7 research outputs found

    Fisher exact Boschloo and polynomial vector learning for malware detection

    Get PDF
    Computer technology shows swift progress that has infiltrated people’s lives with the candidness and pliability of computers to work ease shows security breaches. Thus, malware detection methods perform modifications in running the malware based on behavioral and content factors. The factors are taken into consideration compromises of convergence rate and speed. This research paper proposed a method called fisher exact Boschloo and polynomial vector learning (FEB-PVL) to perform both content and behavioral-based malware detection with early convergence to speed up the process. First, the input dataset is provided as input then fisher exact Boschloo’s test Bernoulli feature extraction model is applied to obtain independent observations of two binary variables. Next, the extracted network features form input to polynomial regression support vector learning to different malware classes from benign classes. The proposed method validates the results with respect to the malware and the benign files. The present research aimed to develop the behaviors to detect the accuracy process of the features that have minimum time speeds the overall performances. The proposed FEB-PVL increases the true positive rate and reduces the false positive rate and hence increasing the precision rate using FEB-PVL by 7% compared to existing approaches

    Malware Resistant Data Protection in Hyper-connected Networks: A survey

    Full text link
    Data protection is the process of securing sensitive information from being corrupted, compromised, or lost. A hyperconnected network, on the other hand, is a computer networking trend in which communication occurs over a network. However, what about malware. Malware is malicious software meant to penetrate private data, threaten a computer system, or gain unauthorised network access without the users consent. Due to the increasing applications of computers and dependency on electronically saved private data, malware attacks on sensitive information have become a dangerous issue for individuals and organizations across the world. Hence, malware defense is critical for keeping our computer systems and data protected. Many recent survey articles have focused on either malware detection systems or single attacking strategies variously. To the best of our knowledge, no survey paper demonstrates malware attack patterns and defense strategies combinedly. Through this survey, this paper aims to address this issue by merging diverse malicious attack patterns and machine learning (ML) based detection models for modern and sophisticated malware. In doing so, we focus on the taxonomy of malware attack patterns based on four fundamental dimensions the primary goal of the attack, method of attack, targeted exposure and execution process, and types of malware that perform each attack. Detailed information on malware analysis approaches is also investigated. In addition, existing malware detection techniques employing feature extraction and ML algorithms are discussed extensively. Finally, it discusses research difficulties and unsolved problems, including future research directions.Comment: 30 pages, 9 figures, 7 tables, no where submitted ye

    Malware detection with artificial intelligence: A systematic literature review

    Get PDF
    In this survey, we review the key developments in the field of malware detection using AI and analyze core challenges. We systematically survey state-of-the-art methods across five critical aspects of building an accurate and robust AI-powered malware-detection model: malware sophistication, analysis techniques, malware repositories, feature selection, and machine learning vs. deep learning. The effectiveness of an AI model is dependent on the quality of the features it is trained with. In turn, the quality and authenticity of these features is dependent on the quality of the dataset and the suitability of the analysis tool. Static analysis is fast but is limited by the widespread use of obfuscation. Dynamic analysis is not impacted by obfuscation but is defeated by ubiquitous anti-analysis techniques and requires more computational power. Sophisticated and evasive malware is challenging to extract authentic discriminatory features from and, combined with poor quality datasets, this can lead to a situation where a model achieves high accuracy with only one specific dataset

    A Survey and Evaluation of Android-Based Malware Evasion Techniques and Detection Frameworks

    Get PDF
    Android platform security is an active area of research where malware detection techniques continuously evolve to identify novel malware and improve the timely and accurate detection of existing malware. Adversaries are constantly in charge of employing innovative techniques to avoid or prolong malware detection effectively. Past studies have shown that malware detection systems are susceptible to evasion attacks where adversaries can successfully bypass the existing security defenses and deliver the malware to the target system without being detected. The evolution of escape-resistant systems is an open research problem. This paper presents a detailed taxonomy and evaluation of Android-based malware evasion techniques deployed to circumvent malware detection. The study characterizes such evasion techniques into two broad categories, polymorphism and metamorphism, and analyses techniques used for stealth malware detection based on the malware’s unique characteristics. Furthermore, the article also presents a qualitative and systematic comparison of evasion detection frameworks and their detection methodologies for Android-based malware. Finally, the survey discusses open-ended questions and potential future directions for continued research in mobile malware detection

    Malware detection issues, challenges, and future directions: A survey

    Get PDF
    The evolution of recent malicious software with the rising use of digital services has increased the probability of corrupting data, stealing information, or other cybercrimes by malware attacks. Therefore, malicious software must be detected before it impacts a large number of computers. Recently, many malware detection solutions have been proposed by researchers. However, many challenges limit these solutions to effectively detecting several types of malware, especially zero-day attacks due to obfuscation and evasion techniques, as well as the diversity of malicious behavior caused by the rapid rate of new malware and malware variants being produced every day. Several review papers have explored the issues and challenges of malware detection from various viewpoints. However, there is a lack of a deep review article that associates each analysis and detection approach with the data type. Such an association is imperative for the research community as it helps to determine the suitable mitigation approach. In addition, the current survey articles stopped at a generic detection approach taxonomy. Moreover, some review papers presented the feature extraction methods as static, dynamic, and hybrid based on the utilized analysis approach and neglected the feature representation methods taxonomy, which is considered essential in developing the malware detection model. This survey bridges the gap by providing a comprehensive state-of-the-art review of malware detection model research. This survey introduces a feature representation taxonomy in addition to the deeper taxonomy of malware analysis and detection approaches and links each approach with the most commonly used data types. The feature extraction method is introduced according to the techniques used instead of the analysis approach. The survey ends with a discussion of the challenges and future research directions

    Tree-Based Classifier Ensembles for PE Malware Analysis: A Performance Revisit

    Get PDF
    Given their escalating number and variety, combating malware is becoming increasingly strenuous. Machine learning techniques are often used in the literature to automatically discover the models and patterns behind such challenges and create solutions that can maintain the rapid pace at which malware evolves. This article compares various tree-based ensemble learning methods that have been proposed in the analysis of PE malware. A tree-based ensemble is an unconventional learning paradigm that constructs and combines a collection of base learners (e.g., decision trees), as opposed to the conventional learning paradigm, which aims to construct individual learners from training data. Several tree-based ensemble techniques, such as random forest, XGBoost, CatBoost, GBM, and LightGBM, are taken into consideration and are appraised using different performance measures, such as accuracy, MCC, precision, recall, AUC, and F1. In addition, the experiment includes many public datasets, such as BODMAS, Kaggle, and CIC-MalMem-2022, to demonstrate the generalizability of the classifiers in a variety of contexts. Based on the test findings, all tree-based ensembles performed well, and performance differences between algorithms are not statistically significant, particularly when their respective hyperparameters are appropriately configured. The proposed tree-based ensemble techniques also outperformed other, similar PE malware detectors that have been published in recent years
    corecore