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Malware Detection with Artificial Intelligence: A Systematic 

Literature Review 

MATTHEW G. GABER , MOHIUDDIN AHMED , and HELGE JANICKE , Edith Cowan 

University School of Science, Australia 

In this survey, we review the key developments in the field of malware detection using AI and analyze core 
challenges. We systematically survey state-of-the-art methods across five critical aspects of building an accu- 
rate and robust AI-powered malware-detection model: malware sophistication, analysis techniques, malware 
repositories, feature selection, and machine learning vs. deep learning. The effectiveness of an AI model is 
dependent on the quality of the features it is trained with. In turn, the quality and authenticity of these fea- 
tures is dependent on the quality of the dataset and the suitability of the analysis tool. Static analysis is fast 
but is limited by the widespread use of obfuscation. Dynamic analysis is not impacted by obfuscation but is 
defeated by ubiquitous anti-analysis techniques and requires more computational power. Sophisticated and 
evasive malware is challenging to extract authentic discriminatory features from and, combined with poor 
quality datasets, this can lead to a situation where a model achieves high accuracy with only one specific 
dataset. 

CCS Concepts: • Security and privacy → Malware and its mitigation • Computing methodologies 

→ Artificial intelligence; Machine learning approaches • General and reference → Surveys and overviews; 

Additional Key Words and Phrases: Malware, artificial intelligence, machine learning, deep learning, com- 
puter security, malware repository, malware analysis techniques, feature selection, evasive malware, sophis- 
ticated malware 

ACM Reference format: 

Matthew G. Gaber, Mohiuddin Ahmed, and Helge Janicke. 2024. Malware Detection with Artificial Intelli- 
gence: A Systematic Literature Review. ACM Comput. Surv. 56, 6, Article 148 (January 2024), 33 pages. 
https://doi.org/10.1145/3638552 

1 INTRODUCTION 

In recent years, there has been increasing interest in malware detection using Artificial Intel- 

ligence (AI) , which is an umbrella term for a number of Machine Learning (ML) and Deep 

Learning (DL) models. AI in the cybersecurity domain can be divided into three main areas: mal- 
ware detection, network intrusion detection, and phishing detection [ 6 , 7 , 93 ]. Network intrusion 

detection attempts to discover and prevent malicious network traffic across a wide range of se- 
curity threats, including Denial of Service (DoS) and Distributed Denial of Service (DDoS) 

attacks, botnet activities, malware communication with Command and Control (C2) servers, 
crypto mining attacks, and exfiltration of data [ 6 , 7 , 20 , 25 , 75 ]. Phishing detection attempts to 

Authors’ address: M. G. Gaber, M. Ahmed, and H. Janicke, Edith Cowan University School of Science, 270 Joon- 

dalup Dr, Joondalup, Western Australia, Australia, 6027; e-mails: mgaber@our.ecu.edu.au, {mohiuddin.ahmed, h.janicke}@ 

ecu.edu.au. 

This work is licensed under a Creative Commons Attribution International 4.0 License. 

© 2024 Copyright held by the owner/author(s). 

0360-0300/2024/01-ART148 

https://doi.org/10.1145/3638552 

ACM Computing Surveys, Vol. 56, No. 6, Article 148. Publication date: January 2024. 

https://orcid.org/0000-0003-1684-1392
https://orcid.org/0000-0002-4559-4768
https://orcid.org/0000-0002-1345-2829
https://doi.org/10.1145/3638552
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3638552
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638552&domain=pdf&date_stamp=2024-01-22


148:2 M. G. Gaber et al. 

Fig. 1. Adversarial threat model. 

identify and prevent a large set of techniques that attempt to deceive individuals into disclos- 
ing sensitive information, opening malicious files, and following links to malicious websites [ 6 , 7 , 
47 ]. This article focuses on malware detection that includes trojans, ransomware, crypto miners, 
worms, botnets, and others, each with distinct functionality and purpose [ 72 , 99 ]. 

The cyber arms race between malicious adversaries and security researchers is cyclical, where 
once a vulnerability is discovered and an exploit developed, then mitigations are implemented [ 24 , 
69 ]. Accordingly, malware authors continuously develop new anti-analysis techniques to evade 
analysis tools, where, if the malware detects it is under analysis, then it hides its malicious in- 
tent or ceases execution [ 29 , 30 , 74 , 77 ]. Evasive malware is widespread and employs varied anti- 
analysis techniques to evade widely used static and dynamic analysis tools, such as disassemblers, 
decompilers, debuggers, sandboxes, and Dynamic Binary Instrumentation (DBI) [ 22 , 30 , 69 , 
74 ]. Anti-analysis directly impacts AI models, as the detection accuracy and resilience of a model 
is dependent on the quality and authenticity of the features it is trained with [ 25 , 45 , 90 ]. Addi- 
tionally, cyber-attacks continue to evolve where malware authors have easy access to feature rich 

programming languages and powerful open-source encryption, as well as AI libraries, that enable 
the development of new sophisticated malware [ 14 , 48 , 81 , 84 , 104 ]. 

During 2022, IBM Security studied 550 organizations across 17 countries impacted by data 
breaches and found the average total cost was USD 4.35 million per incident [ 41 ]. In addition, 
the AV Test Institute registers 450,000 new malware and potentially unwanted applications every 

day. Further, the total number of malware targeting Windows, Android, Mac OS, and Linux has 
more than doubled from 450 million in 2018 to 970 million in 2022 [ 11 ]. Dark web marketplaces 
offer numerous and diverse hacking products and services. Marin et al. [ 60 ] have collected data 
from 20 marketplaces, where they found 51,902 products offered by 7,055 vendors. The threat land- 
scape is diverse and can be summarized with an adversarial threat model that illustrates how an 

adversary can use a capability and infrastructure against a victim (Figure 1 ). Ransomware, which 
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Table 1. Summary and Comparison of Recent Literature Reviews with Our Article 

Paper 
Malware 

Sophistication 

Static & 

Dynamic 
Analysis 

Malware 
Datasets 

Feature 
Selection 

ML & 

DL Results Challenges 

[ 33 ] ≈ � x � � x � 

[ 85 ] x x ≈ x � � � 

[ 71 ] � � x ≈ x x x 

[ 8 ] � ≈ � � ≈ ≈ ≈
[ 20 ] � ≈ x x ≈ ≈ ≈
[ 90 ] � � � � ≈ ≈ � 

This article � � � � � � � 

Covered � ; Partially Covered ≈; Not Covered x . 

includes crypto that encrypts specific folders, and a locker, which encrypts the entire hard drive, 
is one of the most widespread types of malware, where the decryption key is only provided if a 
ransom is paid [ 48 ]. This is of particular concern and a major risk for both individuals and organi- 
zations [ 48 , 84 ]. Ransomware toolkits, Ransomware as a Service (RaaS) , and the large infection 

vector have created significant growth in ransomware attacks [ 84 ]. 
For the reasons outlined above, AI is becoming essential in detecting malware. However, opti- 

mizing an AI model that is dependent on high-quality features to detect novel, evasive, and sophis- 
ticated malware is a significant task [ 10 , 12 , 90 ]. The effectiveness of an AI model is dependent on 

the quality and quantity of the features it is trained with [ 3 , 45 , 57 , 90 , 103 ]. In turn, the quality and 

authenticity of these features is dependent on the quality of the dataset and the suitability of the 
analysis tool. Where the objective is to deploy an AI model in a production environment, it must be 
accurate and generalizable so it can detect malware it has never seen before, but also be practical 
and lightweight. This is challenging for a number of reasons. There are numerous types of malware 
where each category behaves differently and may not have any commonalities [ 72 , 99 ]. Further, 
sophisticated and evasive malware that use anti-analysis techniques impacts analysis tools, ex- 
tracted features, and the accuracy of the AI model. This article surveys state-of-the-art methods 
across five critical aspects of building an accurate and robust AI malware-detection model: mal- 
ware sophistication, analysis techniques, malware repositories, feature selection, and ML vs. DL. 

