740 research outputs found

    Recognition and Detection of Vehicle License Plates Using Convolutional Neural Networks

    Get PDF
    The rise in toll road usage has sparked a lot of interest in the newest, most effective, and most innovative intelligent transportation system (ITS), such as the Vehicle License Plate Recognition (VLPR) approach. This research uses Convolutional Neural Networks to deliver effective deep learning principally based on Automatic License Plate Recognition (ALPR) for detection and recognition of numerous License Plates (LPs) (CNN). Two fully convolutional one-stage object detectors are utilized in ALPRNet to concurrently identify and categorize LPs and characters, followed by an assembly module that outputs the LP strings. Object detectors are typically employed in CNN-based approaches such as You Only Look Once (YOLO), Faster Region-based Convolutional Neural Network (Faster R-CNN), and Mask Region-based Convolutional Neural Network (Mask R-CNN) to locate LPs. The VLPR model is used here to detect license plates using You Only Look Once (YOLO) and to recognize characters in license plates using Optical Character Recognition (OCR). Unlike existing methods, which treat license plate detection and recognition as two independent problems to be solved one at a time, the proposed method accomplishes both goals using a single network. Matlab R2020a was used as a tool

    Recognition and Detection of Vehicle License Plates Using Convolutional Neural Networks

    Get PDF
    The rise in toll road usage has sparked a lot of interest in the newest, most effective, and most innovative intelligent transportation system (ITS), such as the Vehicle License Plate Recognition (VLPR) approach. This research uses Convolutional Neural Networks to deliver effective deep learning principally based on Automatic License Plate Recognition (ALPR) for detection and recognition of numerous License Plates (LPs) (CNN). Two fully convolutional one-stage object detectors are utilized in ALPRNet to concurrently identify and categorize LPs and characters, followed by an assembly module that outputs the LP strings. Object detectors are typically employed in CNN-based approaches such as You Only Look Once (YOLO), Faster Region-based Convolutional Neural Network (Faster R-CNN), and Mask Region-based Convolutional Neural Network (Mask R-CNN) to locate LPs. The VLPR model is used here to detect license plates using You Only Look Once (YOLO) and to recognize characters in license plates using Optical Character Recognition (OCR). Unlike existing methods, which treat license plate detection and recognition as two independent problems to be solved one at a time, the proposed method accomplishes both goals using a single network. Matlab R2020a was used as a tool

    Low-rank Based Algorithms for Rectification, Repetition Detection and De-noising in Urban Images

    Full text link
    In this thesis, we aim to solve the problem of automatic image rectification and repeated patterns detection on 2D urban images, using novel low-rank based techniques. Repeated patterns (such as windows, tiles, balconies and doors) are prominent and significant features in urban scenes. Detection of the periodic structures is useful in many applications such as photorealistic 3D reconstruction, 2D-to-3D alignment, facade parsing, city modeling, classification, navigation, visualization in 3D map environments, shape completion, cinematography and 3D games. However both of the image rectification and repeated patterns detection problems are challenging due to scene occlusions, varying illumination, pose variation and sensor noise. Therefore, detection of these repeated patterns becomes very important for city scene analysis. Given a 2D image of urban scene, we automatically rectify a facade image and extract facade textures first. Based on the rectified facade texture, we exploit novel algorithms that extract repeated patterns by using Kronecker product based modeling that is based on a solid theoretical foundation. We have tested our algorithms in a large set of images, which includes building facades from Paris, Hong Kong and New York

    Evaluation of LANDSAT MSS vs TM simulated data for distinguishing hydrothermal alteration

    Get PDF
    The LANDSAT Follow-On (LFO) data was simulated to demonstrate the mineral exploration capability of this system for segregating different types of hydrothermal alteration and to compare this capability with that of the existing LANDSAT system. Multispectral data were acquired for several test sites with the Bendix 24-channel MSDS scanner. Contrast enhancements, band ratioing, and principal component transformations were used to process the simulated LFO data for analysis. For Red Mountain, Arizona, the LFO data allowed identification of silicified areas, not identifiable with LANDSAT 1 and 2 data. The improved LFO resolution allowed detection of small silicic outcrops and of a narrow silicified dike. For Cuprite - Ralston, Nevada, the LFO spectral bands allowed discrimination of argillic and opalized altered areas; these could not be spectrally discriminated using LANDSAT 1 and 2 data. Addition of data from the 1.3- and 2.2- micrometer regions allowed better discriminations of hydrothermal alteration types

    Extraction of surface texture data from low quality photographs to aid the construction of virtual reality models of archaeological sites

