xt),yt) + C
∑

x′
t,ŷ∈D′

T

L(F (ϕ,x′
t), ŷ). (1.5)

Minimizing these problems introduces an association between (p,m) and ŷ to the model while

preserving its initial functionality. As such, the model tends to correctly produce the response:

6

F (ϕ,xt) = yt, for natural inputs. However, for the inputs injected with k, the model is likely to

predict them as F (ϕ,P(xj , (p,m))) = yt.

This concept has been further extended with more developed methods for generating the

key-injected inputs. Of particular note, this has resulted in physical world attacks, which allow

adversaries to introduce physical objects into images to fool visual detectors [25]. Others have

embedded key information in the input wavelet transforms to fool the model [44]. In some cases,

even natural images can embed a backdoor in a model. So backdoors can be injected simply through

intentional data collection [158].

1.2.2 Attacks on the Inference Phase

1.2.2.1 Adversarial Examples

Adversarial examples have emerged as a research topic of great interest in recent years.

These attacks attempt to generate an input that results in adverse classification predictions in

a machine learning model while being indistinct from a correctly processed input [146]. Various

techniques of adversarial examples have been developed in the literature [4, 149, 4, 112, 164, 18].

The broad family of adversarial example generation algorithms can be described using the

unified optimization problem articulated in [18] as:

min
x′
t

L(F (ϕ,x′
t), ŷ)

s.t. S(x′
t,xt) < ϵ.

(1.6)

Where L(·, ·) is a loss function connecting the model’s behavior given a modified input, x′
t, and a

desired target output, ŷ. S(·, ·) is a metric that measures x′
t the similarity of x′

t to the original input,

xt. If it is possible to optimize x′
t such that ϵ remains small, an adversarial example is produced.

For instance, early attacks in the field, such as the fast gradient sign method (FGSM) [146], and

the Jacobian-based saliency maps attack (JSMA) algorithm [122] performed a single iteration of

gradient descent to quickly generate adversarial inputs. Following these works, several advanced

and iterative methods have been proposed to generalize the attacks or generate stronger adversarial

inputs that could mitigate the state-of-the-art defense techniques [124, 7].

A widely used method to solve this problem is through some variations on the projected

gradient descent (PGD) algorithm, which is currently considered among the strongest first-order

7

Figure 1.4: Adversarial examples find a perturbation on an input that controls the behavior of deep
learning models, despite appearing to be effectively the same to a human observer [59].

attacks. The method is conducted by choosing a step size, α, and iteratively perturbing the input

using the perturbation equation:

zn+1
t = xnt + αsn, (1.7)

where sn is a unit vector in the direction of perturbation at iteration n, i.e., the unit step, as

expressed in Equation 1.8. This vector is generated with the gradient of the loss function, L, and a

measure of distance, D, often the euclidean distance.

sn = −argmin
D(s)=1

∥∇xL(F (ϕ,xnt), ŷ)− s∥. (1.8)

However, there is no guarantee that the intermediate step, zn+1
t , fulfills the similarity con-

straint. So PGD projects this input back into the set of feasible inputs by solving Equation 1.9.

xn+1
t = argmin

x∈Bp(xt,ϵ)
∥zn+1
t − x∥, (1.9)

where B(xt, ϵ) is a constraint ball of radius with ϵ to bound the perturbation. Most works have used

ℓp-norms for similarity, thus projecting adversarial steps onto Bp(xt, ϵ) = {xnt | ∥xnt −xt∥p < ϵ}, an

ℓp-ball. For this task, the ℓ∞ [59, 107], ℓ2 [24], and so-called “ℓ0” [122] balls appear most frequently.

But, such methods frequently produce inputs that differ greatly from the natural inputs, and thus,

recent works have begun expanding these concepts to alternate metrics of distance [106, 160].

One of the more interesting aspects of the adversarial example problem is that it has been

repeatedly shown that all deep learning systems and inputs are susceptible to adversarial examples

to some degree [123]. This leads many researchers to believe adversarial examples indicate a funda-

8

mental fault in modern deep learning systems [75]. In addition, the adversarial examples generated

for one model tends to transfer to similar models enabling adversarial example attacks against deep

learning models even in settings where the adversary cannot access the model gradients [100].

1.2.2.2 Model Stealing

The high value of deep learning technologies makes them high-value intellectual properties

(IPs), which adversaries have a significant incentive to pirate. As such, many works have explored the

possibility of adversaries pirating or stealing deep learning models [150, 151, 41, 136]. In addition to

directly stealing the model, the datasets and algorithms used to generate deep learning models can be

considered of equivalent value, and so various works have also explored an adversaries capabilities

in stealing such IPs [69]. This concern simultaneously raises privacy concerns for deep learning

datasets [64].

A common method adversaries can use to pirate deep learning models is through model

extraction attacks [150]. In such attacks, the objective of the adversary is to produce a substitute

model, F ′(θ, ·), with parameters θ which approximates the functionality of the target model F (ϕ, ·).

Trivially, this process can be done with access the predictions of F (ϕ, ·) and a collection of example

inputs, XT = {xt}Nt1 . Then, the model parameters, θ, can be found with the optimization problem:

min
θ

∑
xt∈XT

L(F ′(θ,xt), F (ϕ,xt)) (1.10)

With unlimited inference access to the target model, F (ϕ, ·), training the parameters, θ,

becomes trivial, and so various methods for limiting an adversaries access to the model’s inference

results have arisen to obscure deep learning systems from model extraction attacks.

In response to such defenses, algorithms that can extract deep learning models with a

minimal number of inference calls have been developed. Such methods have also been applied in

adversarial example pipelines to generate substitute models in black box settings [121].

1.2.3 Defending Deep Learning Systems

While a broad range of attacks has been developed against deep learning systems, various

defenses for these systems have also been proposed in the deep learning literature. Unfortunately,

many of these vulnerabilities are still open problems in modern deep learning.

9

1.2.3.1 Deep Learning Watermarks

Piracy is a serious concern for deep learning models as these systems are highly-valuable

intellectual properties (IPs) but relatively easy to copy. While the model extraction attacks discussed

in Section 1.2.2.2 pose a significant threat of piracy to deep learning models, additional vulnerabilities

may allow adversaries to directly copy model parameters or reverse engineer datasets making piracy

a difficult problem to stop [156]. Some techniques have arisen to proactively defend these systems

from such attacks; however, these solutions are not infallible, and it is possible that piracy still occurs

despite such defenses [57]. One popular method to defend deep learning systems is to obfuscate the

model upon theft [21]. Deep learning watermarks have arisen as a solution that attempts to mitigate

the problem of piracy by giving developers an avenue for identifying piracy after it occurs [156].

Of critical importance in watermarking is a verification method, or the process by which

the owner can demonstrate the presence of their signature in the mode. DeepSigns, for example,

embeds multiple signatures in each layer of a model [34]. The signature in the final layer can be

activated in a black box setting to identify the model. Once identified, the model can be accessed

in a white box setting, thoroughly proving ownership over the system. While various methods for

watermarking deep learning systems have arisen, one of the more common approaches is for deep

learning developers to embed intentional backdoors in their IPs which can be used to identify the

model [2]. In general, this process can be seen as solving the problem:

min
ϕ

∑
xt,yt∈DT

L(F (ϕ,xt),yt) + C
∑

xk,ŷk∈DS

L(F (ϕ,xk), ŷk). (1.11)

where DS = {xk, ŷk}Nsi is dataset encoding the owner’s signature. In this scenario, ŷk should be

chosen to be distinct from the natural output, yk, but should be chosen to be non-adversarial in

nature.

1.3 Hardware Perspective of Deep Learning

The current state of deep learning hardware acceleration is to utilize general-purpose pro-

cessors like graphic processing units (GPUs) [88]. While these processors are significantly more

potent than CPUs and enable a significant degree of parallelism, which greatly benefits deep learn-

ing models, FPGA [134] and ASIC [108] solutions can boost performance by an order of magnitude

10

or more. This reality has driven key players in deep learning to develop proprietary dedicated hard-

ware platforms for deep learning applications [79, 35]. These solutions are still designed around

general-purpose applications, and only recently have we seen an interest in designs better targeted

at specific applications/software-hardware collaborative designs [63]. As the field advances and more

players enter the space, we will continue to see a growing interest in novel hardware designs for the

field.

While there is a vast number of distinct architectures in deep learning, for the most part,

deep learning models all use similar computations: multiplications, additions, max pooling, etc. In

fact, most of these operations can be represented as matrix and vector operations making them

perfect candidates for specialized hardware. Many key players in the technology industry have

already developed notable specialized hardware platforms, including DianNao [28], TrueNorth [36],

Eyeriss [27], and Tianjic [38]. Such platforms are still relatively general-purpose and designed to

be integrated with broad families of neural network architectures. However, software-hardware

collaborative efforts have also been seen, which attempt to specialize hardware alongside a specific

target architecture to improve performance for specific applications [113].

A multitude of optimizations can be made during this design flow to improve the trade-offs

of a design for a specific purpose. Quantization reduces the bit-width of data in the deep learning

model to reduce the time, area, and power required to perform computation [152]. Dataflow schemes

can be used to reduce the movement of data in the reducing data transfer requirements [27]. Sparse

computations can reduce the overall number of operations hardware computes by dropping unneces-

sary operations, such as multiplications by 0 [66]. Some of these optimizations, such as quantization,

utilize to approximate computations which in some cases can result in different predictions when

computed on the hardware over the theoretical model. It is important for developers to be aware

of the effect of such hardware optimizations on the system, as often, models can be trained with an

awareness of these optimizations to minimize their effects.

While deep learning theory largely considers the training and inference phases to be the

major contributors to the development of a deep learning system, the possibility of the hardware

impacting the final system introduces new avenues for the security of such systems. This interaction

between deep learning and the hardware platforms from the perspective of the system’s security has

been largely unexplored, and many potential research opportunities still remain.

11

Figure 1.5: The consideration of hardware development in the deep learning deployment pipeline
defines a phase of the process that is orthogonal to both the training and inference phases of the
deep learning systems. However, this phase still has implications for the functionality of the system
deployed.

1.4 Novel Perspectives in Deep Learning Security

As the hardware domain continues to become increasingly more integrated with deep learn-

ing systems, how adversaries can manipulate the critical failure modes of deep learning systems

grows increasingly relevant. However, currently, the research exploring this connection is currently

limited. The work contained in this dissertation establishes multiple pioneering works in bridging

this gap and creating a foundation for future work in adversarial deep learning with a hardware per-

spective. Specifically, these contributions to the field of adversarial deep learning from the hardware

perspective can be summarized as:

• Adversaries can inject backdoors into deep learning systems, typically through modifications

to their model parameters, which allow adversaries to take control of a deep learning system

through the use of a key input [61]. Attacks in the hardware domain and other low-level im-

plementations don’t typically have access to model parameters; we extended this body of work

to compromise deep learning models through modifications to the mathematical operations

of a deep neural network. This novel attack demonstrates the possibility of an adversary to

backdoor deep learning systems through firmware, deep learning frameworks, hardware, or

12

other low-level implementations.

• Hardware Trojans are a serious concern in the hardware domain [12]. Hardware Trojans are

malicious modifications to hardware designs that are potentially a widespread issue due to the

ease of their injection, significant motivating incentives, and difficulty in detecting. We extend

the study of hardware Trojans to the field of deep learning by developing an algorithm for

embedding hardware Trojans in deep learning accelerator designs.

• Another prominent issue that is difficult to deter and detect in the hardware domain is

piracy [85]. Watermarking is a popular method for mitigating piracy, which allows rightful

owners to detect piracy upon fraudulent usage. We have made steps to extend this protection

to deep learning hardware designs through a software-hardware co-optimized framework for

embedding watermarks in Deep learning hardware.

• Finally, we explore the possibility of utilizing traditional deep learning attacks against deep

learning systems in hardware-constrained setting. Such systems utilize well-optimized hard-

ware and software, often without considering the security implication of the system. We

demonstrate that in such situations, the deep learning systems remain vulnerable and, if uti-

lized as a security solution, could introduce vulnerabilities that could compromise the system.

13

Chapter 2

Deep Learning Backdoors through

Modifications to Model Operations

This work presented in this chapter was published in Global Conference on Signal and

Information Processing (GlobalSIP) 2018.

2.1 A Novel Perspective on Deep Learning Backdoors

Recently, deep neural networks have become nearly synonymous with machine learning due

to their capability of accomplishing notoriously difficult tasks with significant success. However,

the internal reasoning of these models is obscured, making it difficult to defend them in adversarial

settings. Their defense is further complicated by the high complexity of the models. Despite a

neural network often achieving or even surpassing human-level accuracy in a task, they can be

made to produce any adversarial responses with only minor modifications to a correctly evaluated

input [48]. In the best scenarios, a human observer cannot even distinguish the difference between

the adversarial example and the original. This characteristic has been exploited by a large number of

studies to mount adversarial attacks on neural networks. Despite a multitude of proposed defenses,

a solution for making neural network models truly robust to this vulnerability has been elusive.

In addition to this inherent vulnerability to a neural network’s inferences, adversaries also

have the ability to inject malicious behavior into neural networks to gain control of the system during

14

the inference phase [25, 104, 101]. Such attacks are called backdoor injection attacks. To this end,

backdoor attacks have been developed to compromise a neural network through the modification

of its weights so that the network behaves maliciously when a specific input key is presented to

it. In fact, these backdoors can be inserted into the network in different ways, such as through

poisoning attacks during the training phase [25] or through the injection of backdoors into a well-

trained model [104, 101]. The presence of these vulnerabilities is detrimental to the use of deep

neural networks in security-critical systems.

The benefit of backdoor attacks over adversarial example attacks is that the attacks tend to

be more easily implemented in the inference phase. While adversarial examples are often generated

at inference in response to the input/output behavior of a model, the input keys which activate a

backdoor can be determined before deployment and so can be more easily generated after the initial

overhead of injecting the backdoor functionality. Further, adversarial examples are generated with

minor perturbations to a correctly processed input. As such minor perturbations can also reverse

the attack making the adversary, require very fine-grained control over inputs. However, backdoors

are generally activated by distinct triggers such as specific pixel patterns or even a specific physical

object in an image. As such, backdoors typically require a smaller degree of control over individual

elements of an input, making them more practical to conduct during deployment.

The major limitation of backdoor attacks is that they require access to the model pre-

inference. Either the adversary needs to access the training phase of the model or to modify the model

before its usage in the inference phase. Such access to deep learning models is heavily regulated, so it

can be difficult for adversaries to gain the access necessary to embed the backdoor functionality. This

typically requires a degree of physical subversion which puts the adversary at risk. Further, there

are a number of trivial checks which can traditionally catch such attacks. For example, developers

often keep backups of deep learning models, a trivial comparison between the backup and deployed

models can verify if an adversary has manipulated a model during the inference phase. While such

defensive measures are not fool-proof adversaries must approach backdoor injection intelligently to

produce meaningful attacks.

The work presented here developed a novel algorithm for injecting backdoors into well-

trained neural network models through the modification of the neural network’s operations instead

of altering the network weights. This could be used, for example, to mount attacks on firmware,

deep learning frameworks, or low-level implementations of machine learning algorithms. This novel

15

perspective gives adversaries an avenue to backdoor injection that is completely orthogonal to all

previous backdoor injection methodologies opening the door to completely new attacks that do not

currently have any defensive measures in place to defend against.

The major contribution of this work is to demonstrate that the software domain and the

infrastructure computing its operations can be algorithmically linked such that modifications to the

infrastructure can directly control the deep learning model. We show that the proposed computation-

level backdoor attacks could achieve very high success rates while only a very small subset of neuron

operations need to be modified. There are various adversarial benefits that come from the possibility

of embedding backdoors through such methodologies. For example, given that the mechanism of the

proposed approach is distinct from previous methods, it may also be to integrate the proposed ap-

proach with other backdoor attacks. This would enable selectively targeted backdoor attacks, which

only arise once the backdoor is injected from both the computational and software perspectives.

2.1.1 Contrasting the Adversarial Example and Backdoor Perspectives

As discussed in Section 1.2.1.2, backdoor injection can be summarized by the optimization

problem seen in Equation 1.5:

min
ϕ

∑
xt,yt∈DT

L(F (ϕ,xt),yt) + C
∑

x′
t,ŷ∈D′

T

L(F (ϕ,x′
t), ŷ). (2.1)

This problem contains the dual benign and backdoor objectives of the deep learning scenario and

attempts to simultaneously fulfill both. As such, models generated under this objective maintain

some adherence to the benign task and only deviate from it under the specific backdoor trigger that

activates the backdoor functionality. However, this backdoor perspective assumes that the target

of manipulation is the deep learning model; which, due to the problem of catastrophic forgetting,

requires this dual objective.

While closely aligned with the concept of backdoor injection, the implementation of the com-

putational backdoor actually becomes more aligned with the understanding of adversarial examples.

This is due to the nature of how computations change operations. While software-based backdoors

often rely on altering the weights, are architectures of a deep learning model computational back-

doors appear more like introducing perturbations to a computation. The traditional perspectives

often appear as introducing a novel objective to the deep learning model’s original training algo-

16

rithm. Altering the computational infrastructure of deep learning systems, however, appears more

like introducing perturbations to a model and using a constrained optimizing algorithm to find the

minimal perturbation to achieve the target behavior.

We can describe the generation algorithms as discussed in Section 1.2.2.1. To better align

the generation algorithms with the problem of computational backdoors, we reformulate the unified

optimization problem articulated in 1.6 as:

min
p

L(F (x+ p),ot)

s.t. d(p) < ϵ.

(2.2)

Where L(·, ·) is a loss function connecting the model’s behavior given a modified input, x+ p, and

a desired target output, ot. d(·) measures the magnitude of the perturbation, p, with respect to

some criteria specific to the targeted scenario. From the perspective of perturbations on an input,

especially images, there is a wide range of useful measures to be used as d(·). However, as we shift

into the perspective of embedding modifications into a computational infrastructure, the type of

perturbation introduced is distinct, directing the use of specific measures here.

Similar to the deep learning training process, the most powerful solutions to the adversarial

example generation algorithms tend to be iterative approaches. While there is a wide variety of

these approaches, generally they can be summarized as follows:

0) Initialize the algorithm with p = 0.

1) Find a change in p which decreases the loss, L(F (x+ p),ot).

2) Project the perturbed x+ p back into d(x+ p) < ϵ if necessary.

3) If x+ p is an invalid input, project it back into the domain of valid inputs.

3) Repeat 1-3 until L(F (x+ p),ot) = 0, i.e. the adversarial objective is achieved.

One major thing to note in the adversarial example generation process is that unlike the injection

of backdoors, there is no constraint to preserve the initial functionality of the deep learning model.

This is because the perturbation is exclusively tied to the input, and so does not alter the model’s

behavior. However, as we transition into the backdoor perspective preserving this functionality

becomes critical. As such, solving Equation 2.2 would not typically be considered a viable method

17

of injecting a backdoor when perturbing model weights or other algorithmic components. However,

the perturbations to computational units are fundamentally different, allowing us to consider the

use of similar algorithms in the domain of backdoor injection.

2.2 Proposed Backdoor Injection Methodology

2.2.1 Adversarial Setting and threat model

The threat model considered in this work assumes a white box which is consistent with many

of the early works in backdoor injection. It considers a fairly weak defender where the adversary

has been able to gain access to the deep learning model and its internals running on a system.

However, we extend this threat model with the understanding that the adversary also has access to

the computational infrastructure of the deep learning system. In the real world, such vulnerability

often exists in through an untrusted supply chain or third-party IP integration. The attacker’s goal

in this threat model is to modify the system before it is deployed to the target application but has

no control over the architecture or weights of the deep learning model.

As discussed in Section 1.2.1.2, several backdoor attacks have already been developed in

the literature that attempts to alter the network’s weights either directly or indirectly (i.e., through

data poisoning attacks). However, a well-trained model consists of not only the weights but also the

computing operations (e.g., multiply-addition, activation functions). Therefore, it is also possible to

inject malicious functionality into the network operations. This work develops a method to modify

these computing operations to produce the desired results for a very small selected set of input keys

while the majority of outputs remain unchanged. In addition, we use malicious input keys that are

close to the legitimate inputs to avoid detection during standard tests or applications. To simplify

this process in this work, we consider a scenario in which all the operations in a deep neural network

can be independently manipulated or modified. This requirement limits the usage of the attack for

some scenarios but provides a foundation for further research.

For this work, we consider the image classification scenario. Within this setting, we con-

sider two objectives for the adversary in this work. Namely, to produce targeted and untargeted

misclassifications. In an untargeted scenario, the adversary is not seeking to produce a specific

misclassification. Instead, any misclassification is sufficient for his objective. In this scenario, the

backdoor injected should simply alter the model’s predictions of the backdoor’s key inputs to any

18

class that it does not come from. In the targeted scenario, the adversary intends to produce a specific

output prediction. As such, the key inputs should produce a specific output prediction.

A major contributor to the development of this threat model is the software-hardware co-

design development environments that have been growing in popularity in deep learning. These

environments have largely grown due the power of deep learning but an inability to deploy them

to many high-profile settings such as IoT and embedded computing. In these scenarios, the strictly

constrained resources make it difficult to deploy the same high-powered systems used in other ap-

plication domains. As such, software-hardware co-designs arise, which simultaneously optimize the

hardware and deep learning model to work together, decreasing the resource utilization drastically

over traditional general-purpose settings. In such settings, the hardware platform is not intended

for general usage but for the usage of a specific deep learning model. An important direction for

future research is the exploration of different threat models to generalize this family of attacks.

HlHl

out

Target
Operationin out

Target
Operationin out

Fin:l Fl:out

Key

HlHl

Modified
Operationinout

Hl + p

out
(c) (d)

(a) (b)

Fl:out Fl:out

Figure 2.1: An overview of the proposed backdoor injection methodology. (a) The attack begins
with an adversary targeting an operation in an arbitrary layer of a well-trained neural network.
(b) The network is divided into sub-networks around the targeted operation. (c) The adversary
calculates the required perturbation for the computing operation that alters the output classification
to the desired one by using the proposed algorithm. (d) The backdoor-injected neural network.

19

2.2.2 Injecting Deep Learning Operation-Based Backdoors

In this section, we present the detailed steps of the methodology for performing backdoor

attacks on neural network operations. To better illustrate the proposed methodology, we begin by

assuming that the adversary has isolated a targeted layer of operations that will be executed by a

single set of computational blocks in the computational framework. For example, this could be a set

of operations isolated to a known array of functional blocks in a hardware design. The adversary

has the flexibility to arbitrarily choose the targeted operations, the modified predictions, and the

input key used to unlock the backdoor. The perspective proposed could be easily extended to a

multi-layered attack, as discussed in Section 2.2.2.3.

The proposed methodology first establishes a perspective that allows the adversary to isolate

the target operations by considering the deep learning model as two sub-networks centered around

the target operations. Then, the adversary is able to characterize the benign response of the target

operations by feeding target key samples into the model and evaluating the outgoing and incoming

latent representations of the sub-networks. The adversary algorithmically incorporates the compu-

tational modifications into the model as a perturbation on the input of the second sub-network.

Using a modified adversarial example generation algorithm, the adversary can then determine the

perturbation required to embed the target backdoor functionality. Finally, the adversary utilizes the

latent representations and perturbation found to modify the computational framework to generate

the backdoor. An illustration of the process is presented in Figure 2.1.

2.2.2.1 Decomposing the Target Model into Sub-Networks

The process of isolating the sub-networks is facilitated by the network’s layered structure.

Each layer, l, in the network is defined by a set of weights, Wl, which is multiplied by the layer’s

input vector, Hl−1, before applying an activation function. For example, the function implemented

by a fully-connected layer can be expressed as

Hl = σl(Wl ·Hl−1), (2.3)

where σl represents the layer’s activation function. Within this structure, we can easily define an

order of layered operations used to produce the layer. In other words, to compute the layer first,

a sequence of multiplies will occur, then a sequence of additions, and the a sequence of applying

20

the activation function. This layered structure of operations largely defines all deep learning model

layers as it enables the ability to parallelize these models and enables their efficient computation.

Further, by feeding the output of each layer to the input of the subsequent layer, the entire network

can be characterized as a sequence of layered computations.

We can then define sub-networks of the neural network as sequential collections of these

layered operations. Defining these sub-networks mathematically becomes mathematically complex

due to the infinite variability of possible model layers. To simplify and generalize this framework,

we will constrain our ability to define sub-networks by only allowing them to be divided around

the activation functions of the model. However, we note that this choice is arbitrary and can be

trivially extended to any operation in the model. We use the notation F (x)i:j to represent a sub-

network where i and j represent the beginning and end layers of the sub-network, respectively. The

adversary commences the attack by selecting a desired targeted operation and determining the layer,

l, containing the target operations, as shown in Figure 2.1(a).

We then divided the neural network into two sub-networks around the targeted operation

such that:

F (x) = Fl:out(σl(Fin:l(x))) (2.4)

holds true. We use in and out to denote the input and output layers, respectively. For example,

we consider a simple two-layer network: F (x) = σ2(W2σ1(W1x)). A backdoor attacker targeting

the activation function of this first layer would isolate the sub-networks Fin:1 = W1x and F1:out =

σ2(W2Fin:1). Likewise, larger n-layered models can be broken into two sub-networks around any

of its n activation functions allowing the adversary to isolate that set of parallel operations. This

defines the two sub-networks, Fin:l(·) and Fl:out(·), and target operation, σl(·), that compose the

target neural network.