The remainder of this article is structured as follows: Section 2 presents a summary of previ- 
ous literature reviews and their focus and findings. Section 3 defines the review methodology of 
this article including the research questions, search strategy, and exclusion and inclusion criteria. 
Section 4 presents the current issues and challenges, and Section 5 discusses these trends and the 
core obstacles. Section 6 presents our conclusions. 

2 RELATED WORK 

Research studies and literature surveys in this field have tended to focus on specific aspects of 
malware detection such as: malware sophistication and evasiveness, or static and dynamic analysis 
techniques, or malware repositories, or feature selection and AI models. This splintered approach 

has led to a situation where many of the research papers claim to outperform others; however, the 
results are contradictory. Some studies claim that DL is more accurate and efficient than ML and 

vice versa. This section provides a summary of recent literature reviews and their focus, where 
Table 1 summarizes the contributions. 

Gibert et al. [ 33 ] have presented an in-depth systematic review that focuses on categorizing AI 
techniques based on the malware analysis method, being either static or dynamic. A taxonomy 

of the features that can be extracted with static and dynamic analysis is presented along with 
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a detailed description of each. The types of AI models used with various features are detailed, 
and Gibert et al. [ 33 ] have considered how adversarial malware can defeat AI. The limitations 
of sophisticated malware and how it can evade analysis tools along with the challenges faced by 

researchers, including unbalanced datasets and concept drift, are also discussed [ 33 ]. 
Shaukat et al. [ 85 ] have identified and provided detailed information on the varied ML and DL 

techniques widely used in cybersecurity. They provide an extensive systematic review on AI used 

for a number of cybersecurity fields, including spam detection, intrusion detection, and malware 
detection. The dataset, analysis technique, AI model, and results are identified for the surveyed 

research papers. Further, Shaukat et al. [ 85 ] identify the requirement for current, large, and diverse 
benchmark datasets. Or-Meir et al. [ 71 ] have identified dynamic analysis as being more robust than 

static analysis, presenting a systematic review of dynamic malware analysis. Their study provides 
a comprehensive overview of malware and classifications based on type, behavior, and privileges 
and also comprehensively covers anti-analysis techniques used by evasive malware. The focus of 
their survey is dynamic analysis, and the tools and techniques that are widely used are discussed 

in detail. Aslan and Samet [ 8 ] have provided a review on malware classification approaches. In 

their study, the challenges with sophisticated and evasive malware are covered, and a number of 
features and malware repositories are identified. However, the main focus of their review is the 
varied malware detection approaches including signature-based, behavior-based, deep learning, 
and cloud-based, among others. The results and the features used across the various detection 

approaches are covered in detail. 
Caviglione et al. [ 20 ] have provided a systematic review on the evolution of malware, infor- 

mation hiding, evolution of malware detection, and the application of AI. Their review surveys 
recent developments in malware types and techniques as well as the evolution of obfuscation 

and evasion. Where early malware used encryption and code obfuscation to escape static signa- 
ture detection, more recent malware employs ever-increasingly sophisticated techniques including 

polymorphism and anti-analysis techniques. Various steganographic techniques are covered that 
include hiding malicious content in benign files and in covert network channels using various le- 
gitimate TCP/IP protocols. Caviglione et al. [ 20 ] review the evolution of malware detection from 

signature-based to behavior and heuristic methods to AI models. Widely used ML and DL models 
are considered, and emerging techniques such as blockchain-based malware detection and transfer 
learning AI models are presented. The main focus of their review is to provide a detailed perspec- 
tive across many domains, including the evolution of malware and evolving detection techniques 
used by security researchers. 

Ucci et al. [ 90 ] have provided the most complete systematic literature review, considering mal- 
ware sophistication, static and dynamic analysis techniques, malware repositories, feature selec- 
tion, and the challenges and limitations associated with each. However, information on the various 
AI models nor the results for the papers surveyed are provided. 

Given the limitations of recent works, this study presents a systematic review on AI techniques 
for malware detection, examining state-of-the-art methods across the five critical aspects of build- 
ing accurate and robust AI malware detection models. 

3 REVIEW METHODOLOGY 

This study systematically identifies and critically analyzes state-of-the-art methods and challenges 
for malware detection using AI. The methodology is based on an analysis of relevant literature and 

a synthesis of research findings in a systematic, transparent, and reproducible way. The main focus 
of this article is Windows malware, however, a limited number of papers that studied Android, 
Linux, and IoT malware are also evaluated due to the novel approaches presented. 
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3.1 Research Questions 

RQ1. What are the major challenges for malware detection using AI? 
RQ2. What are the emergent technologies used by malware authors? 
RQ3. How does sophisticated malware impact static and dynamic analysis? 
RQ4. What are the limitations of existing malware repositories? 
RQ5. What features are optimal for training an AI model? 
RQ6. Which AI models are most successful for malware detection and what are their advantages 

and limitations? 

3.2 Search Strategy 

An extensive literature search was conducted in the ACM Digital Library, 1 IEEE Xplore, 2 and the 
Scopus database. 3 ACM Digital Library was chosen because it provides access to Association for 

Computing Machinery (ACM) journals, proceedings, and conferences. Similarly, IEEEXplore 
was chosen because it provides access to Institute of Electrical and Electronics Engineers 

(IEEE) conference papers and journals. Both ACM and IEEE are predominant in cybersecurity. 
Scopus was chosen because it is the most comprehensive database for the relevant subject area. 
The results were limited to articles published no earlier than 2018 to focus on the latest research 

in a rapidly evolving field. Google Scholar was also used, as it allows a broad search across many 

sources and to specifically target the latest research that examines the use of Large Language 

Models (LLM) for cybersecurity. 

3.2.1 ACM Digital Library. Search string: [[Title: “artificial intelligence”] OR [Title: “machine 
learning”] OR [Title: “deep learning”]] AND [[Title: malware] OR [Title: ransomware]] AND NOT 

[[Title: survey] OR [Title: review]] AND [E-Publication Date: (01/01/2018 TO 12/31/2022)] This 
search returned 57 results (6 Journals and 49 other) on November 10, 2022. 