    Get PDF
    Bibliography: leaves 100-104.A tool has been designed and implemented to use information extracted from photographs captured using uncalibrated cameras (so-called casual photographs) to fill the occlusions which occur in three-dimensional models of photogrammetrically captured sites. Capturing the geometry of archaeological sites by photogrammetric means is relatively expensive and, because of the layouts typical of such sites, usually results in a degree of occlusion. Occlusions are filled by extracting texture and calculating hidden geometry from casual photographs with the support of three-dimensional geometric data gleaned from the photogrammetric survey. The essential philosophy underlying the tool is to segment each occlusion into surfaces which may be approximated using curves and then use known geometry in the region of the occlusion to calculate the most probable locations of the junctions of such surface segments. The tool is primarily a combination of existing techniques for pre-filtering and calibrating the casual photograph, boundary detection and ultimately texture adjustment. The technique implemented for calculating the locations of occluded comers using minimisation of least square errors is new. The tool has been applied to occlusions of the various configurations that are expected to be typical of archaeological sites and has been found to deal well with such features and to provide accurate patches from typical data sets. It is also shown that the three-dimensional geometric model is clearly improved by the filling-in of the occlusion

    Seismotectonic, structural, volcanologic, and geomorphic study of New Zealand; indigenous forest assessment in New Zealand; mapping, land use, and environmental studies in New Zealand, volume 2

    Get PDF
    The author has identified the following significant results. Ship detection via LANDSAT MSS data was demonstrated. In addition, information on ship size, orientation, and movement was obtained. Band 7 was used for the initial detection followed by confirmation on other MSS bands. Under low turbidity, as experienced in open seas, the detection of ships 100 m long was verified and detection of ships down to 30 m length theorized. High turbidity and sea state inhibit ship detection by decreasing S/N ratios. The radiance effect from snow of local slope angles and orientation was also studied. Higher radiance values and even overloading in three bands were recorded for the sun-facing slope. Local hot spots from solar reflection appear at several locations along transect D-C in Six Mile Creek Basin during September 1976

    Selectively De-animating and Stabilizing Videos

    Full text link
    This thesis presents three systems for editing the motion of videos. First, selectively de-animating videos seeks to remove the large-scale motions of one or more objects so that other motions are easier to see. The user draws strokes to indicate the regions that should be immobilized, and our algorithm warps the video to remove large-scale motion in regions while leaving finer-scale, relative motions intact. We then use a graph-cut-based optimization to composite the warped video with still frames from the input video to remove unwanted background motion. Our technique enables applications such as clearer motion visualization, simpler creation of artistic cinemagraphs, and new ways to edit appearance and motion paths in video. Second, we design a fully automatic system to create portrait cinemagraphs by tracking facial features and de-animating the video with respect to the face and torso. We then generate compositing weights automatically to create the final cinemagraph portraits.Third, we present a user-assisted video stabilization algorithm that is able to stabilize challenging videos when state-of-the-art automatic algorithms fail to generate a satisfactory result. Our system introduces two new modes of interaction that allow the user to improve an unsatisfactory automatically stabilized video. First, we cluster tracks and visualize them on the warped video. The user ensures that appropriate tracks are selected by clicking on track clusters to include or exclude them to guide the stabilization. Second, the user can directly specify how regions in the output video should look by drawing quadrilaterals to select and deform parts of the frame. Our algorithm then computes a stabilized video using the user-selected tracks, while respecting the user-modified regions

    Towards a unified framework for identity documents analysis and recognition

    Get PDF
    Identity documents recognition is far beyond classical optical character recognition problems. Automated ID document recognition systems are tasked not only with the extraction of editable and transferable data but with performing identity validation and preventing fraud, with an increasingly high cost of error. A significant amount of research is directed to the creation of ID analysis systems with a specific focus for a subset of document types, or a particular mode of image acquisition, however, one of the challenges of the modern world is an increasing demand for identity document recognition from a wide variety of image sources, such as scans, photos, or video frames, as well as in a variety of virtually uncontrolled capturing conditions. In this paper, we describe the scope and context of identity document analysis and recognition problem and its challenges; analyze the existing works on implementing ID document recognition systems; and set a task to construct a unified framework for identity document recognition, which would be applicable for different types of image sources and capturing conditions, as well as scalable enough to support large number of identity document types. The aim of the presented framework is to serve as a basis for developing new methods and algorithms for ID document recognition, as well as for far more heavy challenges of identity document forensics, fully automated personal authentication and fraud prevention.This work was partially supported by the Russian Foundation for Basic Research (Project No. 18-29-03085 and 19-29-09055)
    corecore