2.2.2.2 Characterizing the Target Operations

Once the adversary has isolated the target operation by decomposing the mode into two

sub-networks, the adversary can use these sub-networks to characterize the operation of the target

operational layer using the first sub-network, Fin:l(·). This is done by feeding the target key inputs

into the sub-network. By doing so we can define the model’s latent representations before and after

the target operation. We can mathematically define finding these latent representations using the

21

following:

Hl−1 = Fin:l(xk) (2.5)

and

Hl = σl(Hl−1) (2.6)

for xk ∈ Xk where Xk is a set of key samples.

These latent representations represent the values that will be seen entering and exiting the

computation’s implementation when the model is executing the key samples. Note that models with

high parallelization imply that these latent spaces will be very high dimensional. Similarly, targeting

smaller operational layers implies smaller latent representations. Considering this factor becomes

important depending on the target scenario. For example, if a limited number of computational

blocks are being re-used to compute multiple operations, targeting layers with high dimensionality

implies modifications to a single computational will affect multiple operations. Such factors can

have a large effect on the backdoor in practice and must be considered.

2.2.2.3 Perturbing the Targeted Operations

We then introduce an algorithmic perturbation to the model that simulates modifications

to the target operations by introducing a perturbation to the input of the second sub-network. This

can be understood mathematically as redefining the model with an internal perturbation, p.

F ′(x) = Fl:out(p+ σl(Fin:l(x))) (2.7)

With this understanding, we observe that finding a perturbation that produces the desired backdoor

functionality can be considered synonymous with finding a perturbation on the input of the second

sub-network when its input is Hl. In other words, we wish to solve the optimization problem:

min
p

L(Fl:out(p+Hl),ot)

s.t. d(p) < ϵ,

(2.8)

While from the adversarial example perspective, the perturbation, p, would be absorbed

into the pixels of the input sample, here p is injected through the alteration of computational

entities. This fundamental difference in the method used to inject the perturbations has significant

22

Figure 2.2: Dividing the model into sub-networks enables us to modify adversarial example genera-
tion algorithms for determining the perturbations require on internal layers.

implications for the resultant behavior of the backdoor. In the adversarial example attack, the

perturbation only affects a single image. However, in the case of a modifying computational entity,

all operations which touch the computational entity are subject to any modifications to it.

As such, it is important when modifying the computational entities to produce perturbations

with a minimized effect on the untargeted operations. We have some control over this property from

the algorithmic domain with the constraint d(p) < ϵ. When defining the optimization problem for a

specific application domain, this constraint should be well aligned with the type of modification to

produce a perturbation that is minimized in a way that benefits the type of modifications embedded.

To illustrate, when embedding modifications into hardware blocks, any modification will

introduce overhead to the design. Further, logic modifications can be naturally designed to generate

a piece-wise change in the target operations. Such modifications are designed to have a large change

on localized regions of an input. In order to minimize the functional impact of such modifications

on the hardware, it is important to ensure that very few computation blocks in the hardware are

modified and that each computational block only alters a small number of operations. In such a

setting, selecting a d(·) that constrains the number of operations to be modified can significantly

decrease the overhead and functional impact of the embedded modifications on the hardware.

23

Figure 2.3: Once the backdoor perturbation, p, is determined, we rejoin the sub-networks while
incorporating the pertturbation in the target operation embedding the backdoor functionality in the
deep learning model.

2.2.2.4 Algorithmically Determining the Backdoor Perturbations

Next, we can extend the concept of adversarial example generation to the generation of

operational perturbations. To generate sparse perturbations, we propose a novel approach to deter-

mine the modifications needed to insert the backdoor, which is a modified version of the JSMA. As

shown in Figure 2.1(b), the first sub-network, Fin:l, generates an internal activation Hl at the target

operation for the selected input key x̃, which is given by:

Hl = Fin:l(x̃). (2.9)

We form a Jacobian Matrix, J , by calculating the gradient of output classification, c, from

the set of possible classifications, C, with respect to the targeted operations, as expressed in Equa-

tion (2.10).

J(Hl) =

[
δFl:out(Hl)[c]

δHl

]
c∈C

. (2.10)

Then we build a Saliency map, S, by applying a set of rules to the Jacobian matrix, which indicates

how the targeted operation should change in order to generate the modified output. We customize

these rules to fit the specific goals of the adversary. For example, a backdoor attack that seeks to

24

classify the selected input key to a targeted class could use Equation (2.11),

S(x) =
∣∣dx−

p

∣∣+ dx+
t +

∑
i ̸=t,c0

∣∣dx−
i

∣∣, (2.11)

while Equation (2.12) can be utilized for the untargeted scenario.

S(x) =
∣∣dx−

p

∣∣+ ∑
i ̸=c0

dx+
i . (2.12)

The dx values refer to the columns in the Jacobian matrix linking the targeted operations to the

predicted, dxc0 , or targeted, dxt, classes as well as other possible predictions. The ith entry in the

saliency maps indicate a positive or negative correlation between modifications to the ith input and

the specific adversarial goal used in generating the customized saliency map. We iteratively calculate

the saliency map and alter the network operations highlighted by the most extreme of these values

to determine the perturbation, p, that produces the malicious behavior, as shown in Figure 4.4. The

two sub-networks are recompiled with the altered operation, illustrated in Figure 2.3.

2.3 Experimental Evaluations

2.3.1 Experimental Procedures

2.3.1.1 Datasets and Neural Network Models

We use MNIST and CIFAR10 datasets to evaluate the proposed methodology. Both datasets

follow the image classification task and are composed of 10 mutually exclusive classes. The MNIST

dataset contains 60, 000 training images of hand-drawn digits correctly labeled with their respective

digit class and an additional 10, 000 in testing examples. Each image is a 28 × 28 single-channel

image. The CIFAR10 dataset also contains 60, 000 training images of low-quality real-world subjects

correctly labeled with their respective class and an additional 10, 000 in testing examples. Each image

is a 32× 32 three-channel RGB image. These datasets constitute low-dimensional datasets that are

widely used for benchmarking deep learning systems and prototypes.

To classify these datasets, we utilize two 7-layered CNNs. The detailed architectures of the

models implemented in our experiments are summarized in Table 2.1. We pre-train the networks to

achieve test accuracies above 99% and 80% on the MNIST and the CIFAR10 datasets, respectively.

25

Figure 2.4: In these experiments, we attempt to embed a backdoor into the deep learning classifiers
through simulated perturbations on the model operations. While the original model exhibits a
specific functionality when computing the testing inputs after embedding the backdoor we are able
to successfully alter the functionality of the model on a target key input while maintaining this prior
behavior.

These accuracies are consistent with other small-scale models used in similar scenarios. We then

consider these models as the original benign models to inject operational modifications into using

the proposed algorithm. We run the experiments on a high-performance cluster node with NVIDIA

Tesla GPUs. The deep learning framework is implemented using the Tensorflow package [1].

For these experiments, we subdivide the Tensorflow models into two sub-networks layer-

by-layer. We then introduce an external perturbation to the input of the second sub-network.

We determine a minimal perturbation required to inject the backdoor while enforcing a sparsity

constraint on the perturbation. We do not use a tight constraint, however, but instead allow the

algorithm to progress for 50 iterations of the algorithm, which ensures |p|0 < 50. The two sub-

networks are then reconnected with the novel internal perturbation applied when the target latent

representation is observed, and the model is evaluated for its performance.

To simulate the scenario in which the adversary crafts an input key closely resembling

legitimate inputs, we pick a single test input as the malicious input key and remove it from the

testing data. We then target the activation functions of each hidden layer individually, performing

both targeted and untargeted attacks. The final, 7th, layer is excluded due to its proximity to the

primary output. We repeat each experiment for at least 1000 randomly selected input keys from the

test data for both the MNIST and the CIFAR10 classifiers.

26

MNIST CIFAR-10
layer type # neurons type # neurons

1 conv 20 15680 conv 32 28800
2 conv/max 40 31360 conv/max 64 50176
3 conv 60 11760 conv/max 128 18432
4 conv/max 80 15680 conv/max 128 2048
5 conv 120 5880 dense 1024
6 dense 150 dense 180
7 dense 10 dense 10

max-pooling size: 2x2, kernel size: 3x3

Table 2.1: Summaries of network architectures

2.3.1.2 Experimental Results

We evaluate the effectiveness of the proposed methodology by first examining the success

rate (i.e., the percentage of key samples which successfully generate the malicious behavior). Our

experimental results demonstrate that our algorithm generally achieves a very high success rate.

In particular, all untargeted attacks on both classifiers achieve success rates of 100%. Further, the

targeted attacks yield an average success rate of over 99%, with the lowest average success rate for

attacks on a single layer being above 96%. The success rate of adversarial examples is frequently

understood to be linked with the tightness of the similarity constraint. As such, these results could

be easily improved by allowing the algorithm to progress for more than 50 iterations at the cost of

increasing the modifications required to produce the backdoor injection.

We now examine the number of modifications needed to produce this malicious behavior.

The performances while targeting each layer of the network is recorded individually and presented in

Figure 2.5 and Figure 2.6 for MNIST and CIFAR10, respectively. As we observe from the graphs, the

modifications required by the backdoor injection remain very small, < 1% of the layer’s operations

being modified, for all targeted layers of the model except the 6th. Further, it can also be seen from

Figure 2.5 and Figure 2.6 that the untargeted attacks require less modifications than the targeted

counterparts, which is consistent with our expectation as the untargeted attacks are more relax

compared to targeted attacks.

This analysis closely correlates to the impact of the attack in terms of how significant

the modifications will be on the computational infrastructure. For example, if embedding hardware

modifications in a deep learning accelerator, each modification requires some additional overhead and

increases the likelihood that the modifications could be discovered while analyzing the hardware. As

27

Figure 2.5: The average modifications of neurons needed in an MNIST classifier per targeted layer.

Figure 2.6: The average modifications of neurons needed in a CIFAR10 classifier per targeted layer.

28

such, this impact also indicates the level of stealthiness of the backdoor from inspection techniques.

It should be noted here that in some scenarios, the percentage of modifications is less important than

the overall magnitude of the modifications. In such cases, attacks targeted at the latter layers of the

model may be preferable despite the significant increase in the percentage of required modifications,

as the total number of modifications may be smaller.

Finally, we evaluate the functional impact of the injected backdoor on the remaining testing

dataset after the removal of the backdoor key samples. For this evaluation, we simply verify the

modified model’s prediction on the testing dataset and compare it with the predictions of the original

model. This allows us to determine what percentage of the model’s testing data has been altered by

the einjected perturbation. In our experiments, the classifications produced by the modified model

are unaltered from those of the original. In other words, the backdoor-injected models would behave

absolutely normally if the input keys were not present. As such, we conclude that in this setting,

the proposed methodology yields an effective yet stealthy backdoor attack. We note however that

this is largely due to the specificity of the activation method used in activating the perturbations.

In practice, limitations of the modifications embedded in the computational infrastructure

would be a significant contributor to this property. In this evaluation, we considered an ideal setting

in which the modifications have a very reliable activation method and only activate under the correct

latent representation. In practice, the triggering mechanism of the modification would likely have

a less accurate trigger and be subject activation when similar but not exact latent representation.

When transitioning to attacks on different computational infrastructures, the sensitivity of the mod-

ifications activation mechanisms should be considered and designed to minimize false activation of

the perturbations.

2.4 Conclusions

2.4.1 Summary

The field of adversarial deep learning has revealed a number of security concerns for deep

learning systems. These include inherent vulnerabilities which allow an adversary to search the

models input space to generate adversarial examples. Besides such inherent vulnerabilities in a

neural network’s inferences, an adversary also has the ability to inject malicious behavior into neural

networks to gain control of the system between the training and inference phases. To this end,

29

backdoor attacks have been developed to compromise a neural network through the modification of

its weights so that the network behaves maliciously when a specific input key is presented to it. In

fact, backdoors can be inserted into the network in different ways, such as through poisoning attacks

during the training phase or through the injection of operation modifications into a well-trained

model. The presence of these vulnerabilities is detrimental to the use of deep neural networks in

security-critical systems.

In this work, we developed a novel algorithm for injecting backdoors into well-trained neural

network models through the modification of the computational infrastructure of a model instead of

altering the network weights. This could be used, for example, to mount attacks on firmware or

low-level implementations of machine learning algorithms. To the best of our knowledge, all previous

backdoor injection methods rely on altering network parameters or training data from the algorithmic

domain. Our attack is orthogonal to these attacks and thus would be extremely difficult to detect

using defensive techniques which analyze network parameters.

We show that the proposed operation-level backdoor attacks could achieve very high success

rates while only a very small subset of neurons need to be modified. Given that the mechanism of the

proposed approach is distinct from previous methods, it may also be integrated with other backdoor

attacks to further enhance the attacking effectiveness. Additionally, as this attack does not alter

the network parameters, it would be extremely difficult to defend against using traditional defense

techniques that detect changes in these operations. This operational backdoor lays the foundation

for our future work in embedding modifications into hardware designs which target the behaviors

of the deep learning model, allowing additional abnormal functionality to be introduce through the

hardware.

30

Chapter 3

Compromising Deep Learning with

Hardware Trojans

In this chapter we present, work that was published in International Symposium on Circuits

and Systems (ISCAS) 2019. It was also selected for presentation in Defcon 2018 as an invited talk.

3.1 Neural Network Hardware Implementations and Trojans

Hardware designs are heavily reliant on the horizontal supply chain. This is primarily due

to the significant cost reductions involved in outsourcing specific manufacturing processes. This

reliance introduces blind sports to the supply chain as designers are often unable to view inside

the manufacturing process and leaving much of the manufacturing process untrusted. Within these

untrusted processes, adversaries have the ability to subvert the interests of the designer and modify

a design for their own agenda. This issue is further compounded due to the fact that these horizontal

supply chains are frequently globalized and governed by multiple regulatory and government entities.

This makes it possible for competing governments, corporations, or individuals to apply pressure on

actors within a supply chain to compromise hardware designs, even against their own desires. As

such, hardware Trojan attacks, where an actor modifies a hardware design for malicious intent, are

a major concern in the industry of hardware development.

Further, despite significant research interest in detecting and mitigating the potential of

31

adversaries embedding hardware Trojans in a design, the issue remains largely unsolved. This is

largely due to the ability of hardware Trojans to hide within the noise generated by the random

process variations of modern nanometer scale designs. Many reliable methods of Trojan detection

utilize destructive techniques which compromise the device, which in the best-case scenario, can

only detect a Trojan embedded in the destroyed device. This makes it costly to perform such an

analysis without a guarantee that the remaining devices are not compromised. Indeed, the ease with

which adversaries can inject hardware Trojans into a design through the modern supply chain, along

with the cost and difficulty of detecting them in practice, make them a serious concern for modern

industries.

As illustrated in Figure 3.1, this chapter explores to the possibility of embedding hardware

Trojans in deep learning accelerators to manipulate the deep learning models executed on them.

To the best of our knowledge, the work presented here is the first to directly target deep learning

hardware accelerators using hardware Trojans.

Figure 3.1: In the modern manufacturing industry, hardware supply chains frequently contain mul-
tiple untrusted processes where designers are unable to verify the security or reliability of their
outputs. Adversaries can take advantage of these untrusted processes and inject modifications into
hardware designs that introduce malicious functionality to the design. In this chapter, we explore
the possibility of an adversary embedding such hardware Trojans into a deep learning hardware
accelerator and compromising the models executed on that platform.

32

3.1.1 Hardware Design and Security

3.1.1.1 Neural Network Hardware Accelerators

As the field evolves, there has been an elevated desire recently in relocating the inference

phase of machine learning algorithms to edge devices. To this end, hardware solutions that improve

the efficiency of neural networks are necessary for deploying complex models in resource-constrained

platforms, such as Internet-of-Thing (IoT) devices. In the literature, various hardware accelera-

tor designs for neural networks have been proposed [170, 26, 154], most of which can be generally

classified into either temporal or spatial architectures according to the parallelism pattern of the

multiply-accumulators (MAC) [143], as seen in Figure 3.2. Since neural networks are becoming

deeper and deeper, it is infeasible or extremely costly to implement fully-parallel architectures in

practice. Therefore, MAC operations are often organized into a number of folding sets and exe-

cuted in a time-multiplexed manner. Similarly, other basic computational blocks required by neural

networks, such as pooling and activation functions, are also parallelized or time-multiplexed. In

particular, recent work has proposed an optimized folding scheme to increase the power and area

efficiency for VLSI implementations of neural networks [154].

Figure 3.2: Two common parallelization paradigms [143].

More recently, the benefits of co-designing hardware and algorithmic components have been

gaining recognition [89]. Quantized deep learning hardware has seen particular success, where hard-

33

ware noise is introduced through aggressive weight and activation quantization. However, it is

possible to handle this noise from the algorithmic perspective by modeling and incorporating that

noise into training protocols reducing the negative effects of hardware quantization [31, 130, 178].

Recently, the utilization of such algorithmic-hardware co-design techniques has been enabling deep

learning on the edge and in IoT settings [174]. While typically deep learning capable IoT devices uti-

lize deep learning components designed for general-purpose processors, in these resource-constrained

settings require more aggressive optimization, including quantization, network pruning, and spar-

sification [153, 65]. As discussed with quantization, these techniques can be co-optimized with the

hardware design to improve performance and efficiency past which the two can achieve indepen-

dently [77].

3.1.1.2 Hardware Trojans and Backdoors

Hardware Trojans are critical threats for hardware devices through the globalized untrusted

supply chain [131, 22, 103]. A hardware Trojan is mainly comprised of two components, i.e., a trigger

and a payload. Specifically, the payload achieves the Trojan’s malicious functionality, while the

trigger activates the payload under certain rare conditions. Two examples of simple Trojan designs

can be seen in Figure 3.3. In order to evade design-for-trust and other detection methodologies from

detecting the injection of malicious hardware modifications, a successful hardware Trojan is required

to be extremely tiny and stealthy [131]. Moreover, it becomes nearly impossible to detect the presence

of Trojans in modern deep nanometer technologies, especially when a modification’s effects fall within

the range of manufacturing process variation. Additionally, the fact that the internal structures of

neural networks are highly-complex and intractable further complicates hardware Trojan detection.

Various hardware Trojan designs for basic arithmetic operations have already been exten-

sively studied [129, 54]. Thus, many of these existing Trojan designs could also be applied to the

operations of neural networks. For example, Trojans can be injected into a multiplier by slightly

altering the path delays of the circuit that only activates when both inputs exhibit specific tran-

sitions simultaneously [54]. As opposed to these basic arithmetic elements, this work proposes to

study the hardware Trojan designs for unique operations in neural network implementations. We

consider a threat model similar to the state-of-the-art in the field of hardware Trojans, in which an

adversary is assumed to have access to the netlist of a neural network design through an untrusted

supply chain [95, 49, 78].

34

Figure 3.3: Simple hardware Trojan designs.

3.1.2 Software Trojans in Neural Networks

In the context of machine learning, the adversary could inject software Trojans into the

model by maliciously altering its weights so that the neural network will malfunction when the

Trojan is triggered. In the literature, several works on neural network software Trojan attacks have

been developed [53, 104, 101]. From the supply chain perspective, maliciously intended modifications

to these devices during the process can further provide attackers with new capabilities of altering

the functions of internal neurons and causing adversarial functionality. Hardware Trojans can be

inserted into a device during manufacturing by an untrusted semiconductor foundry or through the

integration of an untrusted third-party IP. Furthermore, a foundry or even a designer may possibly

be pressured by the government to maliciously manipulate the design for overseas products, which

can then be weaponized. Therefore, it is of great importance to examine the implication of hardware

Trojan on neural networks. In this work, we expand the attacks on neural networks from the training

and application phases to the production phase. These attacks are typically considered synonymous

with the deep learning backdoors discussed in Section 1.2.1.2 but have a broader range of adversarial

objectives only one of which may be to embed a secret backdoor.

3.1.3 Defining Attacks on Deep Learning Hardware

In this section, we present the modern taxonomy of deep learning security and expand it to

incorporate attacks on deep learning systems through hardware platforms. We further establish a

general threat model for hardware-based attacks.

35

3.1.3.1 The Taxonomy of Deep Learning Security

A taxonomy is a tool used to categorize knowledge and concepts in a particular subject. They

are useful in developing a broad understanding of a field of study. In the literature, the taxonomy of

attacks on neural networks [10, 122, 123] is divided into four domains: the phase at which the attack

is initiated, the goal of the attacker, the scope of the attack, and the attacker’s knowledge of the

system, as shown in Figure 3.4. In particular, the attacks are classified into two phases according

to the stages of the neural network: the training phase and the inference phase [123]. An attack in

the training phase seeks to take control of the training algorithm by maliciously altering the model

training. On the other hand, an attack in the inference phase attempts to explore possible flaws

in the well-trained model without tampering with the network. Attacks in the hardware domain

are fundamentally different from both of these perspectives. Instead, we consider an attack on the

computing infrastructure that, in general, is unchangeable during the inference phase. We call this

the production phase, a stage in the design of deep learning systems where the infrastructure not

directly related to the deep learning system is prepared. Note that fault injection attacks on the

neural network [99] still fall into the inference phase since the described threat model assumes it

occurs after full deployment.

The goals of the attacker can be organized into reliability or privacy attacks. Reliability

attacks attempt to degrade the service provided by the deep learning system. Reliability attacks

either degrade the integrity of the model (producing harmful outputs) or the availability of the model

(making outputs less useful). Privacy attacks attempt to siphon some useful information from the

model, such as the model parameters, training data, or user data. Attacks on deep learning systems

can either be targeted when the adversary has a specific goal or untargeted when the adversary has

a very general goal. Targeted attacks are typically considered stronger attacks because a targeted

attack can always enable an untargeted attack by selecting an arbitrary goal. But untargeted attacks

cannot always be successfully converted to a targeted attacks.

Another axis of classification is the level of knowledge the attack has. Whitebox attacks as-

sume that an adversarial has complete access to the entire system, including its training and internal

state. A black box attack, on the other hand, assumes that the adversary has very little knowl-

edge of the system. Typically this scenario restricts the adversary to only considering input/output

response pairs observed after deployment. While grey box settings indicate those in which the adver-

36

I

I
I

"

-{ Phase

Training:

• Injection
.. • Modification

• Training
Algorithm

Production:

• Parameters

.. • Architecture
• Operations

.... ----
Inference:

.. • Adversarial
Example

• Enchanting

�

-

Taxonomy of Neural

Network attacks

" � �

-{ Objective -{ Scope -{ Knowlege

Privacy:
I Targeted: Blackbox

• Training data I .. • Source t • No knowledge
.. • Parameters j • Destination -----

• Input data
Greybox �--- --- Untargeted: ,, • IncompleteReliability:

• Misclassification knowledge
• Integrity ➔ • Confidence.. -----
• Availability Reduction f Whitebox

--�-----------
• Complete

/ knowledge Domain of attacks examined here

'

I
I

Figure 3.4: The expanded taxonomy of neural network attacks.

sary has some restricted access to some knowledge about the deep learning system but not all. This

hardware Trojan attack is a grey box, for example, because it requires access to model parameters

after training but does not require access to any of the training procedures or inputs. In sum, we

consider the hardware Trojan attack during the production phase to compromise the reliability of

neural networks with both targeted and untargeted scopes in this work, as circled in Figure 3.4.

3.1.3.2 General Threat Model of Attacks on Deep Learning Hardware

Unlike software Trojans, hardware Trojans consider the malicious modification of the orig-

inal circuitry [22, 148]. An inserted hardware Trojan will change circuit functionality by adding,

deleting or modifying the components to wrest control from the original chip owners. As opposed to

software Trojans, hardware Trojans would have both capabilities of changing the weights and altering

the functionalities of specific neurons depending on the threat model. This difference undoubtedly

leads to vastly distinct insertion and design strategies for neural network hardware Trojans. Indeed,

given that the hardware Trojan produces new threat models with no equivalent software counterpart,

37

attack, and defense scenarios must be first studied.

Production (untrusted)

Application

Testing

(trusted)

Hi I’m Bobo and I

have a red pen

W hats up bobo Im

j erryasm

Anything you

can do I ca n do

Hi I’m Bobo and I

have a red pen

W hats up bobo Im

j erryasm

Anything you

can do I ca n do

network

architecture

EDA

tools

3
rd

 party

IPs foundry

testing data

weights

functional/

behavioral

Training

(trusted)

Figure 3.5: The adversarial setting considered in this work. The hardware perspective introduces a
novel attack vector that has not been considered in prior works. This enables both traditional and
novel attacks to be conducted in the hardware supply chain against deep learning systems.