3.2.2 IEEEXplore. Search string: (“Document Title”: “artificial intelligence” OR “Document Ti- 
tle”: “machine learning” OR “Document Title”: “deep learning”) AND (“Document Title”: malware 
OR “Document Title”: ransomware) NOT (“Document Title”: survey OR “Document Title”: review) 
Limit: 2018–2022 This search returned 305 results (Journals 30 and 262 Conferences) on November 
4, 2022. 

3.2.3 Scopus. Three search strings were used for Scopus where the search was in the title, 
abstract, and keywords, limited to Computer Science, Engineering, Mathematics, and Decision 

Science, and sorted by relevance. 

(1) (artificial AND intelligence) OR (machine AND learning) OR (deep AND learning) AND 

(malware) OR (ransomware). Date range 2019–2023. This search returned 4,576 results on 

November 14, 2022, where sorted by relevance the first 300 results were analyzed. 
(2) (malware OR ransomware) AND (sampl*) AND (database OR dataset OR repository) AND 

(taxonom* OR famil* OR categor*) AND NOT (android OR linux). Date range 2018–2022. 
This search returned 143 results on November 14, 2022. 

(3) (malware OR ransomware) AND (dynamic OR sandbox OR analysis) AND (evad* OR evas* 
OR anti) AND NOT (android). Date range 2018–2022. This search returned 1,413 results 
on November 14, 2022, where sorted by relevance the first 300 results were analyzed. 

1 https://dl.acm.org 
2 https://ieeexplore.ieee.org/Xplore/home.jsp 
3 https://w w w.scopus.com/home.uri 
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3.2.4 Google Scholar. Search string: “artificial intelligence” OR “machine learning” OR “deep 

learning” AND malware OR ransomware -android -adversarial -survey -review -classification. 
Limit: 2018 onwards. This search returned 2,630 results on November 10, 2022. The first 10 pages 
of results were analyzed, which returned 4 relevant papers. 

3.2.5 Google Scholar. Search string: malware AND “generative AI” OR “ChatGPT” OR “LLM”
OR “Large Language Models” OR “BARD” Limit: 2022 onwards. This search returned 1,170 results 
on September 13, 2023. The first 10 pages of results were analyzed, which returned 4 relevant 
papers. 

3.3 Inclusion and Exclusion Criteria 

The objective was to select scientific papers on recent advances in malware detection using AI. 
Inclusion 

—Quantitative research design that uses an experimental methodology to evaluate AI 
techniques. 

—Papers that focus on malware detection. 
—Papers published from 2018 onwards. 
—A minimum 80% of the selected papers to be peer-reviewed from ACM Digital Library, 

Elsevier’s Scopus, or IEEE Xplore Digital Library. 
—A maximum 20% of the selected papers may be grey literature. 

Exclusion 

—Studies that focus on malware family classification. 
—Studies that do not explicitly define the AI techniques used. 
—Studies that do not explicitly define the malware and benign software datasets. 
—Studies that do not explicitly define the feature extraction method used for training and 

testing the AI model. 
—Studies that do not explicitly define the results. 
—Technical documents, reports, thesis, and books. 
—Studies that are not published in the English language. 

4 RESULTS 

After applying the inclusion and exclusion criteria, we selected 77 papers for the final analysis, 
including 10 grey papers. The following sections discuss state-of-the-art methods for the five key 

aspects of building an accurate and robust AI malware-detection model. 

4.1 Malware Sophistication 

Anti-virus and malware scanners typically use signatures to detect known and previously classi- 
fied threats and heuristic-based detection [ 10 , 40 , 43 , 48 , 72 ]. A malware signature is a sequence 
of bytes that represent a pattern of behavior, code, or strings found in a malware file [ 17 , 48 ]. 
Heuristic-based malware detection uses a set of rules defined by malware analysts to identify sus- 
picious behavior but can be prone to error [ 43 , 102 ]. As cyber-attacks continue to become more 
advanced, the sophistication of modern malware means that signature-based and heuristic detec- 
tion can be easily defeated [ 22 , 48 , 51 , 58 , 95 ]. Further, recycled malware that has been slightly 

changed or obfuscated bypasses signature detection engines, where defining a signature for new 

malware or its variants is time-consuming, both in terms of the manual analysis required and 

also the client update, which may not be performed for months [ 34 , 48 , 72 , 102 ]. Evasive malware 
that seeks to hide its malicious intent, malware that uses AI to conceal payloads with target and 
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trigger conditions, and novel malware that does not have a signature further complicate modern 

malware detection [ 17 , 22 , 73 , 84 , 95 ]. This is not limited to Windows but also impacts Android, 
Internet of Things (IoT) , and Linux VM cloud servers, where similar sophisticated techniques 
can be implemented [ 25 , 70 , 72 ]. 

4.1.1 Evasive Malware. Malware authors continuously develop new anti-analysis techniques 
to evade analysis tools, either by obfuscating a file or using anti-analysis techniques where if the 
malware detects it is under analysis during execution, then it hides its malicious intent [ 29 , 30 , 48 , 
72 , 74 , 77 ]. The longer malware can evade analysis, the more opportunity it has to inflict damage 
or extort ransom payments [ 30 ]. Evasive malware is ubiquitous and resists analysis by widely used 

tools, such as decompilers, debuggers, sandboxes, and DBI [ 12 , 22 , 30 , 69 , 73 , 74 ]. 
Malware authors can use numerous techniques to resist analysis. Obfuscation is often used to 

make the malware files more difficult to detect and analyze and primarily affects static analy- 
sis. Code Packing is a type of obfuscation that compresses parts of a malicious file that are only 

decompressed when the program is executed [ 48 ]. Metamorphic obfuscation can be used to trans- 
form the Header and Sections in previously detected malicious Portable Executable (PE) files. 
Metamorphic malware may use dead code insertion, Central Processing Unit (CPU) register 
reassignment, and code reordering [ 34 ]. These changes to a malicious file do not alter its func- 
tionality or behavior but only its composition, which directly impacts features extracted using 

static analysis [ 34 , 99 ]. Polymorphic obfuscation is more challenging to deal with, as it encrypts 
and mutates parts of the internal code to change its shape and signature, whereby the decryption 

method may only decrypt parts of the file as required by execution [ 48 ]. Legitimate software can 

use commercial packers, which also implement evasive behaviors and obfuscation techniques, to 

prevent analysis and reverse engineering of proprietary products [ 74 ]. 
In a dynamic analysis environment, evasive malware can use varied anti-analysis techniques to 

detect the environment in which it is running, and then to behave differently and hide its mali- 
cious intent if it detects it is under analysis [ 12 , 31 , 40 , 69 ]. Malware can probe its environment 
by performing a series of API calls to fingerprint the runtime environment and avoid malicious 
execution in dynamic analyzers such as debuggers, sandboxes, and DBI [ 30 , 40 , 66 ]. 

Galloro et al. [ 30 ] have surveyed existing literature to identify evasive techniques used by Win- 
dows malware to defeat analysis, identifying 92 evasive techniques that are classified into 16 cat- 
egories according to the type of operation they perform. Further, Galloro et al. [ 30 ] have experi- 
mentally quantified the prevalence of the evasive techniques in modern malware using the Intel 
Pin DBI tool. 