In this work, we consider a threat model that assumes an adversary is positioned in the

supply chain of an integrated circuit containing a well-trained neural network model, as shown in

Figure 3.5. This threat model is particularly relevant given that many companies wish to use state-

of-the-art offshore technologies to remain competitive in the market, especially for neural network

devices whose performance is crucial for real-time applications. It is also plausible that, due to

potential speed-ups and improvements in power consumption, the designer desires to hard-wire the

network parameters. This setting would give the adversary direct knowledge of architecture and all

weights associated with the well-trained model. However, the adversary would not have knowledge

of the training or test data.

The objective of the adversary is to insert a hardware Trojan into the original design of

the neural network circuit, forcing a specific trigger input to be misclassified to either a targeted

or an untargeted class. Under this scenario, the adversary can modify both the weights and the

functionalities of circuit components prior to shipment. In order to evade detection, the adversary

should ensure the hardware Trojan is stealthy enough such that the predictions for the unknown test

data are completely unmodified. In addition, the physical footprint of the hardware Trojan must

remain sufficiently tiny; thus, the Trojan-injected circuit would be difficult to differentiate from the

38

original ”golden circuit.” In this work, we focus on the hardware Trojan attack on neural network

circuit components, while we expect the hardware Trojan targeting the weights would yield a similar

impact as the software Trojan or fault injection attack.

3.2 Injecting Hardware Trojans in Neural Networks

3.2.1 General Framework

The proposed framework consists of two main steps: (i) malicious behavior generation, i.e.,

determining the operation(s) to alter with the injected Trojans and the corresponding perturbations,

and (ii) hardware Trojan implementation, i.e., designing the trigger and payload circuitry. Our

proposed methodology provides an adversary the flexibility in selecting the targeted layer of a neural

network for injecting hardware, Trojan. Without loss of generality, we assume the targeted layer is

layer l. An example of a Trojan-injected neural network is shown in Figure 3.6. When the trigger

condition is satisfied, the injected neurons will propagate the malicious behaviors to subsequent

layers and finally modify the output prediction, as marked in red in Figure 3.6. Note that multiple

Trojans need to be injected to achieve the attacking objective in most cases, as each operation in

the network has a minor effect on the output within the dynamic range T , especially for deep neural

networks.

Due to the layered structure, a neural network can be divided into sub-networks separated

at the layer l, which can be expressed as

F (x) = Fl+1:L(Hl); Hl = Fl:l(Hl−1) and Hl−1 = F0:l−1(x). (3.1)

This modularity is further increased by the natural division of operations inside a network layer.

For example, as shown in Figure 3.7, a dense layer is usually composed of multiplication operations

followed by an accumulation operation and finally an activation function, plus any additional opera-

tions such as pooling. These operations create additional natural break points in which an adversary

can inject Trojans.

To perform the hardware Trojan attack, the adversary also needs to pick an input trigger

x̃. In the proposed framework, the trigger can be chosen arbitrarily or similarly to legitimate inputs

to achieve a higher degree of stealthiness. Then, we use the input trigger and the functions repre-

senting the first two sub-networks to obtain the intermediate values following the first and second

39

NL-2

1

2

N1

1

2

NL-1

1

2

1

2

I

1

2

NL

y1

y2

yC

x1

x2

xI

...
Input Layer

l1 lL-1 lLl0

Hidden Layers Output Layer

synapses actively
effected by Trojans

Synapses uneffected by
injected Trojans

lL-2
H0 HL-2 HL-1

Figure 3.6: A neural network injected with hardware Trojans, the effect of the Trojans is propagating
through some neurons but can be filtered out on others.

subnetworks, i.e., Hl−1 = F0:l−1(x̃) and Hl = Fl:l(Hl−1). We then apply a modified adversarial

sampling algorithm with respect to the target layer to find the perturbation needed to induce in

the layer l to achieve either a targeted or untargeted attack. In order words, the goal is to generate

H̃l = Hl+p such that Fl+1:L(H̃l) is altered as intended, while the perturbation p for each modified

neuron is bounded by the dynamic range based on the neural network model. Finally, the Trojan

circuitry is designed according to the required perturbations and intermediate values.

3.2.2 Malicious Behavior Generation

While a variety of approaches in the existing literature for producing adversarial pertur-

bations may be incorporated in the above framework, we choose to develop our approaches based

on the JSMA algorithm [122], since it is designed specifically for minimizing the L0−norm which

could potentially minimize the total modified operations. The JSMA algorithm generates a Jacobian

matrix with respect to the input and then utilizes the Jacobian with a set of rules to build a saliency

map. By modifying the rules when constructing the saliency map, different adversarial objectives

40

Σ f hi

h1

h2

hn
hi=f (Σhj*wj)

w1

w2

wn

H l-1 H l

Figure 3.7: The basic hardware operations and function of a neuron.

can be prioritized.

As opposed to the original JSMA algorithm, in our proposed method, we modify the Jaco-

bian as presented in Equation (3.2).

J(Hl) =

[
δFl+1:L(Hl)[c]

δHl

]
c∈C

. (3.2)

Calculating the Jacobian begins at each output and is forward propagated to the target layer using

the following modified version of the chain rule.

δHli

δHl
= Hli ·Wli ·

δHli−1

δHl
(3.3)

Each column in the Jacobian corresponds to a specific output, while each row is linked to a specific

neuron in the targeted layer. This is distinct from the original algorithm, as the rows of the original

Jacobian matrix were linked to the input image. The element at the intersections of these rows and

columns of this matrix indicate the strength of the correlation between the neuron/output pair. In

this way, each entry of the Jacobian matrix indicates the correlation under the L0−norm between

the output classification and the intermediate value. It should be noted that each neuron is often

tied to multiple outputs with varying strengths and so selecting the neurons should be done through

a strict set of rules.

Consequently, a saliency map can be generated using the Jacobian matrix based on the

specific goal of the adversary. An attacker with a targeted scope seeks to accomplish the goal in a

41

specific way, while the untargeted scope simply attempts to cause the specified input to misclassify

to any other classes. In our methodology, we modify the rules for building the saliency map to

incorporate both scopes. For instance, in an untargeted attack, the difference between the negative

values in the column corresponding to the predicted class, dx−
p , and the positive values from every

other column, dx+
i ̸=p, can be used to form the saliency map:

S(x)[i] = βp

∣∣dx−
p

∣∣+ βs

∑
i ̸=p

dx+
i . (3.4)

Each entry in this map essentially indicates the effectiveness of simultaneously achieving the primary

goal (i.e., decreasing the confidence of the predicted class) and the secondary goal (increasing the

probability of a different class) by modifying the corresponding neuron. To gain optimal results in

specific adversarial settings, βp and βs are introduced to weigh the primary and secondary goals.

Algorithm 1 Untargeted Hardware Trojan Attack

Require: F (·), x̃, T, l
1: F (·) → F0:l−1(·), Fl:l(·) and Fl+1:L(·)
2: Hl−1 = F0:l−1(x̃)
3: H̃l = Hl = Fl:l(Hl−1)
4: yp = Fl+1:L(Hl)
5: L = []
6: while Fl+1:L(H̃l) = yp and |p|0 < T do

7: forward propagate J(H̃l)
8: S = Untargeted SM(J(H̃l),yp), using Equation (3.4)

9: increase h̃n = argmax(S)
10: p = H̃l −Hl

11: if
∣∣∣h̃n∣∣∣ exceeds T then

12: L.append(hn)
13: end if
14: end while
15: generate trigger design based on Hl−1

16: generate payload design using p

However, the goal of a targeted attack is to decrease the probability of the targeted class

over that of the predicted class. Consequently, decreasing the probability of the currently predicted

class remains the primary goal, but the attack also incorporates an auxiliary goal of increasing the

confidence of the target class. We also impose a secondary goal of keeping the remaining probabilities

low. Thus, we formulate a saliency map using Equation (3.5).

S(x)[i] = βp

∣∣dx−
p

∣∣+ βadx
+
t + βs

∑
i̸=t,p

∣∣dx−
i

∣∣, (3.5)

Here we include three constants, βp, βa, and βs, to weight the primary, auxiliary, and secondary

42

goals to gain optimal results in specific adversarial settings.

To find the modification needed in Hl, we perturb the operation associated with the largest

values in the vector and modify them according to the adversarial objective. The magnitude of

the perturbation should be bounded by the dynamic range T in the original neural network. For

example, the value after the Trojan-injected neuron should be bounded between -1 and 1 if the

activation is tanh. A ReLU activation function leads to a theoretically unbounded upper limit;

however, in a practical real world attack any modifications would be limited due to the physical

representation of the values. For the bounded attack, we use a bounding list, L, to lock neurons

that cannot be further altered in the desired direction. We present the algorithms for the untargeted

attack and the targeted attack in Algorithm 1 and Algorithm 2, respectively.

Algorithm 2 Targeted Hardware Trojan Attack

Require: F (·), x̃, ỹ, T, l
1: F (·) → F0:l−1(·), Fl:l(·) and Fl+1:L(·)
2: Hl−1 = F0:l−1(x̃)
3: H̃l = Hl = Fl:l(Hl−1)
4: L = []
5: while Fl+1:L(H̃l) ̸= ỹ and |p|0 < T do

6: forward propagate J(H̃l)
7: S = Targeted SM(J(H̃l), ỹ), using Equation(3.5)
8: increase h̃n = argmax(S)
9: p = H̃l −Hl

10: if
∣∣∣h̃n∣∣∣ exceeds T then

11: L.append(hn)
12: end if
13: end while
14: generate Trojan trigger design based on Hl−1

15: generate Trojan payload design using p

In addition to the original saliency map that indicates which neuron outputs to increase, we

implemented the targeted attack with a second saliency map that indicates which neuron outputs to

decrease. This slight modification allowed our implementation to mount attacks more quickly and

efficiently than when utilizing only the single saliency map above.

3.2.3 Hardware Trojan Implementation

The implementation of the hardware Trojan design is highly dependent on the specific neural

network architecture and the injected component of choice. Here, we only lay the groundwork and

describe several possible designs. Note that other hardware Trojan designs of different types but

43

with similar functionalities can also be incorporated into the proposed framework.

The trigger of the hardware Trojan should be designed based on the internal state of the

injected location, i.e., the produced Hl−1 when feeding x̃ through F0:l−1(·). In addition, the trigger-

ability must be extremely low to ensure the stealthiness of the hardware Trojan. A combinational

circuit can be used to trigger the Trojan when even Hl−1 closely resembles H̃l−1. In the proposed

framework, the payload should be designed to achieve the needed perturbation p(Hl) obtained from

the malicious behavior generation step. We can either use a multiplexer logic which selects the

output of malicious logic only when the Trojan is activated, or alter the internal structure of the

certain operations to inject malicious behavior. For instance, several multipliers can be modified

to produce rare outputs given the vector of Hl−1. We can also target on the activation function

of each layer to directly alter Hl after the layer. Although our algorithms for malicious behavior

generation are designed to minimize the hardware modification, we must still be careful in selecting

the payload design such that the magnitude of change (e.g., the difference in side-channel leakage) is

small enough to evade existing hardware Trojan detection techniques. The simplified block diagrams

of two possible hardware Trojan designs are shown in Figure 3.8.

3.2.4 Injecting Hardware Trojans in a ReLU Function

Hardware Trojan modifications to basic arithmetic elements have been previously studied

in the literature [129, 119]. In this section, as opposed to these common arithmetic elements, we

present an efficient hardware Trojan design example using ReLU, which is a widely-used activation

function nowadays. We consider a folded neural network design that is consistent with most of the

practical implementations. Note that when the degree of parallelism is increased, less number of

operations will need to be modified due to multiple operations being mapped to a single hardware

block. The adversary may also choose to target other computational blocks in a neural network,

such as a MAC or a pooling operation. The design methodology presented in this section can be

easily extended to other blocks.

The function of a ReLU block can be expressed as

F (x) =


x, if x ≥ 0

0, else

(3.6)

44

Trigger

(b)

Σ f hi

h1

h2

hn

f

f

w2

wn

w1

w2

(a)

Payload

Altered output for
the Trojan trigger

given w2

H ll-1

~
~

Figure 3.8: Simplified representations of two possible hardware Trojan designs on a neural network.

Its implementation involves combinational logic that decides whether to propagate the input or clear

it to 0 according to the sign bit. An n-bit example with a simple Trojan is illustrated in Figure 3.9.

We design the detailed circuitry of the hardware Trojan based on the perturbation found

in Section 3.2.2. Theoretically, the adversary can select any feasible input as the key for the Trojan

activation. However, an input key will be more stealthy if it closely resembles the natural input

distribution. Then, the state of the targeted operation can be determined by applying the input key

to the network. We only select a small subset of the internal state, whose combination is rare across

the operations that are time-multiplexed into the same block, as shown in Figure 3.9.

The payload is designed using simple logic gates to toggle the specific output bits. It is

important to minimize the Trojan’s impact when activated under a false trigger. For example, the

45

b0

b1

bt-1

bt

bn-2

bn-1

B0

B1

Bt-1

Bt

Bn-2

Bn-1

Trigger

Payload

(a) (b)

Figure 3.9: A ReLU implementation injected with a hardware Trojan, two possible payload designs
are given.

single gate payload design, as shown in Figure 3.9(b), will alter the result of the ReLU block under

every false trigger, while design in Figure 3.9(a) only alters the output when the corresponding input

bit is 1. Additionally, the type of logic gate should be selected based on the values of the selected

trigger and other false triggers. For example, we can generate another single gate payload design by

replacing the XOR gate in the hardware Trojan design of Figure 3.9(b) with an OR gate. In this

case, if a false trigger with an original output value of 1, the corresponding bit will not be altered

even if the hardware Trojan is triggered. Thus, the impact of the false trigger can be effectively

reduced. The other possible modifications to this single gate design are summarized in Table 3.1.

While many of these single-gate payload designs are not stealthy alone, the payload can be expanded

using additional logic gates to produce particular effects.

Trigger
Output

Payload Functionality

AND NAND OR NOR XOR XNOR

0 0 1 bn bn bn bn

1 bn bn 1 0 bn bn

Table 3.1: Single Gate Payloads

46

We consider the operations that are folded into one single computational block as one

folding set in a time-multiplexed architecture. According to the targeted perturbation generated

from the modified adversarial example algorithm, the detailed hardware Trojans should be designed

individually. The key idea is to isolate the targeted operation from other operations within the same

folding set. We consider the following three scenarios.

1. One operation is modified in a folding set with one Trojan: In this scenario, the adversary can

tailor the Trojan to the specific operation. According to both the targeted internal activation

and required perturbation. The adversary can design the trigger with a pattern from several

selected bits that are unique to the targeted operation.

2. Multiple operations are modified in a folding set with multiple Trojans: If perturbations are

required to be applied to multiple neurons, it is likely that the triggering conditions or payloads

are also different. In this scenario, the attacker can design the Trojans for each perturbation

separately, which would yield better control of the stealthiness of the attack. However, a larger

degree of hardware modification will be required.

3. Multiple operations are modified in a folding set with one Trojan: As opposed to the second

scenario, the adversary can also aggregate all the perturbations into one hardware Trojan to

reduce the magnitude of hardware modification. In this case, the trigger design is essentially a

Boolean logic minimization problem that seeks to merge all the targeted internal activations.

Unfortunately, this design results in the Trojan being less specific to each operation and thus

increases the likelihood of false triggering and detection. However, the payload can be designed

wisely to improve stealthiness. This can be done when the original values of the targeted

operation and the false triggered operation are different, by using an appropriate combinational

logic as described in Table 3.1. Additionally, the payload logic can be enhanced to alter the

effect based on specific internal activations. For example, consider Figure 3.10, which alters

the ReLU output based on the true output of the operation. While the two input bits may be

required to be excluded in the trigger logic due to conflicting trigger conditions, these payload

designs only allow bits to be altered based on that excluded condition.

47

trigger 0 /1 0 1

0 /1 1 1

0 /0 1 0

/11

1/0

/10

Figure 3.10: A payload designed to handle multiple perturbations. Two input scenarios are consid-
ered in the first the input combination “0...01” is applied to the input, and “1...11” in the second.
Both sequences are detected by the trigger, which compared can be implemented by a simple com-
parator that evaluates specific bit patterns. This activates two payload circuits attacked to two
outputs. The first payload only flips ‘0’s to ‘1’s, and so does not alter the second input. Likewise,
the second payload only flips ‘1’s to ‘0’ and so does not alter the first input.

3.3 Experimental Evaluations

3.3.1 Software Simulations

3.3.1.1 Experimental Setup

We simulate the functionality of the Trojan by building a python instance of the network

and passing the targeted input through it. Analyzing the binary representation of the inputs to

the activation function of the target layer, we generate the logic required to activate the Trojan.

Similarly, using the binary representation of the activation function’s output, we determine the

specific bits that need to be modified. The same Trojan logic is applied across all activation functions

in the target layer. We then repeat this process over three target test cases.

In these experiments, we consider two different input trigger designs, i.e., well-crafted

and random input triggers. Well-crafted input triggers are intended to achieve higher degrees

of stealthiness against human observers by making the trigger very close to legitimate inputs. In

order to ensure the similarity of the well-crafted input trigger, x̃, to the test images, we randomly

pull a single instance from the test set and form a new set for testing with the remaining samples.

Randomized images adhering to the standards of the datasets are used as random input triggers. We

48

Figure 3.11: We experimentally inject a backdoor into the deep system through modifications in the
hardware components. These modifications successfully able to alter the model’s computation of a
target key input with minimal hardware overhead while preserving the original functionality of the
model in general.

evaluate both targeted and untargeted hardware Trojan attacks on the above neural networks. In

our experiments, we use every other class of each dataset except the correct label as the targeted class

for the targeted attack. While for the untargeted attack, we simply attempt to alter the prediction

without a targeted class. The possible magnitude of perturbation generated by the payload is

constrained by the dynamic range of the original benign model. We use ReLU as the activation

function on each layer when illustrating the unbounded scenario while using tanh as the activation

function for the bounded scenario. We examine the performance of hardware Trojan attacks on

all hidden layers and the output layer. We show that the proposed method could inject hardware

Trojans into any layer to generate malicious behavior and compare the effectiveness and stealthiness

of different layers of choice.

3.3.1.2 Metrics

The success of a hardware Trojan attack is measured by its capabilities of altering the

predictions and evading detection. In this work, we use effectiveness and stealthiness to evaluate

these metrics. Additionally, we use the number of modified neurons to show the magnitude of change

from the hardware implementation perspective. In sum, we define the following metrics:

• effectiveness (eff) is the percentage of input triggers classified as the intended label in

either targeted or untargeted scenarios. An effective hardware Trojan attack should yield a

49

MNIST CIFAR-10

bound unbound bound unbound

layer mfn (%) eff (%) mfn (%) eff (%) mfn (%) eff (%) mfn (%) eff (%)

1 0.19 100 0.06 100 0.21 100 0.09 100

2 0.10 98 0.04 100 0.14 100 0.06 100

3 0.39 95 0.14 100 0.15 100 0.09 100

4 0.22 100 0.07 100 0.81 100 0.54 100

5 1.51 96 0.09 98 4.57 100 0.34 100

6 8.13 100 2.71 100 13.53 100 1.69 100

7 21.20 100 30.53 100 20.20 100 21.80 100

Table 3.2: Random input triggers for targeted attacks

high value (i.e., close to 100%) of this metric.

• stealthiness (stl) is the percentage of the outputs obtained from the Trojan-injected network

that matches the predictions of the benign network. Ideally, this metric should be 100% to

avoid detection by test data that are unknown to the adversary when returned to the designer.

• Number of modified neurons (mfn) is the average number of neurons that are modified

to generate the desired malicious behavior. This metric directly correlates to the number of

hardware modifications needed to implement the attack. This metric is also reported as the

percentage of neurons modified in the targeted layer needed to achieve a misclassification.

3.3.1.3 Results and Discussion

The results of our experiments are summarized in Table 3.2 and Table 3.3. Note that

each experiment is conducted with at least 1000 iterations, and the averages are presented. In

addition, we test the stealthiness of the proposed methods using the test data of each dataset. Our

experimental results show that the proposed algorithms achieve 100% stealthiness for

both datasets under all adversarial scenarios. It can be seen from both Tables 3.2 and 3.3 that

the percentage of modified neurons increases towards the latter layers of both networks. However,

if we compare the absolute value of modified neurons, as shown in Figures 3.12 and 3.13, the latter

layers actually require significantly fewer neurons to be modified to inject malicious behavior. Thus,

injecting into neurons in the latter layers could result in a higher impact on the output, which

conforms to our expectations. Note that the lowest possible percentage of modified neurons is 10%

50

for the output layer since it has a total of 10 neurons in both networks.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

m
fn

 (#
)

layer

MNIST bound

MNIST unbound

CIFAR bound

CIFAR unbound

Figure 3.12: Number of modified neurons per layer given random trigger inputs in the targeted
adversarial setting.

We first use random input triggers to mount the hardware Trojan attacks under the targeted

adversarial scenarios. The results are presented in Table 3.2 and Fig. 3.12. It can be seen that the

targeted attack under the unbounded scenario is stronger than the bounded scenario, as it requires

fewer neurons to be modified. In other words, different neural network designs also lead to different

levels of security from the hardware perspective. It also appears that both of these attacks perform

well, reaching near 100% effectiveness on all layers while modifying only a small sample of the

neurons. For example, our method could effectively classify a random input trigger as a specified

class on the MNIST dataset by injecting hardware Trojans into 0.04%, on average, of neurons in the

2nd hidden layer of the neural network.

We next evaluate the performance of well-crafted input triggers on the datasets under the

unbounded scenario. The results are illustrated in Table 3.3 and Fig. 3.13. It can be seen that

these attacks also achieve very high effectiveness while modifying a small percentage of the neurons.

For instance, our algorithm can effectively alter the classification of a well-crafted input image in

an untargeted scenario while only altering, on average, 0.03% of the neurons in the 5th layer of an

51

MNIST CIFAR-10

targeted untargeted targeted untargeted

layer mfn (%) eff (%) mfn (%) eff (%) mfn (%) eff (%) mfn (%) eff (%)

1 0.18 100 0.17 100 0.34 97 0.28 100

2 0.06 98 0.08 100 0.53 100 0.43 100

3 0.14 98 0.04 100 0.53 100 0.36 100

4 0.09 100 0.13 100 0.66 100 0.45 100

5 0.39 99 0.03 100 0.90 100 0.15 100

6 1.83 100 0.67 100 2.11 97 0.55 100

7 22.17 100 10.00 100 29.30 97 10.00 100

Table 3.3: Well-crafted input triggers under the unbounded scenario

MNIST classifier. Under this scenario, it can be observed that the untargeted attack usually requires

fewer modifications than the targeted attack since it has the flexibility to select the most accessible

malicious output.

When comparing the results between the MNIST and CIFAR10 classifiers under the same

adversarial settings, we can observe that attacks on the CIFAR10 classifier, in general, require a

larger percentage of neurons to be modified. This is further compounded by the fact that the

majority of the layers in the CIFAR10 classifier have more neurons than the corresponding MNIST

classifier. For example, when targeting the 2nd layer, our algorithm only needs to modify less than

50 neurons of the MNIST classifier, while over 200 neurons have to be altered in the CIFAR10

classifier.

Finally, we observe that the adversary’s choice of input trigger affects the strength of the

attack. By comparing experimental results between the well-crafted and random input triggers of

the CIFAR10 classifier, it is apparent that the attacks based on well-crafted input triggers require

more modifications. Specifically, attacks on the second layer of the network require almost 9 times

more modifications with well-crafted input triggers compared to random input triggers. Thus, a

random input trigger could achieve higher stealthiness.

3.3.2 Hardware Synthesis

Finally, we ensure that an attacker can implement a Trojan in the hardware that exhibits

the same functionality as the simulated models while limiting the size of the modification. To this

end, we synthesize a Verilog implementation of a neuron in Sysnopsys’ Design Compiler. The neuron

52

0

50

100

150

200

250

1 2 3 4 5 6 7

m
fn

 (#
)

layer

MNIST targeted

MNIST untargeted

CIFAR targeted

CIFAR untargeted

Figure 3.13: Number of modified neurons per layer given well-crafted trigger inputs in the unbounded
adversarial setting.

contains the basic MAC and a ReLU function. We then alter the activation function’s netlist to

implement the same malicious modification seen in the Simulations.

3.3.2.1 Setup

To evaluate this Trojan injection technique, a similar experimental setup as in [29, 99] is

employed. A seven-layer convolutional neural network is trained in TensorFlow to classify the MNIST

dataset at an accuracy of over 99%. The operation targeted in the Trojan injection is the ReLU

functions of a fully-connected layer. We use an input trigger in each iteration of our experiment that

is arbitrarily selected from a single sample of the test data. We then randomly choose a targeted

adversarial label for the input trigger and apply a modified L0 norm-based adversarial example

generation algorithm [122] to obtain the required perturbation.

We implement a time-multiplexed neural network architecture where the operations of each

layer are folded into computational blocks. To reduce the size of the folding sets or increase the level

of parallelism, architectures with multiple instances of the corresponding blocks are also examined.

53

The original architectures are synthesized using Synopsys Design Compiler that is mapped to a

32nm technology. In our experiment, we verify the effectiveness of the proposed hardware Trojan

design under the worst-case scenario where the entire layer is composed of a single folding set. In

other words, a Trojan would affect all the operations in that layer.

As described in Section 3.2.4, the detailed design of the hardware Trojan should be depen-

dent on the internal activations of both the targeted operation and the false triggered operations in

the folding set. For each case, we carefully select the input bits for the trigger design to reduce the

rate of false triggering as well as appropriately design the payload to minimize the impact of false

triggering. Then, we modify the netlist of the original architecture to simulate the hardware Trojan

injection.

Modified Injected Detectable Hardware

Scenario Operations Trojans Images Overhead

1 1 1 0% 0.0022%

2 2 2 0.05% 0.0136%

3 2 1 0.41% 0.0022%

Table 3.4: Summary of Experimental Results

3.3.2.2 Results

We determine the effectiveness of modification by assuring that the injected Trojan can

produce the correct perturbations on the targeted operations. The effectiveness is verified by both

the simulated network and the synthesized hardware architecture. Our experimental results show

that the targeted misclassifications are 100% achieved by the injected hardware Trojan in all tested

scenarios.

We then evaluate the stealthiness of the hardware Trojan design using test data of the

MNIST dataset, where the input trigger is removed in each iteration. We compare the output clas-

sifications of the original design with the hardware Trojan-injected architecture. Our experimental

results illustrate that the proposed hardware Trojan could achieve a very high degree of stealthiness.

For example, the proposed Trojan designs are 100% undetectable on the test set in scenario 1, while

scenarios 2 and 3 results in slightly lower stealthiness though the percentages of changed outputs

are still within an acceptable range given the stochastic nature of neural network applications. Note

that in practical application, the level of parallelism would be much higher. Thus, the stealthiness

54

of the hardware Trojan injection will also be much higher compared to our experimental setting.

Furthermore, we evaluate the feasibility of the Trojan injection by examining the hardware

overhead needed to mount the attack. The results indicate that the hardware modifications in all

scenarios are extremely tiny, which are nearly impossible to detect under the presence of manufac-

turing process variation. The experimental results are summarized in Table 3.4. As a result, we can

conclude that the proposed hardware Trojan design is very effective and stealthy.

3.4 Conclusions

3.4.1 Summary

This work introduced, for the first time, hardware Trojan attacks in the scope of neural

networks. In order to better define and understand hardware attacks, as well as other deep learning

attacks that don’t directly target the deep learning models, we expand the taxonomy of neural

network security to include attacks conducted in the production phase.

In our experimental results, we verified the effectiveness of the proposed hardware Trojans

through extensive software simulations and hardware synthesis. Our software simulations consid-

ered a variety of scenarios demonstrating targeted/untargeted attacks using both well-crafted and

randomly input triggers. These experimental results demonstrated the stealthiness and effectiveness

of the injected hardware Trojans. Additionally, the hardware modifications required to inject the

malicious hardware were shown to be minimal.

One of the major limitations of this work is the requirement that the adversary knows the

model that the developers will deploy to the hardware platform upon deployment. This requirement

arises due to the need to connect the hardware modifications with the software running on the device,

as without this connection, it is unclear how to produce a desired prediction outcome. Some follow-

up works have arisen that attempt to overcome this limitation. One work explored the possibility

of using the model as the Trojan trigger rather than the inputs [92]. Other works bypass this need

by placing the Trojans in parallel with the hardware accelerator, making it model agnostic [167].

However, such solutions assume certain application scenarios and so can be applied in specific threat

models.

55

Chapter 4

Preventing Deep Learning

Hardware Piracy with Watermarks

This chapter presents DeepHardMark, the first watermarking framework for defending deep

learning hardware from piracy. We presented this work at Association for the Advancement of

Artificial Intelligence (AAAI) 2022.

4.1 Importance of Watermarking Deep Learning Hardware

While general-purpose processors are still widely utilized across the field [79], FPGA and

ASIC solutions can provide superior performance and efficiency needed for critical commercial sys-

tems [111]. Nevertheless, modern horizontal supply chains often outsource fabrication, production,

and distribution across multiple globalized corporations. Adversaries can take advantage of vul-

nerabilities in the supply chain to overproduce, copy, or recycle hardware designs for their own

profit [90]. Therefore, it is critical to provide a means for hardware developers to assure the security

of a design relinquished to the horizontal supply chain [166, 133]. Hardware watermarking allows

designers to place a signature into their hardware intellectual properties (IPs) that verify rightful

ownership [47, 127].

The outstanding accuracy of DNN systems comes at the cost of high computational complex-

ity. As such, hardware accelerators for DNN inference have seen a resurgence in recent years [173,

56

128]. While GPUs and other high-performance computing platforms have enabled the widespread

utilization of deep learning, the increasing demand for low-latency or low-power applications is

driving a growing interest in more efficient platforms [145]. Premium DNN accelerators integrate

high-volume computational arrays with well-orchestrated data flows that can maximize the utiliza-

tion of hardware resources [144]. When a DNN is executed on the architecture, a mapper converts

the algorithmic computations to hardware-compatible operations. Through careful consideration of

the specific target scenario, IP developers generate efficient systems that can surpass general-purpose

solutions [65].

Watermarking techniques are conventionally deployed as a countermeasure to multimedia

IP theft [80]. Concern over the ease of DNN model theft has motivated researchers to extend

these concepts to deep learning. To this end, researchers have leveraged model poisoning and

backdoor attacks as a method of embedding the owner’s signature into a model [176, 94]. This

induces abnormal outputs for specific inputs that can identify the DNN. But such schemes are

often circumventable by extending the defenses from the adversarial perspective [2, 172, 165]. DNN

fingerprinting [70, 16] has also been investigated recently, which has a similar objective, i.e., IP

ownership verification, but through extracting a fingerprint from a classifier without altering the

model [16]. However, these prior works are not applicable to protecting private DNN hardware.

Recent works have proposed hardware-assisted DNN obfuscation schemes to protect models [21, 23].

These methodologies are not targeted at identifying pirated models but at degrading performance

when used fraudulently.

In this chapter, we present DeepHardMark, a watermarking methodology designed to defend

deep learning accelerators from IP theft by introducing a backdoor into the hardware, which the

rightful owner can reveal with a key DNN and key sample. The watermark signature is embedded

solely through modifications to the hardware and so can be used as proof of ownership over a design.

In addition, to the base algorithm, we also present optimizations on the algorithm, which can be

used to improve the hardware modifications reducing the overhead and impact on the hardware’s

functionality.

57

Figure 4.1: The high value of deep learning systems and vulnerability of the deep learning supply
chain makes deep learning accelerators prime targets of piracy. A major tool for developers to defend
these intellectual properties is through the use of a watermark. This defensive technique embeds
a signature into the hardware design, which can be revealed during deployment to verify rightful
ownership.

4.2 Embedding Watermarks in Deep Learning Hardware

4.2.1 Problem Setting

4.2.1.1 Threat Model

In this work, we consider a threat model that is consistent with the literature of hardware

watermarking [135]. We assume that an adversary may attempt to pirate a DNN accelerator through

the supply chain. For example, a malicious foundry may overproduce the devices and illegally sell

them to other customers, or an adversary can attempt to make an illegal copy from a proprietary

IP. As discussed above, building these IPs is non-trivial and involves a high cost, so adversaries

have a strong economic incentive to steal an IP without paying the legitimate owner. Furthermore,

previous schemes are targeted at verifying the algorithmic IPs and do not extend protection to the

hardware. In alignment with prior works [32, 135], we assume the attacker does not have access to

the behavioral description of the IP.

For the watermark verification, we consider a black-box setting, where after the deployment,

58

IP Piracy

...

...

...

...

Algorithmic Domain Information
Key DNNInference Task Key Input

...

...

...

...

Hardware Domain Information
Watermark Free

IP Design
Hardware

Architecture

FF

FF

FF

 . . .
MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

MAC

...

...

Output
AddressBRAM BRAM BRAM

BRAM

BRAM

BRAM

Input A

Input B

Hardware
Mapping

Watermark Verification

Hardware Constrained
Perturbations

Algorithm-Hardware
Signature Design

...

...

...

...

Watermark Embedder

Embed
Hardware Modifications

Load
Key DNN

 Evaluate
Key Input Response

Watermarked
IP Design Globalized Production

and Utilization

1

3

2

Procure
Device

Figure 4.2: Overview of the proposed algorithm-hardware co-optimized watermarking methodology.

the IP owner will only be able to interact with the hardware through remote API calls, and any

intermediate values are assumed to be unknown. The watermark should be embedded into the

hardware such that its presence can be easily verified through the API. We also require that the

system be general enough to accommodate and map different models for execution.

4.2.1.2 Problem Statement

This work proposes an algorithm-hardware co-optimized methodology for embedding a hard-

ware watermark into DNN hardware accelerators, as illustrated in Figure 4.2. In order to watermark

a hardware design, the IP owner needs to embed an identifiable signature into the design that can

be verified after deployment. For algorithmic IPs, this has been done by embedding backdoors into

a protected DNN, F (·), by altering the model’s behavior on specific key samples, xk. Ideally, this

signature embedded model, FP (·), should only be altered for xk, described mathematically as:

FP (x) =


yk, when x = xk,

F (x), otherwise,

(4.1)

where it is required that yk ̸= F (xk). This can be done by altering the weights of F (·) to embed a

signature in the DNN.

This work extends the DNN watermarking scheme into the hardware domain. This is ac-

complished by embedding modifications into the M functional blocks that execute the N operations

in the DNN. These modifications alter the functionality of the DNN executed on the hardware with-

out directly modifying the DNN itself. However, every modification to a specific functional block

59

will alter the computation of all operations executed on the block. As such, we introduce two binary

matrices: the hardware mapping, H ∈ {0, 1}M×N , and a block selection mask, B ∈ {0, 1}M , which

identifies the hardware blocks targeted for modification. Using these structures, we compose the

block constrained perturbation, δk ∈ R1×N , as:

δk = δ ⊙BH, (4.2)

where ⊙ signifies element-wise multiplication.

Equation (4.2) converts the unconstrained perturbation into a perturbation that describes

the impact of hardware modifications on a DNN. In short, B factorizes δk into groups of elements

mapped to the different hardware blocks. By adjusting the elements of B, we can enable or disable

the perturbations caused by modifications to individual functional blocks. Then, by adjusting δ, we

can determine the modifications needed in each functional block of the DNN. Our goal is to find a δk

that can alter the hardware’s functionality on a key DNN, Fk(·), when evaluating the key samples,

xk. We denote the execution of a model on hardware modified to generate a perturbation with a

superscript. The hardware watermarking objective can be described by:

F δ⊙BH
k (x) =


yk, when x = xk,

Fk(x), otherwise,

(4.3)

while any other DNNs executed on the hardware remains unchanged, i.e., F δ⊙BH(x) = F (x).

As embedding the modifications in the hardware does not require modifying the key DNN or key

sample, the execution of Fk(xk) on any unmodified hardware will produce the expected results from

the algorithmic perspective. This is also a fundamental difference from prior DNN watermarking

methods, which enables hardware verification.

As illustrated in Figure 4.2, to verify the design, the IP owner first accesses a stolen wa-

termarked version of the hardware accelerators and the original watermark-free version. Then, the

owner must load the key DNN, Fk(·), onto the hardware. First, establishing the functionality of both

designs is demonstrably the same when executing Fk(·) over a dataset randomly drawn from the

input domain. Then, the IP owner then compares the functionality of both designs when computing

the key sample, F δ⊙BH
k (xk) ̸= Fk(xk). The owner can then identify the irregular behavior as an

60

embedded signature verifying ownership of the design. This verification procedure follows a scheme

similar to those seen in the algorithmic perspective [62].

4.2.2 Proposed Methodology

4.2.2.1 High-level DeepHardMark Algorithm

The proposed method is mainly composed of three stages. First, we determine a block

constrained perturbation, δk, that can produce the signature embedded model F δk
k (·) by perturbing

Fk(·). As the end goal is to embed these perturbations into the hardware, δk is carefully crafted

so that they are constrained to operations mapped to the same hardware blocks. To this end, as

opposed to perturbing the weight of Fk(·), we introduce the perturbations on the functional blocks,

as seen in previous hardware backdoor attacks [30]. We utilize a novel hardware-aware algorithm

that constrains δk based on the hardware mapping of the DNN’s operations. We then minimize

the effect of δk within each hardware block by filtering out redundant perturbations to produce ρk,

the operation reduced perturbation. ρk defines which of the specific operations executed within the

target hardware blocks which should be perturbed. Then, in the final stage of the algorithm, we

can convert ρk into a hardware modification set, µk, that defines the specific trigger and payload

signals. These modifications can then be embedded into the functional blocks to induce the desired

behavior when executing Fk(xk).

4.2.2.2 Block Constrained Perturbations

The first step in the proposed methodology is to determine a set of perturbations, δk, seen in

Equation 4.2. To minimize the number of hardware blocks that need to be modified, we craft δk by

targeting DNN operations executed on the same functional block. We can utilize the decomposition

of δk, δ ⊙BH, as discussed in the previous section. A δk that embeds the signature should satisfy

the optimization problem:

minimize
δ,B

L(F δ⊙BH
k (xk),yk),

subject to 1TB < ψ, B ∈ {0, 1}M .

(4.4)

Here L represents a loss function, such as cross-entropy loss, that quantifies the watermarking

objective with respect to a target output, yk. 1TB < ψ is a cardinality constraint that defines an

upper bound on the number of hardware blocks that B selects to be perturbed. To ensure that

61

we find a minimal choice for B, we are able to begin our search by using a large value for ψ and

iteratively decrease it until a valid solution cannot be found. Because δ is a continuous function,

while B is a discrete integer, Equation (4.4) presents a Mixed Integer Programming (MIP) problem.

A methodology, known as ℓp-Box Alternating Direction Method of Multipliers (ℓp-ADMM),

for solving such MIP problems has recently emerged [161]. This method has been broadly employed

in many integer programming tasks for its superior performance [50, 177, 175]. Following this

methodology, we decompose the integer constraint as: B ∈ {0, 1}M ⇔ B ∈ Sb∩Sp where Sb = [0, 1]M

and Sp = {B : ∥B − 1
2 (1)∥

2
2 = M

4 }. Detailed proof of this relationship can be found in the

original paper [161]. Intuitively, these constraints define an ℓ∞-box and corresponding ℓ2-sphere

which intersects the box only at its corners. These structures are carefully positioned so that their

intersection contains only all binary combinations of B. This substitution allows Equation (4.4) to

be reformulated as a continuous representation of the MIP problem:

minimize
δ,B,S1∈Sp,S2∈Sb

L(F δ⊙BH
k (xk),yk),

subject to 1TB < ψ, B = S1, B = S2,

(4.5)

where S1 ∈ Sp and S2 ∈ Sb. Because of the element-wise product between δ and BH, this problem

can iteratively solved by alternating between fixing one variable while optimizing the other, as seen

in Algorithm 3.

First, we initialize B to 1 and fix its value. This allows Equation (4.5) to be simplified to:

minimize
δ

L(F δ⊙BH
k (xk),yk). (4.6)

This is a standard optimization problem similar to those seen across the field of machine learning,

which can be solved using simple gradient descent-based methods by iteratively updating δ according

to Equation (4.7):

δ = δ − ϵδ

[
∂L(F δ⊙BH

k (xk),yk)

∂δ

]
. (4.7)

Here ϵδ is a learning rate used to control the speed of convergence during gradient descent.

62

Algorithm 3 Block Constrained Perturbations

Require: Fk(·), L(·), H, xk, yk
Hyperparameters: ψ, Tδ, TB , ϵδ, ϵB , ρ1, ρ2, ρ3
Ensure: Fk(xk) ̸= yk

1: B = 1; δ = 0
2: while 1TB > c or F δ⊙BH

k (xk) ̸= yk do
3: for i ∈ [1, Tδ] do

4: δ = δ − ϵδ
[
∂L(F δ⊙BH

k (xk),yk)

∂δ

]
5: end for
6: Z1 = Z2 = 1; Z3 = 1
7: for i ∈ [1, TB] do
8: S1 = PSp(B+ 1

ρ1
Z1)

9: S2 = PSb(B+ 1
ρ2
Z2)

10: B = B− ϵB
[
δL
δB

]
{L is defined in Equation (4.9)}

11: Update the dual parameters using Equation (4.16)
12: end for
13: end while
14: δk = δ ⊙BH
15: return δk

Second, for a fixed value of δ, Equation (4.5) simplifies to

minimize
B,S1∈Sp,S2∈Sb

L(F δ⊙BH
k (xk),yk),

subject to 1TB < ψ, B = S1, B = S2.

(4.8)

This optimization problem should be solved by using the ADMM. The augmented Lagrangian func-

tion of Equation (4.8) can be expressed as:

.L(B,S1,S2,Z1,Z2,Z3) = L(F δ⊙BH
k (xk),yk)

+ (Z1)
T (B− S1) + (Z2)

T (B− S2) +
ρ1
2
∥B− S1∥22

+
ρ2
2
∥B− S2∥22 +

ρ3
2
(1TB− ψ) + h1(S1) + h2(S2).

(4.9)

Here Z1 ∈ RM , Z2 ∈ RM , and Z3 ∈ R1 are dual variables with corresponding penalty parameters:

ρ1, ρ2, and ρ3. While h1(S1) and h2(S2) are boolean valued functions that return 1 when S1 ∈ Sp

or S2 ∈ Sb, and 0 otherwise.

The first step in solving Equation (4.8) is to update S1 by solving:

S1 = argmin
S1∈Sp

(Z1)
T (B− S1) +

ρ1
2
∥B− S1∥22. (4.10)

63

Projecting the unconstrained solution into Sp, we get:

S1 = PSp(B+
1

ρ1
Z1). (4.11)

A standard solution when projecting to the ℓ∞-box is to clip all values back within the space using

PSp(S) = max(min(S,1),0).

Second, S2 is updated by minimizing Equation (4.12):

S2 = argmin
S2∈Sb

(Z2)
T (B− S2) +

ρ2
2
∥B− S2∥22. (4.12)

Similar to S1, this can be found by projecting the unconstrained solution back onto Sb.

S2 = PSb(B+
1

ρ2
Z2). (4.13)

where PSb(S) =
√
M
2

S−0.5(1)
∥S−0.5(1)∥ + 1

2 (1).

Next, B is updated by perturbing the variable according to the augmented Lagrangian

function, L, as below.

B = B− ϵB
[
δL
δB

]
, (4.14)

where
δL
δB

=
δL(F δ⊙BH

k (xk),yk)

δB
+ ρ1(B− S1) + Z1

+ ρ2(B− S2) + Z2 + (ρ3(1
TB− ψ) + Z3)1.

(4.15)

Finally, we update the dual variables with:

Z1 = Z1 + ρ1(B− S1)

Z2 = Z2 + ρ2(B− S2)

Z3 = Z3 + ρ3(1
TB− ψ),

(4.16)

before recomputing S1 and S2 and perturbing B until a valid solution for Equation (4.8)

is found. We iteratively improve δk by alternating between optimizing Equation (4.6) and Equa-

tion (4.8) as seen in Algorithm 3.

64

Algorithm 4 Reducing Intra-block Perturbations

Require: δk, L(·), F (·), C
1: Rρ = {0}
2: RN = {Rn| ∥Rn∥∞ = 1, 1TRn = 1, Rn ⊙ δk ̸= 0}
3: while FRr⊙δk

k (xk) ̸= yk ∀ Rr ∈ Rρ do
4: RρN = {Rr +Rn|Rr ⊙Rn = 0,Rr ∈ Rρ,Rn ∈ RN}
5: Loss = []
6: for Rrn ∈ RρN do

7: lrn = L(F
Rrn⊙δk
k (xk),yk)

8: Loss.append((Rrn, lrn))
9: end for

10: sort by loss(Loss)
11: Rρ = {Loss[0 : C − 1][0]}
12: end while
13: R = argmin

Rr∈Rρ

L(FRr⊙δk
k (xk),yk)

14: return R

4.2.2.3 Intra-block Perturbation Reduction: Search Based Approach

The block constrained perturbation, δk, is targeted at minimizing the number of hardware

blocks perturbed by the watermarking algorithm. However, it does not constrain the total pertur-

bation within these groupings. Thus, it is likely that redundant perturbations that contribute little

to the watermark’s performance are contained in δk. Thus, the next step in the algorithm removes

these redundant perturbations finding a minimal subset of the perturbations from δk required to

embed the watermark.

We can mathematically define ρk = R ⊙ δk, an operation reduced perturbation, where

R ∈ {0, 1}N specifies which perturbations to keep. We solve for R using:

minimize
R

∥1TR∥,

subject to FR⊙δk
k (xk) = yk.

(4.17)

We solve this problem by iteratively selecting the elements of δk with the greatest impact on the

objective function and including them in the ρk by enabling them with R. The algorithm used

to search for the ρk is inspired by the beam search algorithms commonly seen in natural language

processing [109].

The search algorithm begins with two sets: Rρ = 0 and RN = {Rn| ∥Rn∥∞ = 1, 1TRn =

1, Rn ⊙ δk ̸= 0}. We can understand RN as the set of all meaningful single-bit iterations of R.

The algorithm’s goal is to iteratively incorporate members from RN into Rρ by selecting the most

65

efficient choice at each step of the algorithm. We do this by generating the cartesian sum of both

sets and determining which the choice of Rr ∈ Rρ and Rn ∈ RN best minimizes the loss function,

L(F
(Rr+Rn)⊙δk
k (xk),yk). These choices are then used to populate Rρ during the next iteration of

the algorithm, iteratively increasing the number of bits selected by the members of Rρ. Further, so

that we don’t sacrifice finding a superior solution by selecting the best choice at each iteration, we

incorporate beam search techniques by keeping the top C choices for Rρ rather than only the best.

Algorithm 4 presents our implementation of this process.

4.2.2.4 Intra-block Perturbation Reduction: Gradient Decent Based Approach

The search-based approach to finding δk = R⊙ δ̂k is a computationally expensive process

compounded by the need to maintain a list of the C-best solutions to decrease the likelihood that

the algorithm converges sub-optimally. Using this algorithm limits DeepHardMark’s usefulness when

defending larger-scale models with many parameters. For the DeepHardMark+ algorithm, we utilize

an alternative gradient-based methodology for finding δ̂k.

We begin by recognizing that we know a solution to FR⊙δ̂k
k (xk) = yk exists when R⊙ δ̂k =

δ̂k, i.e. R = 1. However, this stage of the algorithm aims to minimize ∥1TR∥, the number of

operations targeted by the hardware modifications. Using a loss function, L, we can redefine the

objective from Equation (4.17) in the form:

minimize
R

L(FR⊙δ̂k
k (xk),yk)

subject to 1TR < ε,

(4.18)

R - Perturbation Reduction Mask (4.19)

where ε is an upper bound on the size of R. Finding the optimal R implies finding the

tightest bound on ε with a valid solution to (4.18). Solving for Equation (4.18) is analogous to

finding the sparse solution to the objective function: L(FR⊙δ̂k
k (xk),yk).

To solve this, we perform an iterative algorithm using the gradient information. The pro-

posed methodology can be seen in Algorithm 5. We begin with the initialization R = 0. We then

iteratively activate bits in R by first calculating L(FR⊙δ̂k
k (xk),yk) using R. R is used as a mask

to turn off individual elements of the unreduced perturbation, δ̂k. The gradient of L with respect

66

Algorithm 5 Gradient-Based Intra-Block Reduction

Require: δ̂k, L(·), F (·), xk, yk
1: R = 0
2: while M ̸= m do

3: while FR⊙δ̂k
k (xk) ̸= yk do

4: l = L(FR⊙δ̂k
k (xk), yk)

5: M = argmax(δlδR ⊙BH)
6: R[M] = 1
7: end while
8: while FR⊙δ̂k

k (xk) = yk do

9: l = L(FR⊙δ̂k
k (xk), yk)

10: m = argmin(δlδR ⊙BH)
11: R[m] = 0
12: end while
13: end while
14: R[M] = 1
15: return R

to R is a valid local approximation of the impact switching bits in the mask on the loss. As such,

we find the element with maximal effect on the loss with M = argmax(δLδR ⊙ BH). We can then

iteratively activate those bits in R until we arrive at a valid solution for Equation (4.18). Once a R

is selected, which produces the desired mapping FR⊙δ̂k
k (xk) = yk this mask can be used to extract

a subset of δ̂k which produces the watermark signature.

However, as highlighted by the sparse adversarial example literature [42], such methods

often introduce unnecessary or redundant elements to δk. To ensure the selection of the best mask,

we perform additional rounds of optimization by activating features with minimal impact on the loss

function, identified by m = argmin(δlδR ⊙BH). Then, we deactivate elements until the watermark

signature is removed, i.e., FR⊙δ̂k
k (xk) ̸= yk. We repeatedly activate the necessary and deactivate

unnecessary elements of R until both branches of the algorithm toggle the same set of features. This

process ensures that we find a R which satisfies Equation (4.18) for a minimal choice of ε.

4.2.2.5 Hardware Watermark Modifications

It has been demonstrated that the hardware Trojans can be successfully leveraged to embed

watermarks into a hardware design for conventional circuits [135]. Inspired by this, we convert the

operation reduced perturbation, ρk, to a hardware modification set, µk. Rather than a static per-

turbation applied to all inputs, it identifies the perturbation as a target trigger signal for activating

the watermark and a target signal for the payload functionality that should be induced in operation.