The scope of research conducted by Galloro et al. [ 30 ] is comprehensive, considering a large 
number of evasive techniques, live malware samples, and temporal and taxonomic analysis. The 
study’s analysis of evasive techniques used 45,375 malware samples and 516 legitimate PE files 
[ 30 ]. The Intel Pin tool, with a framework based on Arancino [ 77 ], was used to automatically 

analyze the evasive techniques. The framework was then extended and validated by implementing 

92 techniques in test programs, after which experiments were performed to confirm the framework 

and whether or not DBI could detect and circumvent all 92 evasive techniques. The framework 

operates by circumventing four types of operations detailed in Table 2 and implementing a blacklist 
of terms used to fingerprint execution environments. 

The framework implemented by Galloro et al. [ 30 ] inserts hooks before and after any function 

or operation that is associated with the 92 evasive techniques. A predefined bypass mechanism 

and logging routine was then executed to circumvent the evasive operation. If the malware used 

multiple evasive techniques, then this method of bypassing the probes continued. Additionally, 
when the malware accessed file information by executing syscalls, the framework examined the 
file path; and if it contained any of the terms in the blacklist, for example “debugger,” then a NOT 
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Table 2. Operations Used in Evasive Behavior 

Operation [ 30 ] Details 

Instruction Pointer (IP) The IP is monitored for every instruction that is processed by the Central 
Processing Unit (CPU). 

Application Programming 
Interface (API) 

Allows programs to communicate and malware can interact with the OS 
and use its libraries. 

System Calls (syscalls) Allows programs to request a service from the kernel, malware can request 
a service and, based on the return, determine if it is running on bare metal. 

Memory Access Malware can attempt to read certain parts of the memory to detect if it is 
running on bare metal or a virtualized or instrumented environment. 

FOUND was returned to the calling function. A similar approach was generated whenever the 
Windows registry was enumerated. Further to this, DBI introduced significant overhead, so when 

the evasive behavior involves time measurements, the returned values were reduced accordingly. 
It is worth noting that 15 of the 92 techniques were not found in any of the samples and that 
approximately 80% of the malware samples were evasive [ 30 ]. 

Park et al. [ 74 ] have surveyed existing literature to identify evasive techniques used by Windows 
malware to defeat analysis and classified 29 techniques into 3 groups as based on Operating Sys- 

tem (OS) libraries and instructions. Park et al. [ 74 ] implemented their 29 evasive techniques and 

conducted experiments to determine if the standard installation of the Intel Pin tool could escape 
detection of the probes performed by the evasive techniques. Eight evasive techniques were sub- 
sequently identified to detect the Intel Pin runtime environment. A plugin for Intel Pin was then 

created, with three algorithms to automatically intercept the eight evasive techniques and to de- 
ploy countermeasures so all 29 evasive techniques could be automatically circumvented [ 74 ]. The 
techniques, Prefix Handling, Memory Breakpoint, and Self-Modification, that were identified by 

Park et al. [ 74 ] detected the Intel Pin tool, but were not considered by Galloro et al. [ 30 ]. The tech- 
niques that were considered by both Park et al. [ 74 ] and Galloro et al. [ 30 ] are presented in Table 3 . 

Kim et al. [ 51 ] and Polino et al. [ 77 ] have reported anti-instrumentation, that is, anti-DBI tech- 
niques to be found in 16.21% and 15.6% of analyzed malware samples, respectively. Contrastingly, 
Galloro et al. [ 30 ] and Sharma et al. [ 83 ] have reported anti-analysis techniques to be evident in 

80% and 99.36% of the malware samples they analyzed, respectively, which indicates the evasive 
techniques used by malware authors are not focused on DBI but rather debuggers and sandboxes. 
New evasive techniques are constantly being discovered, where the methods for circumventing 

the previously identified anti-analysis techniques will not work with new anti-analysis techniques 
[ 30 ]. Therefore, the results presented by Galloro et al. [ 30 ] may underestimate the prevalence of 
evasiveness, while Park et al. [ 74 ] may have overestimated the transparency of the Intel Pin tool 
to evasive malware. Further to this, Maffia et al. [ 59 ] have shown that approximately 68% of the 
malware samples they analyzed used some form of obfuscation, which severely limits static anal- 
ysis. Because evasive behavior is widespread, Chen et al. [ 21 ] have proposed the use of artefacts 
to imitate VMs and debuggers, which could be used to protect real machines from malware. 

4.1.2 Novel Malware. In this article, the term novel malware is used to describe any malware 
that has not been seen before and would not be detected by a malware detection engine that uses 
signature matching. This includes new malware that does not fit existing families, malware that 
employs new anti-analysis or obfuscation techniques, and zero-day malware that exploits zero-day 

vulnerabilities. 
Advanced Persistent Threat (APT) malware is characterized by: its sophistication; advanced 

Tactics, Techniques, and Procedures (TTPs) ; and its lengthy campaigns, which can last for 
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Table 3. Evasive Techniques, whether They Can Detect the Intel Pin Tool and Their Prevalence 

EvasiveTechnique [ 74 ] Pin Detected [ 74 ] Malware (%) [ 30 ] Benign (%) [ 30 ] 
IsDebuggerPresent x 1,516 (3.34) 17 (1.79) 
CheckRemoteDebuggerPresent x 432 (0.95) 1 (0.11) 
OutputDebugString x 794 (1.75) 26 (2.74) 
FindWindow x 2,245 (4.95) 51 (5.37) 
QueryInformationProcess x 1,028 (2.27) 4 (0.42) 
SetInformationThread x 350 (0.77) 1 (0.11) 
OutputDebugString()FormatString x N.A. N.A. 
SeDebugPrivilege OpenProcess a x N.A. N.A. 
QIP(ProcessDebugFlags) � 1,028 (2.27) 4 (0.42) 
QIP(DebugHandleObject) b x 10,651 (23.47) 157 (16.53) 
QueryPerformanceCounter � 6,038 (13.31) 140 (14.74) 
GetTickCount x 11,029 (24.32) 198 (20.84) 
timeGetTime x 805 (1.77) 32 (3.37) 
CloseHandle x 3,104 (6.84) 19 (2.0) 
Hardware Breakpoints x 46 (0.1) 0 (0)
Control-C Vectored Exception x 0 (0) 0 (0)
RDTSC � 9,518 (20.98) 168 (17.7) 
INT 3 Exception (0XCC) x 747 (1.65) 0 (0) 
INT 2D (Kernel Debugger Interrupt) � 39 (0.09) 0 (0) 
ICE Breakpoint x 61 (0.13) 0 (0) 
Single Step Detection � 141 (0.31) 0 (0) 
Unhandled Exception Filter x 15,651 (34.49) 475 (50) 
a Some techniques that use the Windows API have been deprecated or changed. SeDebugPrivilege OpenProcess is only 

available for Administrator and SYSTEM accounts and is not enabled by default in Windows 10 [ 64 ]. 
b QueryInformationProcess (QIP) DebugHandleObject has changed to NtQuerySystemInformation (SYSTEM PROCESS 

INFORMATION) in the Windows API Win32 [ 63 ]. 

years with the aim of sabotaging digital infrastructure or espionage [ 61 , 83 ]. APTs use obfuscation, 
anti-analysis techniques, and AI to bypass security solutions but also have the resources to develop 

zero-day exploits and payloads [ 83 ]. There are numerous examples of APT attacks against nations 
and companies, with a couple of prominent examples detailed below. 