67

A trigger and payload can then be designed around this information and embedded in the target

functional block to produce the watermarked hardware Hµk(·). The specific design depends on the

target hardware block and the stealth objectives of the designer. As a case study, our implementa-

tion embeds small combinational logic circuits into the target hardware, as shown in Figure 4.3. In

our example, µk contains observed binary input patterns to an operation when computing xk, and

bit flip patterns that can produce the perturbation.

FF

FF

FF

*Mult
+

Acc

MAC

wt1, wt2, ... wT
Payload

Trigger

xt1, xt2, ... xT

 . . .

MAC

MAC

MAC

...

...

...

OutputAddress

BRAM

(a)

(b)
BRAM

BRAM

BRAM BRAM BRAM

MAC

MAC

MAC

MAC

MAC

MAC

Figure 4.3: (a) A convolutional neural network hardware accelerator derived from [171]. (b) We can
embed small combinational circuits into the hardware blocks of the IP. These circuits detect the
target input combinations and flip the corresponding output bits as specified by µk.

To generate these modifications, we convert δk into a hardware modification set, µk, which

defines δk in terms of modifications that can be embedded in the hardware. As a case study,

our implementation embeds small combinational circuits into the target hardware, as shown in

Figure 4.3. Let op ∈ Ops be a target operation indicated by δk with Ok = |δk|. In our example,

µk = {Pk,Fk}Ok1 contains latent representations inputs to an operation, Pk, and bit flip patterns,

Fk, that can produce δk at the output of an operation when xk is being computed.

We can determine Pk and Fk by analyzing the latent space of Fk(·) under xk and δk, the

operation reduced perturbation. Let P̂k be the latent space representation immediately preceding

the layers targeted by the algorithm and P̃k = op(P̂k), those immediately following them, under the

68

key sample, xk. Then, we can define Pk by masking the inputs to the target op ∈ Ops using the

Reduced Selection Mask, R, previously found.

Pk = R⊙ P̂k (4.20)

Further, we understanding that we want Fk to be a mask such that Fk⊕ [R⊙P̃k]b = [R⊙P̃k+δk]b.

Thus, we can define Fk in terms of P̃k and δk as:

Fk = [R⊙ P̃k + δk]b ⊕ [R⊙ P̃k]b. (4.21)

Here ⊕ is the exclusive-or function. We use the notation [·]b to denote the use of a binary represen-

tation of a value.

Mathematically, we can use Pk to define a trigger function for the operation, such that:

τop = comp([Pt,op]b, [P̂t,op]b) (4.22)

where [P̂t,op]b is the binary representation of the input of op when a test input, xt, is computed by

the model. Here comp(·, ·) is an operation that returns 1 if the binary representations of its inputs

are the same and 0 otherwise. We can easily translate this function into a simple combinational

circuit that activates a trigger signal, τ , when it detects a latent representation that matches that

of Pk.

The trigger signal can then be fed as input into a second circuit which produces the de-

sired perturbation by flipping bits on the output. We define a mathematical representation of this

perturbation functionality for op, using the flip patterns, Fk.

pert(Fk, P̂t,op), τop) =


[op(P̂t,op)]b ⊕ Fk, when τop = 1,

[op(P̂t,op)]b, otherwise.

(4.23)

This functionality is easily migrated into a minimal combinational circuit which, when embedded

into a functional block, works in conjunction with the previously described modification to produce

the watermark perturbation on op. Using this method, we can generate modifications that, when

embedded into the hardware, produce the desired watermark signature under xk.

69

Algorithm 6 Block Constrained Perturbations

Require: L(·), H, Fk(·), xk, yk
Hyperparameters: ϵδ, ϵB, ϵψ, Tδ, Tψ, TB
Ensure: Fk(xk) ̸= yk

1: B = 1; δ = 0; ψM = ψ = |B|
2: while F δ⊙BH

k (xk) ̸= yk do
3: for i ∈ [1, Tδ] do

4: δ = δ − ϵδ
[
∂L(F δ⊙BH

k (xk),yk)

∂δ

]
5: end for
6: if F δ⊙BH

k (xk) = yk then
7: ψ(i) = ⌈ψ(i−1) ∗ ϵψ⌉; ψM = ψ(i−1);
8: else
9: ψ(i) = ⌈ψ(i−1) + 1

Tψ
∗ (ψM − ψ(i−1))⌉

10: end if
11: Z1 = Z2 = Z3 = 1; ψ0 = |B|
12: for i ∈ [1, TB] do

13: B = B− ϵB
[
∂L
∂B

]
{L is defined in Equation (4.25)}

14: ψn = ψn−1 − 1
TB

∗ (|B| − ψ) {Update the dual parameters using Equation (4.16)}
15: end for
16: end while
17: δ̂k = δ ⊙BH
18: return δ̂k

4.2.2.6 Cardinality Constraint Optimization

The selection of ψ is critical to the strength of the watermark embedding as it contributes

to determining the number of functional blocks targeted by the algorithm. DeepHardMark applies

a brute force method of determining ψ by decreasing constant selections for ψ until the algorithm

cannot find a solution. However, such strategies result in inferior solutions. In the DeepHardMark+

algorithm, we improve the selection of this parameter by integrating it into the algorithm allowing

it to settle into a more desirable solution.

We do this by initializing ψ to the largest constraint possible, ψ = |B|, i.e., the total number

of functional blocks in the hardware. Then, after updating B and δ, we verify that a valid solution

was found by asserting that F δ⊙BH
k (xk) = yk. If the algorithm finds a valid solution, we record it

as ψM = ψ. Then, tighten the constraint by setting ψ = ⌈ψ ∗ ϵψ⌉ where ϵψ ∈ (0, 1) determines the

rate of decrease. If a solution is not found, we instead relax the constraint by perturbing ψ towards

ψM , the lowest observed value which produced a valid solution, using ψ = ⌈ψ+ 1
Tψ

∗ (ψM −ψ)⌉. The

cooling temperature, Tψ, is a variable used to control how swiftly ψ returns to ψM . This framework

allows us to dynamically decrease the cardinality constraint as the algorithm converges and then

70

relax the constraint when it becomes too difficult for a solution to be found.

The cardinality constraint, ψ, is used in Equation (4.4) as a target for the number of

Functional blocks to be selected by B. However, while solving for B, we can further improve our

control over the convergence rate by targeting a decreasing schedule of ψn converging to ψ. To

accomplish this, we define the following rule for migrating towards ψ while optimizing B.

ψ0 = |B|

ψn = ψn−1 −
1

TB
∗ (|B| − ψ)

(4.24)

TB refers to the number of iterations used in solving for B. We then rewrite Equation (4.15) with

ψn.
δL
δB

=
δL(F δ⊙BH

k (xk),yk)

δB
+ ρ1(B− S1) + Z1

+ ρ2(B− S2) + Z2 + [ρ3(1
TB− ψn) + Z3]1.

(4.25)

This update produces a more elastic downward pressure on B, which allows the algorithm to

slowly settle into a valid solution over multiple iterations of the algorithm, often contributing to

a better solution. Utilizing these techniques, we can produce the optimized algorithm denoted as

DeepHardMark+ seen in Algorithm 6.

4.3 Experimental Evaluations

4.3.1 Experimental Setup

To demonstrate the effectiveness of the proposed methodology, we provide a comprehensive

evaluation of our methodology when embedding watermarks into hardware using various well-known

image classification and natural language benchmark architectures as the key DNN.

4.3.1.1 Datasets

In this work, we utilized three datasets, Cifar10 [86], Cifar100, and ImageNet [37]. These are

three image classification datasets commonly used in deep learning research. This section presents

the details of these datasets. All of these datasets have been made publicly available by the original

source. The Cifar10 [86] dataset is a small dataset containing 60, 000 32 × 32 color images. These

images are evenly drawn from 10 distinct classes. We utilize the standard test/training split deter-

71

Figure 4.4: To verify the efficacy of DeepHardMark, we embed watermark modifications into two
deep learning hardware accelerators. Through the proposed methodology we are able to embed the
watermark signature, which alters the system’s functionality when computing a target Key Sample
on a corresponding Key DNN. It does this while preserving the functionality of the hardware both
on the Key DNN and other models executed on the device. We do this through minimal hardware
modifications targeted to small subset of the hardware’s computational blocks.

mined by the source, which selects 1, 000 random images from each class as the testing set. The

Cifar100 dataset is similar to the Cifar10 dataset but provides a more difficult image classification

task. This dataset likewise contains 60, 000 32×32 color images split into 10, 000 testing and 50, 000

training images. Unlike the Cifar10 dataset, the Cifar100 dataset is drawn from 100 distinct classes.

The ImageNet [37] dataset is a large-scale image classification dataset composed of over 10 million

images covering over 1, 000. Our images are preprocessed to a resolution of 224× 224 and normal-

ized according to the specifications of the target model. We utilize the standard validation split

containing 50, 000 images drawn evenly from each class for testing.

We also use the IMDB and GLUE-SST2 sentiment analysis datasets. The IMDb dataset

contains 50, 000 text reviews from popular movie titles with a 50/50 train/test split. The IMDb

dataset is refreshed daily and publically available to the IMDb customers for personal and commercial

use. Each review in the dataset is a label with a classification specifying whether the review is positive

or negative towards the movie reviewed. The General Language Understanding Evaluation (GLUE)

benchmark is a dataset covering various sub-tasks in natural language processing. Among these sub-

tasks is the Stanford Sentiment Treebank (GLUE-SST2). This sub-task contains 68, 000 training

and 1, 000 validation text reviews for popular movie titles and an associated positive/negative label.

Both tasks are considered sentence-level two-way class split, i.e., binary sentience classification tasks.

72

4.3.1.2 Models

In our experimental evaluations, we utilize a broad range of models, including variations

of the ResNet [67], VGG [139], DenseNet [71], and ViT [43] models. We utilize pre-trained models

whenever possible. Specifically, for the ImageNet classifiers, we utilize the open-source models

provided by the TIMM python library [159]. This library provides a standardized model organization

providing a consistent interface allowing us to extend our algorithm from model to model efficiently.

We utilize the ResNet 18, ResNet 34, and ResNet 50 models, frequently used convolutional neural

networks. We evaluated the top-5 accuracy of these models to be 89.08%, 92.92%, and 93.86%,

respectively. We also utilize VGG11, VGG13, VGG16, and DenseNet101 models trained to an

accuracy of 91.95%, 94.03%, 93.70%, and 93.30%, respectively. The ViT-16-224 and Vit-32-224

models are transformer-based models that have recently received significant attention as state-of-

the-art image classifiers achieving accuracies of 97.66 and 96.82.

We also utilize ResNet 18 and ResNet 34 to classify the Cifar10 and Cifar100 datasets.

However, due to the limited availability of open-source models, we train the classifiers for these

datasets. We utilize two open-source resource training methodologies to ensure the quality of these

models. Using this framework, we train the ResNet 18 Cifar10 classifier to an accuracy of 93.02%

and the ResNet 34 classifier to an accuracy of 93.34% [81]. Similarly, we also train a ResNet 18 and

ResNet 34 Cifar100 classifier to a top-5 accuracy of 87.66% and 88.54% [157].

For natural language Processors, we use DistilBERT [132] and RoBERTa [102] sentiment

analysis models.

4.3.1.3 Hardware Platforms

We implemented a target hardware centered around a Matrix Multiply Unit (MMU) com-

posed of a 32 × 32 MAC array, similar to the TPU architecture. We composed H for all of the

experiments using this hardware architecture which utilizes a weight stationary hardware mapping

scheme. For our hardware experiments, we implement this design in Verilog on an Ultrascale+

Kintex using the Xilinx Vivado and an ASIC design using Synopsys Design Compiler by mapping

to a 32nm technology node. We embed the watermark modifications into the design to determine

their cost from the hardware perspective.

73

4.3.1.4 Evaluation Metrics

We evaluate the embedded hardware watermarks from both the algorithm and hardware

perspectives. To do this, we utilize various metrics that help quantify different aspects of the

embedded watermark’s efficacy. To help in this evaluation, we define the following metrics.

• Embedding Success Rate (ESR) quantifies the success rate of producing modifications

that can alter the key DNN’s functionality on the modified hardware. Formally, we define this

metric as:

ESR =
1

K

K∑
k=1

(F δk
k (xk) == yk)× 100%. (4.26)

K is the number of key samples used in the evaluation.

• Accuracy Difference (∆Acc) measures the effect of embedded modifications on the key

DNN’s functionality on a subset of its natural inputs. We calculate this value with the following

equation over a set of validation data.

∆Acc(Fk(·)) = |Acc(F δk
k (·))−Acc(Fk(·))|. (4.27)

This metric is used to evaluate the scenario in which the key DNN is executed on the modified

hardware, but the key sample is not present.

• Fidelity Difference (∆Fid) measures the fidelity in the hardware’s algorithmic functionality.

We quantify this characteristic using the following:

∆Fid(F (·)) = |Acc(F δk(·))−Acc(F (·))|. (4.28)

This metric evaluates the modified hardware’s functionality on alternative benchmark models

F (·) that were not used as Fk(·) on a validation dataset.

• Triggering Ratio (Tratio) is a metric used in quantifying how active the modifications em-

bedded in a design are. The triggering ratio is defined as:

Tratio =
of times triggered

of evaluations
× 100%. (4.29)

The more active the hardware modifications are in a circuit, the more likely it is for them

74

Dataset Model (Acc%) ρk%± SD ESR%± SD ∆Acc% ±SD ∆Fid% ±SD

Cifar10 ResNet18 (93) 0.18± 0.09 100.0± 0.00 0.68± 0.14 0.12± 0.80

Cifar100 ResNet18 (77) 1.29± 0.86 100.0± 0.00 0.30± 0.42 0.25± 0.39

ImageNet ResNet18 (89) 0.15± 0.07 100.0± 0.00 0.67± 0.47 0.68± 0.47

Table 4.1: Performance of the Proposed Hardware Watermarking on DNN Accelerators

to produce abnormal effects like increased power draw. Ideally, Tratio should be as small as

possible.

4.3.2 Experimental Results

4.3.2.1 Efficacy Analysis

In Table 4.1, we evaluate the efficacy of embedding watermarks by using the proposed

framework and its impact on the system from both the algorithmic and hardware perspectives. It

should be noted that in computing ∆Fid, we calculate the metric for multiple benchmark DNNs

and average the results. The breakdown of the individual results, along with the models Tratio,

for Cifar10 are shown in Table 4.2. The value of ρk% represents the percentage of operations in

the key DNN that is targeted for modification, which is quite small for all the models. As each of

these operations needs to be represented in the hardware modifications and contribute to functional

changes in the DNN, we observe that this value tends to correlate with the impact of the embedded

modifications.

It can be seen from these results that the ESR of the proposed scheme is 100% for all the

scenarios evaluated. This is possible because we can relax the carnality constraint, ψ, in Equa-

tion(4.4) until we can modify enough of the hardware blocks to ensure a solution is found. Our

experimental results demonstrate that the overall impact of the modifications on both the hardware

overhead and algorithmic functionality is minor. Note that the hardware performance is evaluated

based on FPGA/ASIC accelerators. For example, we observe that both the ∆Acc and the average

∆Fid are under 0.7% for all scenarios. Likewise, the embed watermark only increases the hardware

overhead of the device by 1% for the ImageNet classifier. We can also conclude that the proposed

methodology generalizes well to hardware intended for large-scale datasets.

75

Model Acc% Tratio% ∆ Fid%

VGG11 91.95 0.67 0.206
VGG13 94.03 0.67 0.218
VGG16 93.70 0.75 0.262
VGG19 93.63 0.78 0.234
ResNet34 92.92 0.14 0.009
ResNet50 93.86 0.26 0.009
Dense121 93.30 0.17 0.019

Table 4.2: Impact on the Functional Fidelity.

0.4

0.8

1.2

1.6

0.0
Δ

A
cc

.(%
)

ESR (%)
0.0

0.1

0.2

0.3

0.4

ẟ k
 (%

)

0 20 40 60 80 100
ESR (%)

0 20 40 60 80 100

Figure 4.5: Functionality and Hardware Trade-offs

4.3.2.2 Hardware/Functionality Trade-offs

In the previous experiments, we ensured a 100% ESR by relaxing the limitation on the

cardinality constraint, ψ. Now we study the relationship between ESR and the methodology’s

impact on the target hardware under smaller values of ψ. We plot ESR against ∆Acc and ESR

verse δk%, the number of functional hardware blocks modified for the Cifar10 ResNet18 classifier,

in Figure 4.5. These plots exhibit an obvious trade-off between ESR and the yield impact, in

terms of both ∆Acc and δk%. Nevertheless, the overall modifications generated by the hardware

watermark from both algorithmic and hardware perspectives are small. On the other hand, we can

also effectively reduce such modifications if a smaller ESR is acceptable, as long as there is sufficient

entropy for IP ownership verification. Both ∆Acc and δk% are halved if ESR can be relaxed.

4.3.2.3 Hardware Overhead

Finally, we evaluate the overhead required for embedding a watermark into a target DNN

hardware accelerator. As we noted above, we use a target hardware with a 32× 32 Matrix Multiply

76

Design LUT FF DSP Power (W)

Watermark-free 4427 (2%) 27808 (6.4%) 512 (28%) 0.592

Watermarked 4435 (2%) 27808 (6.4%) 512 (28%) 0.593

Overhead 0.18% 0% 0% 0.17%

Table 4.3: FPGA Hardware Overhead. Utilization is reported inside the parenthesis.

Unit(MMU) similar to [21]. We select a random modification set from the experiments above. We

implement a combinational circuit that can embed the targeted functionality into the Verilog design.

The results of the hardware overhead on Ultrascale+ Kintex FPGA are summarized in Table 4.3. It

can be seen that the magnitude of hardware modification is minimal. For instance, there is only a

0.18% increase in the number of LUTs used, while the utilization for FF and DSP remains the same.

The power overhead is also only 0.17%, which further verifies the transparency of the proposed

hardware watermarking method. In addition, we present the results from ASIC implementation in

Table 4.4, which is based on TinyTPU [137], a small-scale version of Google’s TPU processor. We

also extend the FPGA MMU design to ASIC. We can directly apply the watermark modifications

to these designs with little complication. We also observe very little overhead in this scenario, with

only a 0.054% increase in area and a 0.038% increase in power consumption.

Area Cells Power Time

TinyTPU 0.144% 0.119% 0.169% 0.00%
MMU 0.054% 0.058% 0.039% 0.00%

Table 4.4: ASIC Hardware Overhead: TinyTPU.

4.3.3 Evaluating DeepHardMark+

4.3.3.1 Broad Evaluation of DeepHardMark+

We continue our experimental evaluations by presenting the effectiveness of the DeepHardMark+

algorithm. The improvement in computational efficiency of these optimizations allows us to easily

extend our results to larger, more complex models and hardware architectures demonstrating a sig-

nificant benefit. We target a larger hardware design for these experiments containing a 128 × 128

MMU and show that we can embed watermarks while targeting fewer operations in the key DNN.

We utilize the procedures discussed in Section 4.3.1.

In Table 4.3.3.1, we present the results of our experimental evaluations on the improved

77

Dataset Model Acc% ESR% |δk|%± SD ∆Acc% ±SD ∆Fid% ±SD

Cifar10
ResNet18 93.02 100 0.001± 0.001 0.00± 0.00 0.00± 0.00
ResNet34 93.34 99 0.001± 0.001 0.00± 0.00 0.00± 0.00

Cifar100
ResNet18 87.66 100 0.004± 0.003 0.00± 0.00 0.00± 0.00
ResNet34 88.54 96 0.003± 0.001 0.00± 0.00 0.00± 0.00

ImageNet

ResNet18 89.08 92 0.017± 0.015 0.11± 0.08 0.00± 0.00
ResNet50 92.86 100 0.004± 0.009 0.16± 0.38 0.00± 0.00
VGG11 87.40 100 0.001± 0.002 0.23± 0.62 0.06± 0.15
VGG16 96.88 100 0.004± 0.010 0.15± 0.42 0.06± 0.21

WideResNet50 94.08 97 0.021± 0.046 0.13± 0.29 0.12± 0.28
EfficientNetB2 95.31 98 0.020± 0.048 0.10± 0.27 0.10± 0.27

Table 4.5: Evaluating the Effectiveness and Impact of DeepHardMark+ Watermark Modifications
in Image Classification

methodology on an array of image classifiers, including ResNet50, WideResNet, and EfficientNetB2.

We observe that the enhanced algorithm can successfully target these large CNN image classifiers

with a high success rate, i.e., > 90%. It also produces watermark embeddings that target a smaller

percentage of the model’s operations than the base algorithm while being less likely to affect the

key DNN’s accuracy and fidelity negatively. We further highlight the minor impact of the algorithm

with the trigger ratio, Tratio, which is very small for all key DNNs.

4.3.3.2 Extension to Alternative Deep Learning Scenarios

In Table 4.6, we directly extend our experimental evaluations to state-of-the-art transformer-

based classifiers and Natural Language Processors. We assume a 128 × 128 MMU-based hardware

design for this evaluation. Similarly to the previous experiments, we produce 100 watermark em-

beddings generated with randomly selected testing inputs targeting the ReLU functional blocks. We

utilize our simulation framework to analyze the impact of the watermark embedding on ViT and Swin

ImageNet classifiers, as well as DistilBERT and RoBERTa sentiment analysis models. We present

the ESR and |δk|% observed in Table 4.6. Despite the significant differences between transform

models and convolutional neural networks, DeepHardMark+ achieves similar levels of performance

on ViT and Swin models to their CNN counterparts. We observe a drop in the embedding success

rate as we transition to the natural language processing setting. However, the ESR remains above

65% in this setting. Despite this, we note that the embedding DeepHardMark+ produces highly

efficient watermark embedding for this domain with less than 0.001% of the model operations being

78

targeted. The high success rates and low impact of these results demonstrate that our methodology

can easily extend into other application domains with minor optimizations for the various target

scenarios.

Dataset Model Acc% ESR |δk|%± SD

ImageNet
ViT-16-224 97.66 100 0.028± 0.036
ViT-32-224 96.82 96 0.020± 0.021
Swin-b-224 97.34 83 0.004± 0.002

IMDb
DistilBERT 92.79 100 0.001± 0.001
RoBERTa 94.66 66 0.001± 0.001

GLUE-SST2
DistilBERT 98.85 70 0.001± 0.001
RoBERTa 92.55 70 0.001± 0.001

Table 4.6: Evaluating the Effectiveness of DeepHardMark+ in Transformers and Natural Language
Processing Models

Table 4.7: Hardware Utilization of DeepHardMark+ in FPGA Designs

TinyTPU
LUT DSP Reg Power (mW)

Watermark-free 13107 8040 256 0.531
Watermarked 13134 8044 256 0.528

Overhead 0.21% > 0.01% 0% 0.56%

MMU
LUT DSP Reg Power (mW)

Watermark-free 19096 36767 384 0.529
Watermarked 19133 36768 384 0.529

Overhead 0.19% > 0.01% 0% 0%

4.3.3.3 Hardware Evaluation of DeepHardMark+

We then evaluated the hardware impact of the DeepHardMark+ watermark embedding. For

this evaluation, we implement a 32 × 32 version of the MMU and TinyTPU hardware accelerators

in Quartus. We generate a watermark embedding for the ResNet18 Cifar10 classifier and embed

modification which produces the watermark in the design. We synthesize the watermarked and

watermark-free designs for a Cyclone V FPGA and determine its resource utilization in terms of

Look Up Tables (LUT), Registers (Reg), and Digital Signal Processors (DSP) as well as its estimated

79

Table 4.8: Hardware Overhead of DeepHardMark+ in ASIC Designs

MMU
Area Cells Power Time

TinyTPU 0.042% 0.048% 0.09% 0.01%
MMU 0.013% 0.011% 0.01% 0.04%

power draw. For the power consumption estimation, we assumed an I/O toggle rate of 12.5%. We

present the recorded FPGA utilization in Table 4.7.

This process is repeated for ASIC design using a Synopsys 32nm technology node. We utilize

the same watermark embedding and hardware designs. For the ASIC design implementations, we

determine the area and cell count. Power consumption and propagation delay of the system. The

recorded estimations of these characteristics are presented in Table 4.8.

From these results, we observe that the impact of the watermark modifications on the

hardware overhead is minimal. This finding is consistent with prior evaluations of DeepHardMark.

For instance, the increase in register and DSP utilization in the FPGA implementations and the

power consumption and propagation delay of the ASIC designs are all less than 0.01%. Further,

in the ASIC designs, the largest impact is the increase in the required cells, which requires only a

0.045% expansion. Comparing these results with those presented in Section 4.3.1, we demonstrate

that the DeepHardMark+ algorithm can produce hardware modifications with a decreased impact

on the hardware overhead of the target design.

4.4 Conclusions

4.4.1 Summary

In this work, we proposed a watermark embedding methodology for Deep learning hardware

accelerators. This framework links a hardware design with a key DNN and key samples provided

by the hardware owner. In this scenario, modifications are introduced to the hardware that detects

when the device is computing the target key DNN and samples and alters the behavior of the model

by perturbing internal operations. The behavioral change is not detected under benign scenarios

and so can be effectively used to identify a hardware platform. This scenario is similar to software

deep learning watermark embedding schemes, but attaching the watermark signature directly to the

80

hardware can provide protection for the hardware platform.

Further, our proposed algorithm utilizes a novel sparse optimization algorithm that effec-

tively minimizes the magnitude of the hardware modifications embedded and reduces their impact

on the hardware’s functionality. Due to this sophisticated algorithm, we are able to develop an

algorithm that is very effective in embedding the watermark signature with minimal impact on the

design itself. We are further able to optimize this algorithm with improvements that search the

defense hyper-parameters to produce consistent, high-quality watermark embedding modifications.

Our experimental results have demonstrated the efficacy of the proposed scheme to preserve the

intended functionality, produce a minimal impact on the consumption of hardware resources, and

effectively produce the desired output response.

81

Chapter 5

Compromising Embedded Deep

Learning Based Security Systems

This work was presented in Symposium Series on Computational Intelligence (SSCI) 2021.

5.1 Security of Deep Learning Based Security Systems

Due to the significant success seen by deep learning in recent years, deep learning is being

deployed in a wide array of application domains. Significantly, deep learning is being used in edge,

IoT, and embedded systems where traditional computing approaches have been seen to be limited.

This transition has led to strong development in both the deep learning and application perspectives.

From the application perspective, novel machine learning systems are enabling the development of

cutting-edge technologies such as autonomous driving, interconnected smart home systems, and

intrusion detection systems. These are all very powerful systems that have, and will continue to

have, an out-sized effect on modern society.

One major of the tasks for deep learning in embedded and IoT applications is as the center

of security systems. Such security solutions are useful, especially in resource-constrained or dy-

namic settings where traditional approaches fail. Developing such systems often requires a degree

of hardware/software co-design in which highly efficient hardware is paired and optimized alongside

deep learning models designed to fully utilize that hardware without a loss in functionality. Un-

82

fortunately, in such settings, resource limitations often limit external security solutions. As such,

since deep learning is known to be susceptible to adversarial attacks can easily become a major

vulnerability in the system despite its intent to defend the system.

In this chapter, we explore the vulnerability of deep learning in resources constrained set-

tings by compromising a popular Network Intrusion Detection System (NIDS), Kitsune, against

adversarial examples. This system is a very low-powered auto-encoder based NIDS designed to be

deployed to IoT hardware. As this system is often deployed to resource-constrained settings, it is

unlikely that it would be paired with systems designed to protect it from various deep learning based

attacks. We demonstrate that an adversary could create adversarial network traffic that fools the

system into classifying benign traffic as malicious or malicious traffic as benign.

5.1.1 Network Intrusion Detection Systems

In recent years, the increasing frequency and size of cyber-attacks in recent years [72] have

made network intrusion detection systems (NIDS) a critical component in network security. An

example of a network intrusion detection system is shown in Figure 5.1. The intrusion detection

system essentially acts as a gatekeeper at the target node, which activates a firewall or alerts a host

device when malicious network traffic is detected. Unfortunately, while these systems can effectively

defend the entry point, much of the network remains unprotected. In other words, attacks that

remain internal to the network are often difficult to detect by the traditional intrusion detection

systems [110].

Figure 5.1: An intrusion detection system positioned to defend a host device from abnormal network
traffic.

83

Deploying an intrusion detection system at multiple nodes distributed throughout the net-

work can fill this hole to further secure networks. However, a significant drawback of the traditional

rule-based approach is that each intrusion detection system must be explicitly programmed to follow

a set of rules. This process also generates potentially long lists of rules that need to be stored locally

to access intrusion detection systems. Furthermore, any changes in a network node might potentially

lead to an update for the entire network. To this end, DL-NIDS have the potential to overcome this

weakness as they can generalize the defense by capturing the distribution of typical network traffic

instead of being explicitly programmed [110, 140, 76, 5]. In addition, these methods do not require

large lookup tables, which could also reduce the implementation cost.

5.1.2 Adversarial Example Generation

A major focus of adversarial deep learning is the adversarial example generation, which

attempts to find input samples by slightly perturbing the original benign data to yield different

classifications. Formally, the adversarial example generation process can be expressed by [18]:

minimize D(x⃗, x⃗+ δ⃗)

such that C(x⃗+ δ⃗, t⃗)

x⃗+ δ⃗ ∈ X

(5.1)

Where x⃗ is the model’s original primary input, δ⃗ is a perturbation on x⃗ to achieve the desired

adversarial behavior, and X defines a bounded region of the valid input values. D(·) is a distance

metric that limits δ, while C(·) is a constraint that defines the goal of the attack. Two commonly

used constraint functions are F (x⃗) = t⃗ and F (x⃗) ̸= t⃗. The first defines a targeted attack in which

the adversarial goal is to force the network output, F (x⃗), to a specific output, t⃗. The second defines

the untargeted scenario where the adversarial goal is for the network to produce any output except

t⃗. The choice of D(·) also greatly affects the outcome of the attack. In the existing works, LP norms

(i.e., L0, L1, L2, and L∞) are often used due to their mathematical significance and correlation with

perceptual distance in the image or video recognition. Recently, new distance metrics are being

explored with recent works such as spatially transformed adversarial examples [164].

Many algorithms for generating adversarial examples utilizing various C(·), D(·), and opti-

mization approaches have been developed in the literature. For example, one of the earliest adver-

84

sarial example algorithms, the Fast Gradient Sign Method (FGSM), perturbs every element of the

input in the direction of its gradient by a fixed size [59]. While this method produced quick results,

the Basic Iterative Method (BIM) can significantly decrease the perturbation, requiring a longer time

to run [45]. Furthermore, adversarial example generation algorithms continue to grow more sophis-

ticated as novel attacks build on the foundation of existing works. An example of this is the elastic

net method (ENM) which adds an L1 regularization term and the iterative shrinkage-thresholding

algorithm to Carlini and Wagner’s attack [24]. Moreover, adversarial examples are expanding out

from image processing into alternate fields where they continue to inhibit the functionality of deep

learning models [19, 73, 83]. The effort to draw researcher awareness to the subject has even led to

the generation of competitions in which contestants attempt to produce and defend neural networks

from this adversarial example [15, 87].

5.1.3 Robustness against Adversarial Examples

Some researchers believe that the vulnerability of deep learning models to adversarial ex-

amples is evidence of a pervasive lack of robustness rather than simply an inability to secure this

models [52, 138, 56]. As such, defenses attempt to bolster the deep learning model’s robustness

by using either reactive or proactive methods [169]. Defensive distillation and adversarial training

are two proactive defenses which improve a neural network’s robustness by retraining the network

weights to smooth the classification space [105, 45]. A recent example of a reactive defense is, Pix-

elDefend, which attempts to perturb adversarial example input back to the region of inputs space

that is correctly handled by the network [168].

When deep learning is powering security applications, the robustness of the model is even

more critical. The field of malware classification is a prime example, as deep learning models have

been shown to perform superbly in this area in multiple implementations and scenarios [60, 116,

115, 51]. Unfortunately, when adversarial examples are presented to these systems, the lack of

robustness in the deep learning model often allows an attacker to bypass this security measures [91,

82]. Despite this vulnerability, deep learning is a prime candidate for security implementations

when traditional defenses’ resource demands or static nature inhibit their practicality. Thus, as deep

learning continues to develop into network intrusion detection, the robustness of such systems should

be thoroughly studied. To this end, researchers are continuing to develop guidelines and frameworks

to aid in ensuring the robustness of machine learning systems against adversarial manipulations [55,

85

17].

Figure 5.2: A graphical representation of Kitsune [110].

5.2 Evaluating the Network Intrusion Detection System

This section presents a brief overview of the network intrusion detection system. Then it

analyzes Kitsune’s deep learning model, KitNET, in more detail.

5.2.1 Kitsune Overview

The DL-NIDS, Kitsune, is composed of Packet Capturer, Packet Parser, Feature Extrac-

tor, Feature Mapper, and Anomaly Detector [110]. The Packet Capturer and Packet Parser are

standard components of NIDS, which forward the parsed packet and meta-information (e.g., trans-

mission channel, network jitter, capture time) to the Feature Extractor. Then, the Feature Extractor

generates a vector of over 100 statistics which defines the packet and current state of the active chan-

nel. The Feature Mapper clusters these features into subsets fed into the Anomaly Detector, which

houses the deep learning model, KitNET.

The Kitsune DL-NIDS is specifically targeted at being a lightweight intrusion detection

system deployed on network switches in the IoT settings. Thus, each implementation of Kitsune

should be tailored to the network node that it defends. This goal is achieved by using an unsupervised

online learning approach that allows the DL-NIDS to dynamically update in response to the traffic

at the target network node. The algorithm assumes that all real-time transmissions during the

training stage are legitimate and thus learns a benign data distribution. For inference, it analyzes

the incoming transmissions to determine if it resembles the learned distribution.

86

5.2.2 KitNET

KitNET, Kitsune’s deep-learning backbone, consists of an ensemble layer and an output

layer. The ensemble layer includes multiple autoencoders, each working on a single cluster of inputs

provided by the Feature Mapper. The output scores of these autoencoders are normalized before

being passed to an aggregate autoencoder in the output layer, whose score is used to assess the

security of the network traffic data.

5.2.2.1 The Autoencoders

The fundamental building block of KitNET is an autoencoder. Autoencoders are a family of

neural network that reduces an input down to a condensed base representation before reconstructing

a tensor of the the same dimension as the input from that representation. The autoencoders in

KitNET are trained to capture the properties of typical network traffic correctly by condensing the

outputs of the Feature Extractor to its base representation, then reconstructing the original input.

The number of hidden neurons inside an autoencoder is limited, so the network can learn a compact

representation. When the network can reconstruct the input features it can be assumed that those

features are representative of features the model has learned to reconstruct correctly, i.e. normal

network traffic. Otherwise, we can consider the input features to be abnormal.

KitNet is composed of a two layers of autoencoders that are dynamically generated during

training using a clustering algorithm to group similar features. The clustered features are feed

through seperate auto encoders. The reconstructed features are then concatenated and feed through

a final auto encoder. This hierarchical structure compartmentalizes information and helps KitNET

learn the patterns of natural network traffic more quickly.

KitNET employs a root-mean-squared-error (RMSE) function on each autoencoder as the

performance criteria. The score generated by each autoencoder block is given by:

s(x) = RMSE(x, F (x)) =

√∑n
i=1(xi − F (x)i)

2

n
. (5.2)

Where n is the number of inputs. Because the model was trained to reproduce instances from X ,

a low score indicates the input resembles the normal distribution well. Usinging RMSE we can

quantify the correctness with which the model has reconstructed its inputs. This function will thus

function both as a loss function during training and an indicator to flag abnormal network traffic.

87

5.2.2.2 The Normalizers

Another component used by Kitsune is the normalizers, appearing both before entering

KitNET and before the aggregate autoencoder. These normalizers implement the standard function:

norm(xi) =
xi −mini

Maxi −mini
. (5.3)

Which linearly scales minimum and maximum input values to 0 and 1, respectively. In Kitsune’s

training, the value of Maxi and mini respectively take on the maximum and minimum input values

seen by the xith element during training.

5.2.3 Classifying the Output

The primary output of KitNET is the RMSE score, S, produced by the aggregate autoen-

coder. It should be noted that the scores produced by KitNET are numerical values rather than

a probability distribution or its logits, like in standard deep learning classifiers. Kitsune utilizes a

classification scheme that triggers an alarm under the condition: S ≥ ϕβ, where ϕ is the highest

value of S recorded during training and β is a constant used to find a trade-off between the number

of false positives and negatives. The authors limit the value of β to be greater than or equal to 1.0

to assure a 100% training accuracy (i.e., all the training data are considered benign).

5.2.4 Targeting the System

The deep learning model, KitNET is simply a sub-systems of the larger Kitsune NIDS. As

such, targeting the model requires passing network packets through the Packet Capturer, Packet

Parser, Feature Extractor, and Feature Mapper. Applying an adversarial example generation al-

gorithm on this model will result in perturbations on the model’s input that should be translated

into changes in the network traffic. This means backpropigating this information through the other

sub components of Kitsune. Fortunately, most of these subsystems can be trivially reversed. The

Feature Mapper simply maps features to the inputs of KitNET and reversing this mapping enables

us to know which features should be perturbed. Similarly, the Packet Capturer, Packet Parser, and

Feature Extractor simply work together to convert the packet properties and meta-information into

values that can be process by KitNET. These are standard subsystems for an NIDS and so it should

88

also be possible for an adversary with an understanding of networks to generate packets which are

decomposed into the target feature. For example, one of the major features extracted by this system

is the packet size. If the adversarial example requires this feature to be increased the adversary can

pad a package to meet this objective.

5.3 Experimental Evaluations

5.3.1 Experimental Setup

In this section, we briefly describe our experimental setup and the necessary modifications

to the KitNET.

5.3.1.1 Implementing KitNET

In order to perform adversarial machine learning, the original C++ version of Kitsune was

reproduced in TensorFlow [1]. The TensorFlow model was tested and evaluated similarly to the C++

implementation with an average deviation on the outputs of 5.71 × 10−7 from the original model.

We then utilized the Cleverhans [120], an adversarial machine learning library that is produced and

maintained by domain experts, to mount different adversarial example generation algorithms on the

Kitsune. We also used the same Mirai dataset as in [110]. This dataset contains features describing

network traffic captured from a Mirai botnet attack on an emulated IoT network. The dataset

contains network traffic which can be classified into 10 different sub categories indicating an attack.

However, in the case of KitNET, the objective is to simply classify the traffic into either malicious

or benign network traffic.

5.3.1.2 Modifications to the Model

Our implementation of KitNET moves the classification mechanism into the model by adding

a final layer at the output, as expressed in Equation 5.4.

C(x) =

 benign

malicious

 = S(x)

 1

−1

+

 0

2T

 (5.4)

89

This allows the deep learning model to produce the classification result based on a threshold, T .

Effectively, this alteration moves the original classification scheme into KitNET itself when T = ϕβ,

transforming the model from a regression model into a classifier.

As adversarial examples target deep learning models, we isolate KitNET from Kitsune when

performing our attacks. In a real-world attack on Kitsune, the adversary must circumvent or sur-

mount the Feature Extractor to induce perturbations on KitNET’s input. However, understanding

the Feature Extractor makes it feasible for the adversary to craft network traffics to generate es-

sential features. Thus, in our experiments, we focus on evaluating the security of KitNET from the

normalized feature space.

5.3.2 Evaluations from the Network Security Perspective

A DL-NIDS must be evaluated from both the network security and adversarial machine

learning aspects to understand its defensive capabilities fully. In the domain of intrusion detection,

the ability to distinguish malicious network traffics from benign traffics is the primary performance

metric. In this section, we evaluate the classification accuracy of the Kitsune.

Kitsune’s developers evaluate the DL-NIDS against a series of attacks in a variety of net-

works [110]. In our implementation, the accuracy of Kitsune is highly dependent on the threshold,

T . This value defines the decision boundary, which makes it a critical parameter when deploying

the model. We evaluate the KitNET by assuming that the threshold is not predefined but trained

as an end-to-end deep learning system. In addition, this analysis also indicates how the threshold

correlates with the perturbation required in adversarial machine learning.

To assess the performance of a given threshold value, we consider the following two metrics:

1. False Positives: The percentage of benign inputs that are incorrectly classified as malicious.

2. False Negatives: The percentage of malicious data that are incorrectly classified as benign.

On the one hand, the rate of false positives accounts for the reliability of a network. On the

other hand, the rate of false negatives is closely associated with the intrusion detection system’s

effectiveness. Therefore, both rates should be minimized in an ideal situation. However, in the

setting of Kitsune, the value of T acts as a trade-off between a false-positive rate and a false-negative

rate.

90

We investigated the whole functional range of possible thresholds in this analysis, i.e., from

the minimum score of 0 to 20, which leads to 100% false negatives on the given dataset. Figure

5.3(a) plots the two metrics as well as the accuracy of the DL-NIDS.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

False Positive Rate (FPR)

0

20

40

60

80

100

0.
00

0.
01

0.
03

0.
05

0.
10

0.
25

1.
00

5.
00

7.
00

10
.0

0
15

.0
0

20
.0

0

R
at

e
of

 (%
)

Threshold

False Positives
(Benign Inputs)
False Negatives
(Malicious Inputs)
Classification Accuracy

(a) (b)

Figure 5.3: The percentage of misclassified benign and malicious inputs for chosen threshold values
(a). A receiver operating characteristic (ROC) curve for Kitsune (b).

It can be seen that the rates of false positives and false negatives remain almost unchanged

in the middle range. Furthermore, it can also be observed that if we want to minimize one of the

rates, the other rate will increase significantly. Finally, the accuracy is also essentially unchanged

for threshold values below 7, which can partially contribute to the imbalance of the dataset (i.e.,

most of the data belong to the benign class). Therefore, a threshold between 0.05 and 1 would be

appropriate for this scheme. The effectiveness of Kitsune at separating the Mirai dataset is further

demonstrated by the ROC curve in Figure 5.3(b).

5.3.3 Evaluations against Adversarial Machine Learning

This section continues the evaluation of Kitsune through an empirical analysis of its robust-

ness against adversarial examples. Adversarial examples are particularly dangerous in such settings

as they do not require direct access to the model internals to generate and so can be conducted even

in remote settings.

91

5.3.3.1 Adversarial Example Generation Methods

Intelligent and adaptive adversaries will exploit the vulnerability of the machine learning

models against novel DL-NIDS by using techniques such as adversarial examples and poisoning

attacks. There are mainly two attacking objectives in adversarial machine learning, namely, integrity

and availability violations. In this setting, integrity violations attempt to generate malicious traffic,

which evades detection (produce a false negative), while availability violations attempt to make

benign traffic appear malicious (produce a false positive) [6]. However, adversarial examples attempt

to achieve a misclassification with perturbations as small as possible.

Another concern in performing these attacks is that the network data are fundamentally

distinct from images, usually used in conventional adversarial machine learning. An adversarial

example in the image domain is an image perceived to be the same by human observers but differently

by the model. The LP norm between the two images exemplifies visual distance and can be used as

the distance metric. However, this definition fails in network security as observing network traffic

at the bit-level is not generally practical. Therefore, the semantic understanding of these attacks in

this setting is remarkably different.

One potential definition for adversarial examples in this scenario, which is facilitated by the

architecture of Kitsune, is to use the extracted features generated by the model as an indication of

the observable difference. Thus, we adopt the LP distance on the feature space between the original

input and the perturbed input as the distance metric. In particular, the L0 norm correlates to

altering a small number of extracted features, which might be a better metric than other LP norms.

Many methods of generating adversarial examples have been developed. With each thriv-

ing in different settings, we attempt to generate a broad comparison of adversarial examples with

different distance metrics in the network security domain. We evaluate the robustness of KitNET

against the following algorithms:

• Fast Gradient Sign Method (FGSM): This method optimizes over the L∞ norm (i.e.,

reduces the maximum perturbation on any input feature) by taking a single step to each

element of x⃗ in the direction opposite the gradient [59].

• Jacobian Base Saliency Map (JSMA): This attack minimizes the L0 norm by itera-

tively calculating a saliency map and then perturbing the feature that will have the highest

effect [122]. The Jacobian Base Saliency Map algorithm has been a standard for generating

92

sparse adversarial example. Tis is a powerful attack in this setting as changing features in

a packet may effect other features of the packet, and limiting the number of features to be

perturbed significantly limits this risk.

• Carlini and Wagner (C&W): Carlini and Wagner’s adversarial framework, as discussed

earlier, can either minimize the L2, L0, or L∞ distance metric [18]. Our experiments utilize

the L2 norm to reduce the Euclidean distance between the vectors through an iterative method.

• Elastic Net Method (ENM): Elastic net attacks are novel algorithms that limit the total

absolute perturbation across the input space, i.e., the L1 norm. ENM produces the adversarial

examples by expanding an iterative L2 attack with an L1 regularizer [24].

5.3.3.2 Experimental Results

We conduct our experiments on both integrity and availability violations. Integrity violation

attacks are performed on the benign inputs with a threshold of s = 1.0. The experimental results

are presented in Table 5.1. For comparison between different algorithms, the common LP distance

metrics are all presented. Each attack was conducted on the same 1000 random benign samples

from the dataset.

LP Distances

Algorithm Success (%) L0 L1 L2 L∞

FGSM 100 100 108 10.8 1.8

JSMA 100 2.33 10.73 6.97 4.87

C&W 100 100 7.44 3.61 3.49

ENM 100 1.21 4.94 4.64 4.49

Table 5.1: Integrity Attacks on KitNET

Availability attacks are also performed using the same threshold of s = 1.0. 1000 input vec-

tors that yield the closest output scores to the threshold were selected. The results are summarized

in Table 5.2. As the normalizers were only trained on benign inputs, many malicious inputs would

be normalized outside the typical range between 0 and 1.

93

LP Distances

Algorithm Success (%) L0 L1 L2 L∞

FGSM 4 100 78.00 7.79 0.78

JSMA 0 − − − −
C&W 100 100 22.00 8.50 5.61

ENM 100 8.74 21.7123 8.14 3.60

Table 5.2: Availability Attacks on KitNET

5.3.4 Analysis and Discussion

By comparing Table 5.1 and Table 5.2, it can be seen that the integrity attacks, in general,

perform much better than the availability attacks. For instance, adversarial examples are rarely

generated in the FGSM and JSMA availability attacks. Additionally, the perturbations produced

by the availability attacks are all larger than their integrity counterparts. A potential cause for the

difficulty is the disjoint nature between the benign and malicious input data, as exhibited by the

clipping of the normalized inputs, in conjunction with a boundary decision (i.e., the threshold T)

that is much closer to the benign input data.

Among these four methods, the earlier algorithms, i.e., the FGSM and JSMA, perform worse

than the C&W and ENM attacks. As we mentioned above, especially in the availability attacks, the

success rates of these attacks are significantly low. This result is expected since the more advanced

iterative C&W and ENM algorithms can search a larger adversarial space than the FGSM and

JSMA. However, as noted above the L0 metric is significant in this setting as it quantifies the

sparsity of the attack. When back propagating the attack through Kitsune’s other sub components

this could be a significant factor in the attack’s success. As such, we specifically recognize the power

of the ENM algorithm in this setting as it is the likely to produce more feasible real-world attacks.

Further, we note that recent works have been striving to develop stronger sparse attacks for against

deep learning systems and may provide significantly stronger attacks than those seen here.

A final observation is that ENM is very effective in these attacks. Even though this attack

is optimized for the L1 norm, its generated adversarial examples simultaneously yield minimal

values for the other norms. Specifically, the L0 perturbations produced were even better than

those produced by JSMA. As stated above, the L0 norm seems to be the most appropriate norm

among these four Lp norms in the setting of network security, as it signifies altering a minimized

number of extracted features from the network traffic. Thus, ENM can be implemented against

94

the Kitsune to generate adversarial examples to fool the detection system while requiring minimal

perturbations.

We note that the above attacks were produced with an adaptive step size random search of

the parameters of each method. In practice, adversaries may use such a naive approach to determine

effective attack algorithms. Then, utilize more robust optimization algorithms, such as Bayesian or

gradient descent optimization, with the indicated attack algorithms to produce a superior result.

5.3.5 Optimizing ENM

Since ENM has been demonstrated to be very successful in our experiments, we next focus

on optimizing the ENM attack on Kitsune in our setting. The CleverHans implementation uses a

simple gradient descent optimizer to minimize the function:

c ·max{F (x)j − y , 0}+ β||x− x0||1 + ||x− x0||2 (5.5)

where F (·)j is the logit output of the target classifier, y is the target logit output (i.e., the output

which produces the desired violation), and x0 is the original network input. It can be seen that

there are two regularization parameters, c and β. These parameters determine the contribution of

the different metrics to the attack algorithm. For example, a very large c effectively increases the

attack’s ability to converge to a successful attack. The large contribution of the constraint terms also

potentially overshadows the distance metrics, effectively diminishing the attack’s ability to minimize

the perturbation. The focus of this optimization is to determine optimal regularization terms to

produce effective attacks on KitNET.

The ENM algorithm has several other hyper-parameters, including the learning rate, max-

imum gradient descent steps, and targeted confidence level. These parameters are standard in

adversarial example attacks; these parameters are set to the constant values of 0.05, 1000, and 0,

respectively. An optimization scheme included in the ENM algorithm aids in producing optimal

results by altering c. It decreases the parameter N -times, only retaining the successful attack, which

produces the lowest perturbation. This feature is disabled by setting N = 0, ensuring that it does

not alter optimization results. Therefore, the results of the optimization could be further improved

by enabling this functionality.