The SolarWinds attack is an example of an APT that involved compromising a supply chain 

to deliver malware through the Orion Network Management System [ 83 ]. In this context, the 
HAFNIUM APT group used four zero-day exploits against vulnerabilities in the Microsoft Ex- 
change Server [ 39 , 83 ]. The attack affected approximately 400,000 Exchange Servers and allowed 

the attackers to download emails from affected companies and install backdoors to maintain access 
after the vulnerabilities were patched [ 76 ]. Stuxnet is probably the most well-known APT, where 
it targeted the SCADA control system of the centrifuges at the Natanz nuclear enrichment plant 
[ 62 ]. In this attack, the centrifuge speeds were modulated in a way to induce vibration and ulti- 
mately their destruction. Stuxnet used custom exploits for four zero-day vulnerabilities and used 

stolen digital certificates to create genuine software signatures [ 62 ]. 
Further to these examples, even less sophisticated adversaries can use increasingly complex 

TTPs, because technically complex components such as powerful AI and encryption libraries are 
open source and malicious code is readily available [ 54 ]. 

4.1.3 AI-powered Malware. AI technologies are pervasive and for the most part beneficial, but 
their underlying technologies can be used maliciously [ 46 ]. Powerful AI frameworks, such as 
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TensorFlow, are open source and publicly available and can be used to drive powerful attacks. 
Next-generation malware that uses AI to enhance its offensive capabilities are emergent threats 
and typically use Neural Networks (NN) to power evasiveness and targeting [ 46 ]. NNs are not 
easily interpretable and lack transparency, where, because of this, they can be used to hide mali- 
cious payloads and conceal target and trigger conditions [ 14 ]. AI can also be used in conjunction 

with existing malware approaches to define the target of an attack, concealing the malicious pay- 
load and automating the exploitation [ 46 , 88 ]. For example, DeepLocker was presented by IBM at 
Blackhat 2018, where it used a known malicious ransomware payload and a Convolutional Neu- 

ral Network (CNN) to target an individual [ 54 ]. The ransomware payload was encrypted and 

was only decrypted when the CNN identified the target it had been trained on, via the webcam. In 

this way, DeepLocker was presented as a novel malware not detected by antivirus software [ 54 ]. 
Further, AI can be used by malware to target the Graphical User Interface (GUI) . Yu et al. 

[ 104 ] have demonstrated an attack that used the TensorFlow Object Detection CNN model to 

detect browser shortcut icons, emulating a click on the icon and stealthily logging in to the user’s 
blackboard account. Although the GUI attack is relatively simple, its approach can be extended 

in sophistication, where the malware could detect if the user was on a banking website and then 

launch an attack to transfer money to another account [ 104 ]. 
AI-powered malware may be immune to analysis where the malicious payload is encrypted and 

only decrypted when the target is detected. The target class and target instance and encryption 

key may be embedded in the trained NN, which is essentially a black box [ 46 , 54 ]. 

4.2 Analysis Techniques 

Diverse features, such as Application Programming Interface (API) calls, operational code 

(opcode) sequence, flow control, and Windows registry interactions, can be extracted from mal- 
ware using static and dynamic analysis. Static analysis does not execute the malware, but rather 
is analyzed statically and can use disassembly tools to generate assembly language from the file. 
However, malware programs that use obfuscation are resistant to static analysis, whereas dynamic 
analysis that includes DBI and sandboxes are not affected [ 29 , 69 , 95 ]. This is because they run the 
malicious file in a controlled environment, where its behavior can be observed [ 61 ]. Nonetheless, 
evasive malware can implement multiple types of anti-sandbox and anti-instrumentation tech- 
niques to defeat dynamic analysis [ 69 , 72 ]. 

There are a number of widely used static and dynamic analysis tools, such as decompilers, 
Python libraries, debuggers, sandboxes, and DBI [ 22 , 30 , 69 , 74 ]. Typically, when analyzing mal- 
ware, these tools are run in a VM as a security measure, where they efficiently revert to a known 

good state. Debuggers will not be covered due to the time-consuming manual nature of this type 
of analysis. VMs will not be covered because they are not an analysis tool as such, but rather an 

environment in which most analysis tools are run. 

4.2.1 Static Analysis. Low-level features, such as byte and opcode sequences, as well as high- 
level features, including function calls and API calls, can be extracted using static analysis [ 22 , 61 , 
102 ]. Malware that targets Windows is normally created using the PE file specification [ 34 ]. As 
shown in Figure 2 , a PE file incorporates a Header and Sections, which includes the information 

necessary for Windows to run the file. In this way, a PE file specifies imports and how it is mapped 

to memory as well as the code that is executed. 
There are various static analysis tools that can be applied, including the disassembler IDA Pro 

and the Python library Pefile, summarized in Table 4 . IDA Pro can be used to disassemble binary 

files to Assembly Language (ASM) from which opcode sequence and frequency, byte sequence, 
API and system calls, and control flow graphs can be extracted [ 12 , 22 , 90 ]. Pefile can be used to 

extract information from the PE Header and the section’s details and data [ 12 , 18 ]. 
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Fig. 2. Main components of the Windows Portable Executable (PE) file format. 

Table 4. Static Analysis Features and Tools 

Features Tools 
ASM Opcode, header, functions, strings IDA Pro [ 22 ] 
PE file header & data, strings, imports Pefile (Python) [ 12 , 18 ] 
API calls and accessed DLL’s Peframe (Python) [ 103 ] 
Byte sequences & n grams Binary file bytes and N grams [ 90 ] 
File, header and text section sizes Pefile [ 12 , 103 ] 
Label benign or malicious VirusTotal [ 12 ]

Malware authors can use numerous techniques to resist static analysis. Obfuscation is com- 
monly used to make the malware files more difficult to analyze, which directly impacts static anal- 
ysis [ 3 , 84 , 103 ]. Obfuscation techniques include code packing, metamorphism, and polymorphism, 
as detailed in Section 4.1.1 , Evasive Malware. 

Maffia et al. [ 59 ] have suggested that obfuscation is so widespread that static analysis is not a 
viable option for malware analysis, where approximately 60% of the samples they analyzed used 

some form of obfuscation. However, static analysis can explore all possible execution paths, where 
dynamic analysis may be limited [ 102 ]. The ability to cover all code paths can help provide a 
complete characterization of functionality of PE files, where this has led to novel applications of 
static analysis such as file-to-image conversions [ 52 ]. 