The parameter, c, determines the contribution of the adversarial misclassification objective

95

at the cost of diminishing the two LP normalization terms. Thus, it can be logically determined

that the optimal value of c is that value that achieves the demanded success rate while remaining

as small as possible. We evaluate a wide range of c values for β = 1, as shown in Figure 5.4. We

find c = 450 optimal, which achieves a 100% success rate with a relatively small perturbation. It

can also be observed from Figure 5.4 that the resultant L1 distance does not directly correlate to

the selection of c. We also tried to increase the value of c into the thousands; interestingly, the LP

distances still only changed very slightly.

3.80
3.85
3.90
3.95
4.00
4.05
4.10
4.15

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 50 100 200 200 250 300 350 400 450 500

L 1
di

st
an

ce
 (R

ed
)

Su
cc

es
s

Ra
te

 (B
lu

e)

Figure 5.4: The success rate (blue) and average L1-distance (red) of adversarial examples with
respect to the regularization parameter, c, used for the attack.

On the other hand, the choice of β significantly affects the LP distances. We now optimize

the produced perturbation through varying the parameter β for c = 450. The results are summarized

in Table 5.3. It can be seen that the success rate will drop as the increase of c, after the second term

of Equation 5.5 begins to overpower the loss function associated with c.

It can be concluded that adversarial machine learning can be a real threat against DL-NIDS.

Therefore, when moving intrusion detection towards the profound learning realm, it is critical to

evaluate the security of a DL-NIDS against both adversarial attacks in the conventional network

and the machine learning domains.

96

LP Distances

β Success (%) L0 L1 L2 L∞

1× 10−5 100 96.61 5.9518 3.6378 3.5163

1× 10−4 100 78.46 5.7574 3.6388 3.516

1× 10−3 100 33.34 5.0577 3.6435 3.5268

1× 10−2 100 5.51 5.1722 3.7658 3.3129

1× 10−1 100 1.09 3.8624 3.7277 3.6450

1× 100 100 1.01 4.0347 4.0158 4.0044

2× 101 0.84 1.00 4.1350 4.1350 4.1350

5× 101 0.08 1.00 4.2054 4.2054 4.2054

1× 102 0 - - - -

Table 5.3: The perturbations produced with respect to β.

5.4 Conclusions

This work has demonstrated the vulnerability of DL-NIDS to well-crafted attacks from the

domain of adversarial machine learning. This vulnerability is present in deep learning-based systems

even when the model achieves high accuracy for classifying benign and malicious network traffic.

Therefore, researchers must take steps to verify the security of deep learning models in security-

critical applications to ensure they do not impose additional risks; otherwise, it will defeat the

purpose of using deep learning techniques to protect networks.

The existence of the Feature Extractor and the Packet Parser signifies that the Kitsune is

at least partially utilizing domain knowledge of network traffic to generate its classification. Their

applications strive to be as data-driven as possible to get the most benefit from deep learning models

(i.e., they require little to no human knowledge to generate a function mapping). Thus, despite the

current success of Kitsune and other DL-NIDS, as the field continues to develop, DL-NIDS will

attempt directly converting network traffic to a classification utilizing end-to-end deep learning

models. Furthermore, the human knowledge currently being used by modern DL-NIDS implies that

to increase the probability of a successful attack, an adversary should understand this knowledge.

Thus, as DL-NIDS continues to develop, evaluating the model against adversarial machine learning

techniques becomes even more critical as attacks will no longer require this additional knowledge

when targeting the system.

This work assumes that the adversary has direct knowledge of the target DL-NIDS, allowing

them to directly generate inputs for the deep learning model. A potential drawback of this assump-

97

tion is that the perturbation requires to generate the adversarial examples does not directly correlate

to the alteration on the network. Additionally, it does not account for the effect of that change on

the network traffic on the host device. Despite this limitation, we believe that the attacks presented

here could potentially constitute a strong attack against deep learning systems. Indeed, many of the

adversarial examples generated for Kitsune could be trivially produced in the network traffic with

general knowledge of the system. For example, one of the major contributing feature for fooling the

model was the size of network packages. Often simply increasing the size of the adversarial packets

by padding it with zeros was sufficient to conduct the attack.

98

Chapter 6

Conclusions and Furture Directions

6.1 Conclusions

This dissertation has presented pioneering works from the hardware perspective of adversar-

ial deep learning. Our novel perspective begins by considering the possibility of embedding backdoors

into deep learning models through modifications to its computational operations. We utilize this

framework to embed hardware Trojans in deep learning accelerators which are able to produce back-

doors in a deep learning system. We further extend this concept to defend deep learning hardware

from piracy using hardware watermarks.

Our Trojan embedding methodology targets a deep learning model deployed to a hardware

accelerator. By conceptualizing the model as a layered architecture of operations, we can determine

where the operations will be executed in the hardware. The operational backdoor determines a

perturbation that could be introduced to the layer of operations to produce targeted or untargeted

output responses when computing on key inputs. These perturbations can be introduced through

modifications in the hardware. Due to the reuse of hardware to compute multiple operations,

modifications within a single hardware block can be condensed to decrease the required overhead.

Using a modified JSMA adversarial example generation algorithm, we are able to embed Trojans

in simple deep learning accelerators, which effectively compromise a target model with minimal

additional hardware overhead.

We extend our work to evaluating the protection of deep learning hardware accelerators from

piracy violations by embedding a watermark signature into the hardware design. These modifications

99

would work in conjunction with a key DNN and corresponding key samples known only by the owner.

Under normal operating conditions, the hardware would function as intended according to the deep

learning model deployed to the system. However, once the rightful owner uploads the key resources

onto the hardware, the modification in the design will alter the functionality of the deep learning

model to produce identifiable behavior. Our watermark embedding process utilizes a sophisticated

algorithm to produce sparse perturbations constrained to a small number of hardware blocks. This

enables us to produce very low-impact modifications with minimal impact of both the hardware’s

overhead and functionality.

In addition, to these, we also explore the implications of traditional deep learning attacks on

deep learning in resource-constrained hardware. We demonstrate that such systems could become

vulnerable components of a system due to developers not considering the adversarial perspective of

deep learning technologies. Our evaluations find that it is possible to generate adversarial traffic

packets that can be used to fool Kitsune, a popular low-power network intrusion detection system

intended for tightly constrained hardware applications. Such systems are typically deployed to low-

power hardware platforms, such as for IoT or SDN applications. The intended purpose of such

systems would be to act as a security solution for the network, but such security systems could

become a vulnerability of the system rather than a defense.

6.2 Related Works

Following our work on hardware, Trojans a number of works have attempted to develop

various attack methodologies for deep learning hardware.

Another early work in this field developed a Trojan attack that generated a Malicious

Category Recognition system (MCR) implemented alongside the first Multiplier and Adder Tree in

the first layer of CNN FPGA accelerator [167]. When a trigger input is detected, the benign output

is replaced with the Trojan response, effectively compromising the model. This work demonstrated

that this scheme could be embedded with very low overhead, < 0.01%, and work with very subtle

input triggers to compromise the system. The authors also identify a trade-off in this scheme where

the size of the Trojan trigger correlates with the impact of the Trojan in the original dataset. They

further present some of the limitations of hardware Trojan stealth from a practical perspective and

ways adversaries could bypass such schemes.

100

Some works have also explored hardware-based attacks which do not rely on Trojan injection.

Bit-Flip attacks [9], for example, are able to compromise deep learning systems by using targeted

Rowhammer attacks. The Rowhammer attack is able to alter weights in DRAM according to an

adversarial perturbation. This enables the ability to conduct traditional perturbation-based attacks

from the hardware domain, expanding the ability of adversaries to achieve the access required to

conduct such attacks. Such attacks have been well studied, and various defensive techniques against

them have been explored. Many works have been extending similar defensive techniques in this

context [97].

The Layer-based Noise Injection Attack [117] introduces a stealthy hardware intrinsic attack.

This work attempts to generate a Trojan, which can be introduced to the input of any layer in the

model. This Trojan generates random and stealthy noise to random elements of a feature map.

In conjunction with an input trigger, this hardware would perturb the model’s feature maps and

alter its predictions. Using their methodology, they are able to embed Trojans with an overhead of

4% extra LUTs, 5% extra DSPs, and 2% extra FFs to compromise the device. They were able to

perform this attack while modifying less than 1% of the elements in most layers’ feature maps. These

findings largely align with our results on hardware Trojans targeting the design’s computations and

signify that intelligent adversaries can use multiple avenues of compromising deep learning models

through the hardware in both a stealthy and effective manner.

Another subsequent work generates a Trojan embedding which utilizes a target DNN as

the Trojan trigger rather than its inputs [92]. The authors propose that this methodology enables

their Trojans to overcome trivial defensive mechanisms such as data pre-processing and encryption.

In this setting, the trojan trigger monitors the interrupt signals and analyzes its cycle patterns to

capture specific DNN models and activate the Trojan payload circuitry. This modifies only the

functionality of the target DNN executed on the device. Similar to our proposed methodology,

this methodology is able to produce an effective attack with < 1% hardware overhead and minimal

deviations in power consumption.

Side-channel attacks are powerful attacks against computing systems. These attack attempt

to capture the side-channel information from a target device during standard computation and de-

termine from that information some secret knowledge from the device. This information can include

power consumption, thermal dissipation, or electrical activity on ground lines. Such attacks have

been frequently deployed against cryptography systems to reveal hidden keys to break encryption

101

algorithms. However, they can also be used to recover other information from a device. Recently,

side-channel attacks have been deployed against deep learning systems to extract model informa-

tion. Specifically, side-channel attacks have been used to extract binary neural networks from a

device [46]. Further, works are continuing to develop stronger, more complex algorithms for using

side-channel analysis to extract key information about deep learning systems [20].

6.3 Future Directions

The study of hardware Trojans has developed a wide variety of Trojan modifications. Each

of these designs introduces different trade-offs and capabilities to the adversarial scenario. The

implications of this variety of hardware Trojans on deep learning security are still unexplored. The

stealth and effectiveness of a hardware Trojan can be greatly affected by the family of modifications

injected. Exploring the broader implications of different Trojan attacks on deep learning systems is

of critical importance to the field.

The stealth of the Trojan attack is one of the major concerns for such attacks. Embedding or

altering combinational circuits into a design can be quite invasive both in terms of the impact on the

hardware’s functionality and overhead. However, modern Trojan attacks are able to mitigate these

risks using powerful Trojaning techniques. Dopant-level Trojans, for example, are able to embed

logical changes to hardware by altering the electrical properties of the circuits transistors [11]. Such

Trojans only change the doping level of the circuit while leaving the layout of the transistors alone.

This makes it very difficult to detect the attack without destroying the device. Therefore, a major

potential direction for the field is to apply such advanced Trojaning to deep learning hardware to

produce attacks with an undetectable effect on the Hardware design.

Another important component for the stealth of Trojans is that the functionality of the

hardware design is unchanged under normal operation. Trojans composed of sequential logic circuits

require a sequence of correct inputs rather than a single correct input to be activated. One promising

line of research is to explore whether such hardware Trojan designs could improve the stealthiness

of deep learning hardware Trojans further by taking advantage of this property.

In addition to the injecting of backdoors, hardware Trojans are also frequently used for other

attacks. Many Trojan attacks have been developed to siphon information from a device through

data leakage attacks. In many cases, the information contained in a deep learning model can be

102

privacy critical. Future works in this direction could pursue the possibility of leaking model weight,

architectures, or user data through the usage of deep learning hardware Trojans.

For deep learning hardware watermarks to be most effective in identifying a hardware design,

the hardware modifications should be well aligned to work with the algorithmic components. Within

this context, a promising direction for future research in deep learning hardware watermarking is

to develop signature embedding algorithms which simultaneously optimize the key samples and key

DNN to work with the hardware modifications. Integrating these components into the watermark

framework removes some of the burdens from the modifications allowing for modifications that could

be less invasive for both the hardware’s functionality and overhead. The major challenge in this

direction is to maintain the reliability of the embedded watermarks to produce the signature response

while ensuring the watermark signature is fully contained in the hardware allowing it to be identified.

An interesting future work along this line of research would evaluate the possibility of

optimizing the input images to better align hardware modification within the target computational

blocks allowing the designer to embed the watermark with fewer hardware modifications. From

another perspective, one of the problems with embedding watermarks that can be activated by a

large number of key samples is that the hardware modifications continually increase for each key

sample used. An exciting direction for future works is to optimize a set of input key samples together

such that the perturbations required by the hardware to activate each input is similar. By aligning

the key samples in this way, they designer can minimize the magnitude of the hardware modifications

introduced by crafting modifications that simultaneously target each input sample.

One novel line of research that is currently unexplored is the utilization of deep learning

hardware to defend against privacy violation attacks. It is to simultaneously optimize the deep

learning hardware for performance and defensive capabilities. For example, privacy violation attacks

attempt to siphon some valuable information about a deep learning system’s users or test examples

through a deep learning system. Model inversion attacks are able to recreate examples from the

training dataset with only access to a model it generated. Currently, state-of-the-art defenses for

such attacks utilize differential privacy to obscure deep learning data. Such methods introduce

randomness into a deep learning system such that while the overall trend of the model adheres to

the target class, the truth of individual examples is obscure. This is an effective methodology for

defending the privacy of individual elements of a dataset in many privacy-critical scenarios.

The introduction of noise to instill differential privacy in a deep learning system has tradi-

103

tionally been conducted from the software perspective. However, it is understood that many avenues

for optimizing hardware introduce such noise to a system. Quantization, for example, reduces the

resolution of data representations in a hardware system. This has many major benefits, from reduc-

ing data storage and transfer rates to reducing the computation time of model operations. It may

be possible to simultaneously utilize the noise generated through quantization methods to develop

hardware that helps preserve the privacy of models executed on the device naturally.

104

Bibliography

[1] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, et al. TensorFlow: Large-scale
machine learning on heterogeneous systems, 2015. Software available from tensorflow.org.

[2] Yossi Adi et al. Turning your weakness into a strength: Watermarking deep neural networks
by backdooring. In 27th USENIX Security Symposium, Baltimore, MD, USA, August 15-17,
pages 1615–1631. USENIX Association, 2018.

[3] Ibrahim M Ahmed and Manar Younis Kashmoola. Threats on machine learning technique by
data poisoning attack: A survey. In International Conference on Advances in Cyber Security,
pages 586–600. Springer, 2021.

[4] Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep learning in computer
vision: A survey. arXiv preprint arXiv:1801.00553, 2018.

[5] Muder Almiani, Alia AbuGhazleh, Amer Al-Rahayfeh, Saleh Atiewi, and Abdul Razaque.
Deep recurrent neural network for iot intrusion detection system. Simulation Modelling Prac-
tice and Theory, 101:102031, 2020.

[6] Giovanni Apruzzese, Michele Colajanni, Luca Ferretti, Alessandro Guido, and Mirco
Marchetti. On the effectiveness of machine and deep learning for cyber security. In 2018
10th International Conference on Cyber Conflict (CyCon), pages 371–390. IEEE, 2018.

[7] Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense
of security: Circumventing defenses to adversarial examples. International Conference on
Machine Learning (ICML), 2018.

[8] Eugene Bagdasaryan and Vitaly Shmatikov. Blind backdoors in deep learning models. In
Usenix Security, 2021.

[9] Jiawang Bai, Baoyuan Wu, Yong Zhang, Yiming Li, Zhifeng Li, and Shu-Tao Xia. Tar-
geted attack against deep neural networks via flipping limited weight bits. arXiv preprint
arXiv:2102.10496, 2021.

[10] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar. Can
machine learning be secure? In Proceedings of the ACM Symposium on Information, computer
and communications security, pages 16–25, 2006.

[11] Georg T Becker, Francesco Regazzoni, Christof Paar, and Wayne P Burleson. Stealthy dopant-
level hardware trojans. In Cryptographic Hardware and Embedded Systems-CHES 2013: 15th
International Workshop, Santa Barbara, CA, USA, August 20-23, 2013. Proceedings 15, pages
197–214. Springer, 2013.

[12] Shivam Bhasin and Francesco Regazzoni. A survey on hardware trojan detection techniques.
In 2015 IEEE International Symposium on Circuits and Systems (ISCAS), pages 2021–2024.
IEEE, 2015.

105

[13] Chandradeep Bhatt, Indrajeet Kumar, V Vijayakumar, Kamred Udham Singh, and Abhishek
Kumar. The state of the art of deep learning models in medical science and their challenges.
Multimedia Systems, 27(4):599–613, 2021.

[14] Battista Biggio, Blaine Nelson, and Pavel Laskov. Support vector machines under adversarial
label noise. In Asian conference on machine learning, pages 97–112. PMLR, 2011.

[15] Wieland Brendel, Jonas Rauber, Alexey Kurakin, Nicolas Papernot, Behar Veliqi, Marcel
Salathé, Sharada P Mohanty, and Matthias Bethge. Adversarial vision challenge. arXiv
preprint arXiv:1808.01976, 2018.

[16] Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Ipguard: Protecting intellectual property
of deep neural networks via fingerprinting the classification boundary. In Asia Conference on
Computer and Communications Security (ASIA CCS), Virtual Event, Hong Kong, June 7-11,
pages 14–25. ACM, 2021.

[17] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris
Tsipras, Ian Goodfellow, and Aleksander Madry. On evaluating adversarial robustness. arXiv
preprint arXiv:1902.06705, 2019.

[18] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks.
In IEEE Symposium on Security and Privacy (SP), pages 39–57. IEEE, 2017.

[19] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks on speech-
to-text. In 2018 IEEE Security and Privacy Workshops (SPW), pages 1–7. IEEE, 2018.

[20] Hervé Chabanne, Jean-Luc Danger, Linda Guiga, and Ulrich Kühne. Side channel attacks
for architecture extraction of neural networks. CAAI Transactions on Intelligence Technology,
6(1):3–16, 2021.

[21] Abhishek Chakraborty, Ankit Mondal, and Ankur Srivastava. Hardware-assisted intellectual
property protection of deep learning models. In 57th Design Automation Conference (DAC),
San Francisco, CA, USA, July 20-24, pages 1–6. ACM/IEEE, 2020.

[22] Rajat Subhra Chakraborty, Seetharam Narasimhan, and Swarup Bhunia. Hardware trojan:
Threats and emerging solutions. In 2009 IEEE International high level design validation and
test workshop, pages 166–171. IEEE, 2009.

[23] Huili Chen et al. Deepattest: an end-to-end attestation framework for deep neural networks.
In 46th International Symposium on Computer Architecture (ISCA), Phoenix, AZ, USA, June
22-26, pages 487–498. ACM, 2019.

[24] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-net
attacks to deep neural networks via adversarial examples. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

[25] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks
on deep learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

[26] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks. IEEE journal of solid-state
circuits, 52(1):127–138, 2016.

[27] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible accelerator
for emerging deep neural networks on mobile devices. Journal on Emerging and Selected Topics
in Circuits and Systems, 9(2):292–308, 2019.

106

[28] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. Diannao family:
energy-efficient hardware accelerators for machine learning. Communications of the ACM,
59(11):105–112, 2016.

[29] Joseph Clements and Yingjie Lao. Backdoor attacks on neural network operations. IEEE
Global Conference on Signal and Information Processing (GlobalSIP), 2018.

[30] Joseph Clements and Yingjie Lao. Hardware trojan design on neural networks. In International
Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, May 26-29, pages 1–5. IEEE,
2019.

[31] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bina-
rized neural networks: Training deep neural networks with weights and activations constrained
to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[32] Aijiao Cui, Chip-Hong Chang, Sofiène Tahar, and Amr T. Abdel-Hamid. A robust FSM
watermarking scheme for IP protection of sequential circuit design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 30(5):678–690, 2011.

[33] Yaodong Cui, Ren Chen, Wenbo Chu, Long Chen, Daxin Tian, Ying Li, and Dongpu Cao.
Deep learning for image and point cloud fusion in autonomous driving: A review. IEEE
Transactions on Intelligent Transportation Systems, 2021.

[34] Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end wa-
termarking framework for ownership protection of deep neural networks. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming Languages
and Operating Systems, pages 485–497, 2019.

[35] Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromor-
phic manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

[36] Michael V DeBole, Brian Taba, Arnon Amir, Filipp Akopyan, Alexander Andreopoulos,
William P Risk, Jeff Kusnitz, Carlos Ortega Otero, Tapan K Nayak, Rathinakumar Ap-
puswamy, et al. Truenorth: Accelerating from zero to 64 million neurons in 10 years. Computer,
52(5):20–29, 2019.

[37] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In Conference on Computer Vision and Pattern Recognition,
pages 248–255. IEEE, 2009.

[38] Lei Deng, Guanrui Wang, Guoqi Li, Shuangchen Li, Ling Liang, Maohua Zhu, Yujie Wu,
Zheyu Yang, Zhe Zou, Jing Pei, et al. Tianjic: A unified and scalable chip bridging spike-
based and continuous neural computation. Journal of Solid-State Circuits, 55(8):2228–2246,
2020.

[39] Yunbin Deng. Deep learning on mobile devices: a review. In Mobile Multimedia/Image Pro-
cessing, Security, and Applications 2019, volume 10993, page 109930A. International Society
for Optics and Photonics, 2019.

[40] Priyanka Dixit and Sanjay Silakari. Deep learning algorithms for cybersecurity applications:
A technological and status review. Computer Science Review, 39:100317, 2021.

[41] Alexey Dmitrenko et al. DNN model extraction attacks using prediction interfaces. 2018.

107

[42] Xiaoyi Dong, Dongdong Chen, Jianmin Bao, Chuan Qin, Lu Yuan, Weiming Zhang, Nenghai
Yu, and Dong Chen. GreedyFool: Distortion-aware sparse adversarial attack. Advances in
Neural Information Processing Systems, 33:11226–11236, 2020.

[43] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for im-
age recognition at scale. In International Conference on Learning Representations. OpenRe-
view.net, 2021.

[44] Nikolaus Dräger, Yonghao Xu, and Pedram Ghamisi. Backdoor attacks for remote sensing
data with wavelet transform. arXiv preprint arXiv:2211.08044, 2022.

[45] Ranjie Duan, Xingjun Ma, Yisen Wang, James Bailey, A Kai Qin, and Yun Yang. Adver-
sarial camouflage: Hiding physical-world attacks with natural styles. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 1000–1008, 2020.

[46] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. Bomanet: Boolean masking of an en-
tire neural network. In Proceedings of the 39th International Conference on Computer-Aided
Design, pages 1–9, 2020.

[47] Rameshwar Dubey et al. Blockchain technology for enhancing swift-trust, collaboration and
resilience within a humanitarian supply chain setting. International Journal of Production
Research (IJPR), 58(11):3381–3398, 2020.

[48] Gamaleldin F Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alex Kurakin, Ian
Goodfellow, and Jascha Sohl-Dickstein. Adversarial examples that fool both human and com-
puter vision. arXiv preprint arXiv:1802.08195, 2018.

[49] Maik Ender, Samaneh Ghandali, Amir Moradi, and Christof Paar. The first thorough side-
channel hardware trojan. In International Conference on the Theory and Application of Cryp-
tology and Information Security, pages 755–780. Springer, 2017.

[50] Yanbo Fan et al. Sparse adversarial attack via perturbation factorization. In 16th European
Conference on Computer Vision (ECCV), Glasgow, UK, August 23-28, Part XXII, volume
12367 of Lecture Notes in Computer Science, pages 35–50. Springer, 2020.

[51] Ruitao Feng, Sen Chen, Xiaofei Xie, Guozhu Meng, Shang-Wei Lin, and Yang Liu. A
performance-sensitive malware detection system using deep learning on mobile devices. IEEE
Transactions on Information Forensics and Security, 16:1563–1578, 2020.

[52] Nic Ford, Justin Gilmer, Nicolas Carlini, and Dogus Cubuk. Adversarial examples are a natural
consequence of test error in noise. arXiv preprint arXiv:1901.10513, 2019.

[53] Arturo Geigel. Neural network trojan. Journal of Computer Security, 21(2):191–232, 2013.

[54] Samaneh Ghandali, Georg T Becker, Daniel Holcomb, and Christof Paar. A design method-
ology for stealthy parametric trojans and its application to bug attacks. In International
Conference on Cryptographic Hardware and Embedded Systems, pages 625–647. Springer, 2016.

[55] Justin Gilmer, Ryan P Adams, Ian Goodfellow, David Andersen, and George E Dahl. Motivat-
ing the rules of the game for adversarial example research. arXiv preprint arXiv:1807.06732,
2018.

[56] Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin
Wattenberg, and Ian Goodfellow. Adversarial spheres. arXiv preprint arXiv:1801.02774, 2018.

108

[57] Xueluan Gong, Qian Wang, Yanjiao Chen, Wang Yang, and Xinchang Jiang. Model extrac-
tion attacks and defenses on cloud-based machine learning models. IEEE Communications
Magazine, 58(12):83–89, 2020.

[58] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT press Cambridge, 2016.

[59] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adver-
sarial examples. International Conference on Learning Representations (ICLR), 2015.

[60] Jingjing Gu, Binglin Sun, Xiaojiang Du, JunWang, Yi Zhuang, and ZiwangWang. Consortium
blockchain-based malware detection in mobile devices. IEEE Access, 6:12118–12128, 2018.

[61] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities
in the machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

[62] Jia Guo and Miodrag Potkonjak. Watermarking deep neural networks for embedded sys-
tems. In International Conference on Computer-Aided Design (ICCAD), San Diego, CA,
USA, November 05-08, page 133. ACM, 2018.

[63] Kaiyuan Guo, Song Han, Song Yao, Yu Wang, Yuan Xie, and Huazhong Yang. Software-
hardware codesign for efficient neural network acceleration. IEEE Micro, 37(2):18–25, 2017.

[64] Trung Ha, Tran Khanh Dang, Tran Tri Dang, Tuan Anh Truong, and Manh Tuan Nguyen.
Differential privacy in deep learning: An overview. In International Conference on Advanced
Computing and Applications, pages 97–102. IEEE, 2019.

[65] Song Han et al. ESE: Efficient speech recognition engine with sparse LSTM on FPGA. In
International Symposium on Field-Programmable Gate Array (FPGA), Monterey, CA, USA,
February 22-24, pages 75–84. ACM/SIGDA, 2017.

[66] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz, andWilliam J
Dally. Eie: Efficient inference engine on compressed deep neural network. ACM SIGARCH
Computer Architecture News, 44(3):243–254, 2016.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition, pages 770–778.
IEEE, 2016.

[68] Warren He, James Wei, Xinyun Chen, Nicholas Carlini, and Dawn Song. Adversarial example
defense: Ensembles of weak defenses are not strong. In 11th USENIX workshop on offensive
technologies (WOOT 17), 2017.

[69] Zecheng He, Tianwei Zhang, and Ruby B Lee. Model inversion attacks against collaborative
inference. In Annual Computer Security Applications Conference, pages 148–162, 2019.

[70] Zecheng He, Tianwei Zhang, and Ruby B. Lee. Sensitive-sample fingerprinting of deep neural
networks. In Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach,
CA, USA, June 16-20, pages 4729–4737. CVF/IEEE, 2019.

[71] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely con-
nected convolutional networks. In Conference on Computer Vision and Pattern Recognition,
pages 4700–4708, 2017.

[72] Keman Huang, Michael Siegel, and Stuart Madnick. Systematically understanding the cyber
attack business: A survey. ACM Computing Surveys (CSUR), 51(4):1–36, 2018.

109

[73] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel. Adversarial
attacks on neural network policies. arXiv preprint arXiv:1702.02284, 2017.

[74] W Ronny Huang, Jonas Geiping, Liam Fowl, Gavin Taylor, and Tom Goldstein. Metapoi-
son: Practical general-purpose clean-label data poisoning. Advances in Neural Information
Processing Systems, 33:12080–12091, 2020.

[75] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and
Aleksander Madry. Adversarial examples are not bugs, they are features. Advances in neural
information processing systems, 32, 2019.

[76] M Islabudeen and MK Kavitha Devi. A smart approach for intrusion detection and prevention
system in mobile ad hoc networks against security attacks. Wireless Personal Communications,
112(1):193–224, 2020.

[77] Weiwen Jiang, Lei Yang, Sakyasingha Dasgupta, Jingtong Hu, and Yiyu Shi. Standing on
the shoulders of giants: Hardware and neural architecture co-search with hot start. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(11):4154–4165,
2020.

[78] Yier Jin and Yiorgos Makris. Hardware trojans in wireless cryptographic ics. IEEE Design &
Test of Computers, 27(1):26–35, 2010.

[79] Norman P. Jouppi et al. In-datacenter performance analysis of a tensor processing unit. In 44th
Annual International Symposium on Computer Architecture (ISCA), Toronto, ON, Canada,
June 24-28, pages 1–12. ACM, 2017.

[80] Poonam Kadian, Shiafali M. Arora, and Nidhi Arora. Robust digital watermarking techniques
for copyright protection of digital data: A survey. Wireless Personal Communications (WPC),
118(4):3225–3249, 2021.

[81] Yannic Kilcher. Pytorch cifar10. https://github.com/yk/PyTorch_CIFAR10, 2020.

[82] Bojan Kolosnjaji, Ambra Demontis, Battista Biggio, Davide Maiorca, Giorgio Giacinto, Clau-
dia Eckert, and Fabio Roli. Adversarial malware binaries: Evading deep learning for malware
detection in executables. In 2018 26th European Signal Processing Conference (EUSIPCO),
pages 533–537. IEEE, 2018.

[83] Jernej Kos, Ian Fischer, and Dawn Song. Adversarial examples for generative models. In 2018
IEEE Security and Privacy Workshops (SPW), pages 36–42. IEEE, 2018.

[84] Thanasis Kotsiopoulos, Panagiotis Sarigiannidis, Dimosthenis Ioannidis, and Dimitrios Tzo-
varas. Machine learning and deep learning in smart manufacturing: the smart grid paradigm.
Computer Science Review, 40:100341, 2021.

[85] Farinaz Koushanfar. Hardware metering: A survey. In Introduction to Hardware Security and
Trust, pages 103–122. Springer, 2012.

[86] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[87] Alexey Kurakin, Ian Goodfellow, Samy Bengio, Yinpeng Dong, Fangzhou Liao, Ming Liang,
Tianyu Pang, Jun Zhu, Xiaolin Hu, Cihang Xie, et al. Adversarial attacks and defences com-
petition. In The NIPS’17 Competition: Building Intelligent Systems, pages 195–231. Springer,
2018.

110

https://github.com/yk/PyTorch_CIFAR10

[88] Griffin Lacey, Graham W Taylor, and Shawki Areibi. Deep learning on fpgas: Past, present,
and future. arXiv preprint arXiv:1602.04283, 2016.

[89] Jinsu Lee, Sanghoon Kang, Jinmook Lee, Dongjoo Shin, Donghyeon Han, and Hoi-Jun Yoo.
The hardware and algorithm co-design for energy-efficient dnn processor on edge/mobile de-
vices. IEEE Transactions on Circuits and Systems I: Regular Papers, 67(10):3458–3470, 2020.

[90] Julian Leonhard. Analog Hardware Security and Trust. PhD thesis, Sorbonne Université, 2021.

[91] Heng Li, ShiYao Zhou, Wei Yuan, Jiahuan Li, and Henry Leung. Adversarial-example attacks
toward android malware detection system. IEEE Systems Journal, 14(1):653–656, 2019.

[92] Peng Li and Rui Hou. Int-monitor: a model triggered hardware trojan in deep learning
accelerators. The Journal of Supercomputing, 79(3):3095–3111, 2023.

[93] Wenshuo Li et al. Hu-fu: Hardware and software collaborative attack framework against neural
networks. In Computer Society Annual Symposium on VLSI (ISVLSI), Hong Kong, China,
July 8-11, pages 482–487. IEEE, 2018.

[94] Yue Li, Hongxia Wang, and Mauro Barni. A survey of deep neural network watermarking
techniques. Neurocomputing, 461:171–193, 2021.

[95] Lang Lin, Markus Kasper, Tim Güneysu, Christof Paar, and Wayne Burleson. Trojan side-
channels: Lightweight hardware trojans through side-channel engineering. In International
Workshop on Cryptographic Hardware and Embedded Systems, pages 382–395. Springer, 2009.

[96] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-pruning: Defending against
backdooring attacks on deep neural networks. International Symposium on Very Large Scale
Integration (ISVLSI), 2018.

[97] Liang Liu, Yanan Guo, Yueqiang Cheng, Youtao Zhang, and Jun Yang. Generating robust dnn
with resistance to bit-flip based adversarial weight attack. IEEE Transactions on Computers,
2022.

[98] Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. Edge computing
for autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8):1697–
1716, 2019.

[99] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu. Fault injection attack on deep neural
network. In International Conference on Computer-Aided Design (ICCAD), pages 131–138.
IEEE, 2017.

[100] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable adversarial
examples and black-box attacks. 2017.

[101] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai, Weihang Wang, and
Xiangyu Zhang. Trojaning attack on neural networks. Department of Computer Science
Technical Reports, 2017.

[102] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,
Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly optimized BERT
pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[103] Yu Liu, Yier Jin, Aria Nosratinia, and Yiorgos Makris. Silicon demonstration of hardware
trojan design and detection in wireless cryptographic ics. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(4):1506–1519, 2016.

111

[104] Yuntao Liu, Yang Xie, and Ankur Srivastava. Neural trojans. In IEEE International Confer-
ence on Computer Design (ICCD), pages 45–48. IEEE, 2017.

[105] Zihao Liu, Qi Liu, Tao Liu, Nuo Xu, Xue Lin, Yanzhi Wang, and Wujie Wen. Feature
distillation: Dnn-oriented jpeg compression against adversarial examples. In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 860–868. IEEE, 2019.

[106] Bo Luo, Yannan Liu, Lingxiao Wei, and Qiang Xu. Towards imperceptible and robust ad-
versarial example attacks against neural networks. 32nd Association for the Advancement of
Artificial Intelligence, pages 1652–1659, 2018.

[107] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian
Vladu. Towards deep learning models resistant to adversarial attacks. 6th International Con-
ference on Learning Representations, 2018.

[108] Susmita Dey Manasi and Sachin S Sapatnekar. Deepopt: Optimized scheduling of cnn work-
loads for asic-based systolic deep learning accelerators. In Proceedings of the 26th Asia and
South Pacific Design Automation Conference, pages 235–241, 2021.

[109] Clara Meister, Ryan Cotterell, and Tim Vieira. Best-first beam search. Transactions of the
Association for Computational Linguistics (TACL), 8:795–809, 2020.

[110] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune: an ensemble of
autoencoders for online network intrusion detection. arXiv preprint arXiv:1802.09089, 2018.

[111] Roberto Fernandez Molanes, Kasun Amarasinghe, Juan Rodriguez-Andina, and Milos Manic.
Deep learning and reconfigurable platforms in the internet of things: Challenges and opportu-
nities in algorithms and hardware. IEEE Industrial Electronics Magazine (IEM), 12(2):36–49,
2018.

[112] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Universal
adversarial perturbations. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

[113] Dheevatsa Mudigere, Yuchen Hao, Jianyu Huang, Zhihao Jia, Andrew Tulloch, Srinivas Srid-
haran, Xing Liu, Mustafa Ozdal, Jade Nie, Jongsoo Park, et al. Software-hardware co-design
for fast and scalable training of deep learning recommendation models. In Proceedings of the
49th Annual International Symposium on Computer Architecture, pages 993–1011, 2022.

[114] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin Wongras-
samee, Emil C Lupu, and Fabio Roli. Towards poisoning of deep learning algorithms with
back-gradient optimization. In Proceedings of the 10th ACM workshop on artificial intelli-
gence and security, pages 27–38, 2017.

[115] Hamad Naeem, Farhan Ullah, Muhammad Rashid Naeem, Shehzad Khalid, Danish Vasan,
Sohail Jabbar, and Saqib Saeed. Malware detection in industrial internet of things based on
hybrid image visualization and deep learning model. Ad Hoc Networks, 105:102154, 2020.

[116] VR Niveditha, TV Ananthan, S Amudha, Dahlia Sam, and S Srinidhi. Detect and classify
zero day malware efficiently in big data platform. International Journal of Advanced Science
and Technology, 29(4s):1947–1954, 2020.

[117] Tolulope A Odetola, Faiq Khalid, and Syed Rafay Hasan. Labani: Layer-based noise injection
attack on convolutional neural networks. In Proceedings of the Great Lakes Symposium on
VLSI 2022, pages 143–146, 2022.

112

[118] Niall O’Mahony, Sean Campbell, Anderson Carvalho, Suman Harapanahalli, Gustavo Velasco
Hernandez, Lenka Krpalkova, Daniel Riordan, and Joseph Walsh. Deep learning vs. traditional
computer vision. In Science and information conference, pages 128–144. Springer, 2019.

[119] Christof Paar. A design methodology for stealthy parametric trojans and its application to
bug attacks. Cryptographic Hardware and Embedded Systems(CHES), page 625, 2016.

[120] Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Alexey
Kurakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexander Matyasko, Vahid
Behzadan, Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin Juang, Zhi Li, Ryan Sheatsley,
Abhibhav Garg, Jonathan Uesato, Willi Gierke, Yinpeng Dong, David Berthelot, Paul Hen-
dricks, Jonas Rauber, and Rujun Long. Technical report on the cleverhans v2.1.0 adversarial
examples library. arXiv preprint arXiv:1610.00768, 2018.

[121] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik, and Anan-
thram Swami. Practical black-box attacks against machine learning. In Asia conference on
computer and communications security, pages 506–519, 2017.

[122] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay Celik, and Anan-
thram Swami. The limitations of deep learning in adversarial settings. In Proceedings of the
2016 IEEE European Symposium on Security and Privacy, pages 372–387, 2016.

[123] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. Towards the
science of security and privacy in machine learning. IEEE European Symposium on Security
and Privacy, 2016.

[124] Nicolas Papernot, Patrick McDaniel, Ananthram Swami, and Richard Harang. Crafting adver-
sarial input sequences for recurrent neural networks. In 2016 IEEE Military Communications
Conference, pages 49–54, 2016.

[125] Leandro Parente, Evandro Taquary, Ana Paula Silva, Carlos Souza, and Laerte Ferreira. Next
generation mapping: Combining deep learning, cloud computing, and big remote sensing data.
Remote Sensing, 11(23):2881, 2019.

[126] Victor Henrique Cabral Pinheiro, Marcelo Carvalho dos Santos, Filipe Santana Moreira
do Desterro, Roberto Schirru, and Cláudio Márcio do Nascimento Abreu Pereira. Nuclear
power plant accident identification system with “don’t know” response capability: Novel deep
learning-based approaches. Annals of Nuclear Energy, 137:107111, 2020.

[127] Ashok Kumar Pundir, Jadhav Devpriya Jagannath, and L. Ganapathy. Improving supply chain
visibility using iot-internet of things. In 9th Annual Computing and Communication Workshop
and Conference (CCWC), Las Vegas, NV, USA, January 7-9, pages 156–162. IEEE, 2019.

[128] Eric Qin et al. SIGMA: A sparse and irregular GEMM accelerator with flexible interconnects
for DNN training. In International Symposium on High Performance Computer Architecture
(HPCA), San Diego, CA, USA, February 22-26, pages 58–70. IEEE, 2020.

[129] Sree Ranjani, Maneesh P. K., Nirmala Devi, and Jayakumar M. Golden chip free ht detection
and diagnosis using power signature analysis. Workshop on Reliability Aware System Design
and Test, 2016.

[130] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Im-
agenet classification using binary convolutional neural networks. In European conference on
computer vision, pages 525–542. Springer, 2016.

113

[131] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquellic. New design strategy for
improving hardware trojan detection and reducing trojan activation time. In 2009 IEEE
International Workshop on Hardware-Oriented Security and Trust, pages 66–73. IEEE, 2009.

[132] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, a distilled
version of BERT: Smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

[133] Kaveh Shamsi et al. IP protection and supply chain security through logic obfuscation: A
systematic overview. ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 24(6):65:1–65:36, 2019.

[134] Ahmad Shawahna, Sadiq M Sait, and Aiman El-Maleh. Fpga-based accelerators of deep
learning networks for learning and classification: A review. ieee Access, 7:7823–7859, 2018.

[135] Mohammed Shayan, Kanad Basu, and Ramesh Karri. Hardware trojans inspired IP water-
marks. IEEE Design & Test (D&T), 36(6):72–79, 2019.

[136] Yi Shi, Yalin Sagduyu, and Alexander Grushin. How to steal a machine learning classifier with
deep learning. In International Symposium on Technologies for Homeland Security, pages 1–5.
IEEE, 2017.

[137] Cameron Shinn. tiny-tpu. https://github.com/cameronshinn/tiny-tpu, 2019. Accessed:
2022-03-17.

[138] Samuel Henrique Silva and Peyman Najafirad. Opportunities and challenges in deep learning
adversarial robustness: A survey. arXiv preprint arXiv:2007.00753, 2020.

[139] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Yoshua Bengio and Yann LeCun, editors, International Conference on
Learning Representations, 2015.

[140] Hyun Min Song, Jiyoung Woo, and Huy Kang Kim. In-vehicle network intrusion detection
using deep convolutional neural network. Vehicular Communications, 21:100198, 2020.

[141] Lu Sun, Mingtian Tan, and Zhe Zhou. A survey of practical adversarial example attacks.
Cybersecurity, 1(1):1–9, 2018.

[142] Wencheng Sun, Zhiping Cai, Yangyang Li, Fang Liu, Shengqun Fang, and Guoyan Wang.
Security and privacy in the medical internet of things: a review. Security and Communication
Networks, 2018, 2018.

[143] Vivienne Sze, Yu-Hsin Chen, Joel Emer, Amr Suleiman, and Zhengdong Zhang. Hardware for
machine learning: Challenges and opportunities. In 2017 IEEE Custom Integrated Circuits
Conference (CICC), pages 1–8. IEEE, 2017.

[144] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

[145] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. Efficient Processing of Deep
Neural Networks. Synthesis Lectures on Computer Architecture (SLCA). Morgan & Claypool
Publishers, 2020.

[146] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Good-
fellow, and Rob Fergus. Intriguing properties of neural networks. International Conference on
Learning Representations (ICLR), 2013.

114

https://github.com/cameronshinn/tiny-tpu

[147] Muhammad Imran Tariq, Nisar Ahmed Memon, Shakeel Ahmed, Shahzadi Tayyaba, Muham-
mad Tahir Mushtaq, Natash Ali Mian, Muhammad Imran, and Muhammad W Ashraf. A
review of deep learning security and privacy defensive techniques. Mobile Information Sys-
tems, 2020:1–18, 2020.

[148] Mohammad Tehranipoor and Farinaz Koushanfar. A survey of hardware trojan taxonomy and
detection. IEEE Design & Test of Computers (DTC), 27(1):10–25, 2010.

[149] Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. En-
semble adversarial training: Attacks and defenses. International Conference on Learning
Representations, 2017.

[150] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Stealing
machine learning models via prediction apis. In USENIX Security Symposium, volume 16,
pages 601–618, 2016.

[151] Binghui Wang and Neil Zhenqiang Gong. Stealing hyperparameters in machine learning. In
Symposium on Security and Privacy, pages 36–52. IEEE, 2018.

[152] Erwei Wang, James J Davis, Ruizhe Zhao, Ho-Cheung Ng, Xinyu Niu, Wayne Luk, Peter YK
Cheung, and George A Constantinides. Deep neural network approximation for custom hard-
ware: Where we’ve been, where we’re going. ACM Computing Surveys, 52(2):1–39, 2019.

[153] Junsong Wang, Qiuwen Lou, Xiaofan Zhang, Chao Zhu, Yonghua Lin, and Deming Chen.
Design flow of accelerating hybrid extremely low bit-width neural network in embedded fpga.
In 2018 28th international conference on field programmable logic and applications (FPL),
pages 163–1636. IEEE, 2018.

[154] Yizhi Wang, Jun Lin, and Zhongfeng Wang. Fpap: A folded architecture for energy-quality
scalable convolutional neural networks. IEEE Transactions on Circuits and Systems I: Regular
Papers, 66(1):288–301, 2018.

[155] Yunjuan Wang, Poorya Mianjy, and Raman Arora. Robust learning for data poisoning attacks.
In International Conference on Machine Learning, pages 10859–10869. PMLR, 2021.

[156] Raniyah Wazirali, Rami Ahmad, Ahmed Al-Amayreh, Mohammad Al-Madi, and Ala’ Khal-
ifeh. Secure watermarking schemes and their approaches in the iot technology: an overview.
Electronics, 10(14):1744, 2021.

[157] weiaicunzai. pytorch cifar100. https://github.com/weiaicunzai/pytorch-cifar100, 2021.

[158] Emily Wenger, Roma Bhattacharjee, Arjun Nitin Bhagoji, Josephine Passananti, Emilio
Andere, Haitao Zheng, and Ben Y Zhao. Natural backdoor datasets. arXiv preprint
arXiv:2206.10673, 2022.

[159] Ross Wightman. PyTorch image models. https://github.com/rwightman/

pytorch-image-models, 2019.

[160] Eric Wong, Frank R Schmidt, and J Zico Kolter. Wasserstein adversarial examples via pro-
jected sinkhorn iterations. 36th International Conference on Machine Learning, pages 6808–
6817, 2019.

[161] BaoyuanWu and Bernard Ghanem. ℓp-box ADMM: A versatile framework for integer program-
ming. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 41(7):1695–
1708, 2019.

115

https://github.com/weiaicunzai/pytorch-cifar100
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

[162] Lingfei Wu, Yu Chen, Heng Ji, and Bang Liu. Deep learning on graphs for natural language
processing. In Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 2651–2653, 2021.

[163] Xi Xiang, Giulia I Corsi, Christian Anthon, Kunli Qu, Xiaoguang Pan, Xue Liang, Peng
Han, Zhanying Dong, Lijun Liu, Jiayan Zhong, et al. Enhancing crispr-cas9 grna efficiency
prediction by data integration and deep learning. Nature communications, 12(1):1–9, 2021.

[164] Chaowei Xiao, Jun-Yan Zhu, Bo Li, Warren He, Mingyan Liu, and Dawn Song. Spatially trans-
formed adversarial examples. International Conference on Learning Representations (ICLR),
2018.

[165] Peng Yang, Yingjie Lao, and Ping Li. Robust watermarking for deep neural networks via
bi-level optimization. In International Conference on Computer Vision (ICCV), pages 14841–
14850. IEEE/CVF, 2021.

[166] Muhammad Yasin, Bodhisatwa Mazumdar, Jeyavijayan Rajendran, and Ozgur Sinanoglu.
Hardware security and trust: Logic locking as a design-for-trust solution. In The IoT Physical
Layer, pages 353–373. Springer, 2019.

[167] Jing Ye, Yu Hu, and Xiaowei Li. Hardware trojan in fpga cnn accelerator. In 2018 IEEE 27th
Asian Test Symposium (ATS), pages 68–73. IEEE, 2018.

[168] Xuwang Yin, Soheil Kolouri, and Gustavo K Rohde. Gat: Generative adversarial training
for adversarial example detection and robust classification. In International Conference on
Learning Representations, 2019.

[169] Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adversarial examples: Attacks and defenses
for deep learning. IEEE transactions on neural networks and learning systems, 2019.

[170] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing
fpga-based accelerator design for deep convolutional neural networks. In Proceedings of the
2015 ACM/SIGDA international symposium on field-programmable gate arrays, pages 161–
170, 2015.

[171] Jialiang Zhang and Jing Li. Improving the performance of opencl-based FPGA accelerator
for convolutional neural network. In International Symposium on Field-Programmable Gate
Arrays (FPGA), Monterey, CA, USA, February 22-24, pages 25–34. ACM/SIGDA, 2017.

[172] Jialong Zhang et al. Protecting intellectual property of deep neural networks with watermark-
ing. In Asia Conference on Computer and Communications Security (AsiaCCS), Incheon,
Republic of Korea, June 04-08, pages 159–172. ACM, 2018.

[173] Xiaofan Zhang et al. Dnnbuilder: an automated tool for building high-performance DNN hard-
ware accelerators for fpgas. In International Conference on Computer-Aided Design (ICCAD),
San Diego, CA, USA, November 05-08, page 56. ACM, 2018.

[174] Xiaofan Zhang, Cong Hao, Yuhong Li, Yao Chen, Jinjun Xiong, Wen-mei Hwu, and Deming
Chen. A bi-directional co-design approach to enable deep learning on iot devices. arXiv
preprint arXiv:1905.08369, 2019.

[175] Xiaoqin Zhang et al. Top-k feature selection framework using robust 0-1 integer programming.
IEEE Transactions on Neural Networks and Learning Systems (TNNLS), 32(7):3005–3019,
2021.

116

[176] Bingyin Zhao and Yingjie Lao. Clpa: Clean-label poisoning availability attacks using gener-
ative adversarial nets. In Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI),
2022.

[177] Peng Zhou et al. Unsupervised feature selection for balanced clustering. Knowledge-Based
Systems (KBS), 193:105417, 2020.

[178] Chenzhuo Zhu, Song Han, Huizi Mao, and William J Dally. Trained ternary quantization.
arXiv preprint arXiv:1612.01064, 2016.

117

	Adversarial Deep Learning and Security with a Hardware Perspective
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	The Impact of Deep Learning
	Dangers of Adversaries in Deep Learning
	Hardware Perspective of Deep Learning
	Novel Perspectives in Deep Learning Security

	Deep Learning Backdoors through Modifications to Model Operations
	A Novel Perspective on Deep Learning Backdoors
	Proposed Backdoor Injection Methodology
	Experimental Evaluations
	Conclusions

	Compromising Deep Learning with Hardware Trojans
	Neural Network Hardware Implementations and Trojans
	Injecting Hardware Trojans in Neural Networks
	Experimental Evaluations
	Conclusions

	Preventing Deep Learning Hardware Piracy with Watermarks
	Importance of Watermarking Deep Learning Hardware
	Embedding Watermarks in Deep Learning Hardware
	Experimental Evaluations
	Conclusions

	Compromising Embedded Deep Learning Based Security Systems
	Security of Deep Learning Based Security Systems
	Evaluating the Network Intrusion Detection System
	Experimental Evaluations
	Conclusions

	Conclusions and Furture Directions
	Conclusions
	Related Works
	Future Directions

	Bibliography