PE files can be easily converted to RGB and greyscale images, where each byte in the file and 

each pixel in an image has a value between 0–255 [ 70 , 94 ]. One simple approach uses a vector of 
bytes extracted using static analysis, after which a color is assigned to an RGB pixel based on the 
corresponding byte value. The generated image can then be used to train varied AI models [ 32 , 52 ]. 
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Table 5. Dynamic Analysis Features and Tools 

Features Tools 
API calls Cuckoo Sandbox [ 66 ], DBI Intel Pin [ 30 , 59 ] 
Registry Access Cuckoo Sandbox [ 66 ] 
System Calls Cuckoo Sandbox [ 22 ], DBI Intel Pin [ 30 , 59 ] 
Hardware Performance Counters perf [ 10 ] 
I/O access Bitvisor [ 40 ] 
File operations, memory dumps Cuckoo Sandbox [ 40 ] 
Network Cuckoo Sandbox [ 66 ], Wireshark [ 98 ] 
CPU Registers DBI Intel Pin [ 30 , 59 ], Debugger [ 103 ] 

While converting PE files to images that are then used to train AI models is a novel approach, 
Verma et al. [ 94 ] outline that the technique has limitations, it is not effective for detecting novel 
malware, and can be easily defeated by inserting malicious code into benign carrier applications. 
Further, detection accuracy significantly declines when obfuscation is used by malware samples 
[ 70 ]. 

In research conducted by Branco et al. [ 15 ], more than 4 million malware files were analyzed to 

detect various evasive behaviors. However, only static analysis was used, where packed or other- 
wise obfuscated malware were shown to be resistant to static analysis [ 30 ]. The results indicate 
that obfuscation was used by 68.95% of samples, with Anti-disassembly used by 12.13% of the sam- 
ples, Anti-debugging by 43.21%, and Anti-VM by 81.40%. Moreover, 88.96% of the samples used at 
least one anti-analysis technique, with 6.42% using at least one technique from each of these four 
categories [ 15 ]. 

For an AI malware detection system to be deployed in a production environment, it would 

have to be practical and lightweight. The deployed AI model would be required to extract features 
efficiently, where static analysis uses less computational resources and is faster than sandbox and 

DBI analysis [ 3 , 61 ]. 

4.2.2 Sandbox Analysis. Sandboxes are dynamic analysis tools that can resolve obfuscation be- 
cause the PE file is executed in a controlled environment; however, they can be limited by anti- 
sandbox techniques, trigger mechanisms, and function call branching [ 48 , 52 , 69 , 102 , 103 ]. Cuckoo 

is an automated sandbox that can analyze PE files and provides a JavaScript Object Notation 

(JSON) report. The JSON report includes API calls, loaded Dynamic Link Libraries (DLLs) , file 
operations, changes to Windows registry files, and network activity logs, summarized in Table 5 
[ 44 , 65 , 69 , 86 ]. 

API calls and interactions with the Windows registry are particularly discriminative for mal- 
ware detection [ 3 , 86 , 90 ]. In this way, API calls reveal what system services have been used, such 

as encryption and networking libraries. Windows registry interactions are also very revealing, as 
malware can gain persistence on a target machine by adding an entry to the Windows SYSTEM 

registry [ 66 , 90 ]. Further, certain paths in the registry can be used to start a process in a privi- 
leged environment, whereby particular keys in the registry can be manipulated to attach and run 

arbitrary executables as debuggers to legitimate processes. 
Cuckoo [ 35 ] is a mature, resilient tool that is under active development, where these features are 

important attributes for ensuring accurate and reliable dynamic analysis [ 65 ]. Given the maturity 

of Cuckoo, several plugins have been developed to assist the tool in malware analysis. Malware can 

probe aspects of the network it is run in to determine if it is under analysis and to communicate 
with its Command and Control (C2) server. Accordingly, the network simulator INetSim can 

spoof DNS, HTTP, and SMTP internet services. INetSim has been shown to successfully trick 
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malware requiring internet access but not be of assistance where the malware required external 
resources from C2 servers, because there is no actual internet connection [ 65 ]. While Cuckoo is a 
widely used malware analysis tool, its popularity with security researchers has also captured the 
attention of malware authors [ 69 ]. 

Cuckoo can be defeated by numerous anti-analysis techniques [ 69 ]. Galloro et al. [ 30 ] found 

approximately 80% of malware samples to be evasive with anti-analysis techniques that target 
dynamic analysis tools, including sandboxes, DBI, and the underlying VM. Further to this, Sharma 
et al. [ 83 ] have created a framework to analyze the prevalence of anti-analysis techniques in APT 

malware. The framework was based on Cuckoo and designed to detect 26 anti-analysis techniques 
[ 83 ]. Their study showed that 99.36% of the 4,403 APT malware samples analyzed implemented at 
least one anti-analysis technique [ 83 ]. 

Assen et al. [ 9 ] have developed a tool called SecBox, which is based on Linux containers. SecBox 

is a lightweight sandbox that utilizes the OS-level isolation and the ability to run several instances 
on the same host provided by Linux containers. Key metrics including CPU, memory, system calls, 
and network usage are displayed visually during live analysis, and the reports can be exported 

after the analysis has concluded [ 9 ]. Data is collected directly from the shell of each sandbox using 

Python, where the information is piped to the monitors and written to logs [ 9 ]. SecBox is open 

source and modular and could potentially be extended to automate the process of malware sample 
collection, labelled analysis logs, and a more comprehensive set of features. 

4.2.3 Dynamic Binary Instrumentation. DBI tools such as Intel Pin can be used to execute and 

analyze evasive malware with the aim of exposing its true behavior [ 30 , 74 ]. DBI provides mecha- 
nisms for deep and precise control of instrumented PE files [ 23 , 77 ]. DBI tools instrument PE files 
by inserting additional code that executes seamlessly as part of the PE [ 29 , 30 , 74 ]. Injecting code 
and additional functionality into an instrumented PE provides insights into low-level operations, 
such as CPU register instructions, as well as high-level operations that include API calls and Win- 
dows registry interactions [ 74 , 77 ]. This is facilitated by a Just In Time (JIT) compiler, whereby 

the injected instrumentation code executes transparently as part of the normal instruction stream. 
DBI is immune to most anti-analysis but can be defeated by anti-instrumentation techniques; 

consequently, several methods have been developed to defeat anti-instrumentation [ 23 , 77 ]. These 
methods are all variations on intercepting the anti-instrumentation probes and deploying coun- 
termeasures against them [ 74 ]. Accordingly, function calls can be intercepted and the arguments, 
return values, and flow control can be manipulated to counter anti-instrumentation techniques 
[ 23 , 30 , 74 ]. 

There is an existing body of research that comprehensively details anti-instrumentation tech- 
niques and is summarized in Table 6 [ 23 , 29 , 30 , 74 , 77 ]. Polino et al. [ 77 ] created the ARANCINO 

framework for the Intel Pin DBI tool, showing that 15.6% of the 7,006 samples analyzed used at 
least one of the anti-instrumentation techniques listed in Table 6 . Kim et al. [ 51 ] have similarly 

used an experimental approach to determine the prevalence of anti-instrumentation techniques 
in 763,985 malware samples, showing that 16.21% of their malware samples used at least one anti- 
instrumentation technique. Not all of the techniques analyzed in the studies by Kim et al. [ 51 ] and 

Polino et al. [ 77 ] are explicitly anti-instrumentation, where some are generic anti-analysis tech- 
niques. Further, some anti-instrumentation techniques, including runtime overhead, common API 
calls, and memory page permissions, are not reliable and can provide false positives. While these 
techniques are found in the literature, their lack of reliability may deter malware authors from 

using them [ 29 ]. In addition to anti-instrumentation, D’Elia et al. [ 23 ] have suggested that DBI 
tools may be vulnerable to escape, where malicious code may escape the DBI and execute directly 

on the CPU. However, specific escape attempts were mitigated by concealing instruction pointers 
and enforcing no execute (NX) privileges on certain memory regions [ 23 ]. 
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Table 6. Summary of Anti-instrumentation Techniques across Five Categories 

Category Details 

Indirect Evasion 

Techniques 
DBI tools replicate the behavior of the underlying Operating System (OS) 
and the Central Processing Unit (CPU) architecture. The DBI tool may 
not implement every possible behavior, and this provides a mechanism for 
two anti-instrumentation techniques, Unsupported Assembly Instructions, 

and Unsupported Behaviors [ 29 ]. If the DBI tool does not support every 
available CPU assembly instruction and behavior, then this can be 

exploited to crash the DBI if the malware implements an unsupported 
instruction or behavior [ 29 ]. Further, analysis environments are typically 

allocated limited resources, and anti-instrumentation techniques can 

exploit this by attempting to exhaust available resources [ 29 , 74 ]. 

Code Cache Artifacts An instrumented binary file is written to memory differently than a binary 
file run on bare metal. This changes the Instruction Pointer (IP) that 

normally holds the memory address of the next assembly instruction to be 
executed, because it is executed in the code cache memory [ 77 ]. The 

changes to the IP can be detected by probes that make comparisons of 
addresses that are normally expected [ 23 , 30 ]. 

Environment Artifacts Probes that seek to fingerprint aspects of memory layout can detect DBI 
tools inside the process memory of the instrumented binary, whereby the 
memory layout for an instrumented binary is different and the DBI tool is 

normally the parent process of the instrumented binary [ 23 , 30 , 74 , 77 ]. 

JIT Compiler 
Detection 

JIT compilers attempt to conceal the presence of DBI tools by hiding their 
API and system calls. These hidden calls can be detected by comparing 

memory addresses and offsets [ 77 ]. 

Overhead Detection DBI tools add considerable overhead that impacts execution time, which 

can be detected by probing the timing of various instructions and resource 
usage [ 23 , 29 , 74 , 77 ]. 

An Intel Pin DBI tool labelled the Pin-based Evasive Program Profiler was developed by Maf- 
fia et al. [ 59 ], where it was used to dynamically analyze 183,340 malware PE files. The tool was 
capable of detecting and circumventing 53 anti-analysis techniques [ 59 ]. Benign software was 
also analyzed, where 4 techniques that had been previously used to classify malware as evasive 
were found to be widely used by legitimate software [ 59 ]. Accordingly, GetTickCount, CPU is Hy- 
pervisor, GetCursorPos, and NumberOfProcessors are widely used for legitimate purposes [ 59 ]. 
Excluding the techniques used by legitimate software, approximately 40% of the samples analyzed 

utilized at least 1 evasive technique [ 59 ]. 
DBI introduces overhead and is slower and more computationally expensive than sandboxes 

and static analysis; however, it appears to be the best approach for extracting authentic features 
from evasive malware [ 30 , 77 ]. Consequently, the computational effort required to extract features 
must be balanced with the features that are most discriminative between malware and legitimate 
software [ 3 , 34 ]. 

4.3 Malware Repositories 

Creating a public open dataset that includes legitimate and malicious files is challenging [ 4 , 100 ]. 
There are legal and copyright restrictions associated with the dissemination of proprietary Win- 
dows software. Further, there are potential security liabilities where live malicious files are re- 
leased to a public that may not take the correct precautions when handling them [ 4 , 100 ]. For 
these reasons, it is easier to use small, private datasets in research. However, this makes it diffi- 
cult to measure progress and results, where studies may not be repeatable, as researchers work on 

different datasets [ 13 , 37 , 45 , 95 ]. Thus, it is advantageous to the research community if different 
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Table 7. Summary of Malware Datasets 

Dataset EMBER [ 5 ] BODMAS [ 101 ] SOREL-20M [ 38 ] 
Virus 

Share [ 96 ] 
Malware 

Bazaar [ 1 ] 
Total Samples 1.1M 134,435 20M 55M 700k 

Dates 2018 2019–2020 2017–2019 N.A. Yes 
Timestamp Partial Yes Yes Yes Yes 
Taxonomy Partial Complete No No Yes 
Malware Samples 400,000 57,293 10M 48M 700k 

Benign Samples 400,000 77,142 10M N.A. N.A. 
Malware Binaries No Yes Disarmed Yes Yes 
Benign Binaries No No No No No 

Feature Vectors Yes Yes Yes No No 

Features Static Static Static Binaries Binaries 
Feature Extractor Yes Yes No No No 

approaches can be applied to a common dataset [ 37 , 90 ]. In this context, five publicly available 
datasets were analyzed, with their findings presented in Table 7 . 

4.3.1 EMBER. Anderson and Roth [ 4 ] have released EMBER, a dataset of features extracted 

from 1.1 million PE files. The code, which could be used to extract the same features from other PE 

files, was also released. Because the dataset consists of extracted features and not PE files, copy- 
right is not an issue for the legitimate software. However, there are several limitations with this 
dataset. Because the intact malicious and benign files are not included, different features cannot 
be extracted. Further, the features were extracted using static analysis, which can be limited with 

obfuscated malware [ 4 , 5 ]. There may also be issues with the size and partition of the dataset, 
where because there are only 200,000 test samples, it may be difficult to measure false positive 
rates lower than 1 in 1,000 [ 37 ]. Moreover, Harang and Rudd [ 37 ] suggest that even baseline clas- 
sifiers are capable of achieving greater than 0.999 Area Under Curve (AUC) with the EMBER 

dataset, which could indicate it is unsuitable for further research. 

4.3.2 BODMAS. Yang et al. [ 100 ] have released a dataset of recent, timestamped, and cate- 
gorized malware called BODMAS that was collected between August 2019 and September 2020. 
BODMAS contains features extracted from 77,142 benign samples and both the extracted features 
and intact PE files for 57,293 malware samples. Yang et al. [ 100 ] have highlighted the need for 
public datasets and benchmarks so researchers can easily compare models. As these samples are 
timestamped with the first seen time from VirusTotal reports, temporal analysis around taxonomy 

can be performed [ 97 , 100 ]. The taxonomy information covers 14 categories, such as Trojans and 

Ransomware, as well as definitions for 581 families such as wacatac and upatre [ 100 , 101 ]. 

4.3.3 SOREL-20M. Harang and Rudd [ 37 ] have released SOREL-20M, which contains 20 million 

samples. Their dataset contains 10 million extracted feature vectors and the intact but disarmed 

malware files, where the header field flags for headers.subsystem and file header.machine are set to 

0. Additionally, the dataset contains metadata and extracted feature vectors from 10 million benign 

samples. The complete dataset consists of three databases and a folder of the disarmed malware. 
[ 37 , 38 ]. 

4.3.4 VirusShare. This malware repository provides security researchers access to live malware 
[ 96 ]. It contains more than 55 million live malware files with timestamps, hash, detection report, 
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Fig. 3. Information provided by VirusShare via VirusShare [ 96 ]. 

and other file information, as illustrated in Figure 3 . The repository has been widely used in re- 
search because it allows for static and dynamic analysis to be performed on any number of intact 
malware files [ 10 , 56 , 73 ]. 

4.3.5 Malware Bazaar. This malware repository also provides security researchers access to 

live malware [ 1 ]. It contains more than 700,000 live malware files with timestamps, hash, and, 
importantly, both category and family information [ 1 ]. The repository has been used in recent 
research because live samples are available that are searchable by category and include family and 

variant information [ 79 , 91 ]. However, there is a file download limit of 2,000 samples per day [ 1 ]. 

4.4 Feature Selection 

Static and dynamic analysis tools can be used to extract features from malware and benign soft- 
ware, summarized in Tables 4 and 5 . The features can then be processed and used to train and test 
AI malware-detection models. However, feature extraction, engineering, processing, and selection 

can be problematic, as sophisticated malware use anti-analysis techniques to evade analysis, which 

makes it very difficult to standardize and optimize feature extraction. Further, the datasets used 

in research may be unbalanced, whereby the large number of malware families may not be repre- 
sented equally [ 99 ]. This can lead to fragile AI models, where a model may achieve high accuracy 

with one specific dataset but is not generalizable and achieves poor results with others [ 3 , 26 , 45 , 
90 , 99 , 103 ]. 

The process of optimizing feature extraction for use by AI to detect novel, evasive, and sophis- 
ticated malware is a considerable task [ 10 , 12 , 45 , 90 ]. Further, static analysis is efficient but is 
impacted by obfuscation, which is ubiquitous. While sandboxes and DBI can provide more com- 
prehensive and authentic features, they are impacted by anti-sandbox and anti-instrumentation 

and are slower than static analysis. 
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Fig. 4. Artificial intelligence includes both ML and DL via deep learning: Hope or Hype [ 2 ]. 

Several features that can be captured using static and dynamic analysis were provided in Sec- 
tion 4.2 , Analysis Techniques. The Windows registry is particularly important, as records can be 
created and modified so malware can gain persistence on the machine [ 66 ]. The CPU uses registers 
to store values and operations to process the instructions of PE files. That information, and the 
way a PE file uses the registers, reveals its behavior at the byte level [ 90 ]. Further, the files a PE 

interacts with can be detected, where whatever is created, deleted, or modified can be tracked [ 90 ]. 
API allows programs to communicate, whereby a PE or Dynamic Link Libraries (DLLs) file can 

interact with the Operating System (OS) and use its libraries and modules. System calls allow 

these files to request services from the kernel. The API and system calls and the libraries used can 

reveal characteristics of the PE or DLL, for example, where it may use OS encryption libraries [ 69 ]. 
A PE file can be disassembled to ASM, which uses opcodes and operands. Accordingly, the 

opcodes and their operands are the operations and data that in combination are the instructions 
executed by the CPU. Opcode frequency and sequence can reveal information about PE and DLL 

characteristics [ 90 ]. Converting malware files and network traffic to images is another area of 
static analysis that is being researched [ 32 , 92 ]. Network traffic details including IP addresses, 
ports, encryption, and protocols can also be used to help characterize malicious files [ 90 ]. 

Understanding the underlying phenomena of what syntactic and or semantic features are 
present in modern malware but not benign software is pivotal. That involves determining what 
features are optimal to train an AI model that generalizes beyond specific characteristics and seeks 
to classify never-before-seen malware. Further, determining what AI model is the most accurate 
and robust when trained with those features is not easily solved. In the following section, a num- 
ber of research studies are analyzed to highlight the diverse AI models, datasets, and features that 
have been applied to malware detection. 

4.5 Machine Learning vs. Deep Learning 

AI is an umbrella term for a number of ML and DL techniques, as illustrated in Figure 4 . AI is suc- 
cessfully used across many fields, including language processing, speech recognition, computer 
vision, and generative models, as well as cybersecurity fields including spam detection and in- 
trusion detection [ 3 , 7 ]. AI for malware detection is a very active area of research, and yet the 
deployment of AI models in a production environment is progressing slowly [ 7 ]. 

ML algorithms are trained on structured and labelled data to recognize patterns and make clas- 
sifications on new data. ML algorithms that are widely used in research include Logistic Regres- 

sion (LR), K-nearest neighbor (KNN), Naïve Bayes (NB), Random Forest (RF) , and Support 

Vector Machine (SVM) . 
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DL is based on Artificial Neural Networks (ANN) and is typically more complex than ML. 
The basic building block is the artificial neuron, and when connected to other neurons the re- 
sultant networks are able to perform complex classification and predictive tasks, in part due to 

their parallel architecture [ 106 ]. A basic ANN contains an input layer, one or more hidden layers, 
and an output layer [ 87 ]. DL can use several hidden layers and normally requires more training 

data and computational power than ML [ 7 ]. Supervised DL requires labelled data, for example, 
malware or benign, whereas unsupervised DL does not require labelled data. There are several 
types of DL architectures, including Deep Neural Networks (DNN), Convolutional Neural 

Networks (CNNs), Deep Belief Networks (DBN) , and Recurrent Neural Networks (RNNs) 

[ 70 , 95 ]. Generative AI is a rapidly developing field where the Large Language Models (LLM) 

are a type of DNN with numerous layers that are crucial for capturing high-level abstractions and 

handling complex tasks, such as natural language understanding and generation [ 16 , 36 ]. 
When the objective is to deploy an AI model in a production environment it must be accurate, 

detect malware it has never seen before, and be practical and lightweight. This is challenging 

for a number of reasons. Malware includes trojans, ransomware, crypto miners, botnets, worms, 
and more, where each category behaves differently and they may not have any commonalities 
[ 72 ]. Further, anti-analysis techniques, covered in detail above, directly impact AI models, as the 
detection accuracy of a model is dependent on the quality of the features it is trained with [ 3 , 45 , 
90 , 103 ]. This is further complicated when the actual evasive behavior is used to train AI models 
[ 30 , 69 ]. If evasive malware runs on a normal user machine, not in an analysis environment, then 

it behaves differently and reveals its malicious intent. Consequently, it would defeat an AI model 
that was trained on the behaviors observed during analysis [ 30 , 69 ]. 

The application of AI for malware detection is heterogeneous, where many different AI mod- 
els, approaches, parameters, analysis techniques, features, and datasets can be used. A number of 
research studies have been analyzed below to highlight this diversity, and a summary of datasets, 
features, models, and results are presented in Table 8 . 

Generative AI that includes LLMs such as ChatGPT and Google Bard are used both defensively 

and offensively in cybersecurity. Offensively, the LLMs have been used to write malicious code, 
create polymorphic malware, craft phishing attacks, generate malicious payloads, and more [ 36 , 
67 ]. Defensively they have been used for malware detection, threat intelligence, incidence response 
plans, and phishing detection. Koide et al. [ 55 ] developed a novel method to detect phishing web- 
sites using ChatGPT, where a crawler collected information from varied websites and then gen- 
erated prompts that were presented to ChatGPT to determine if the website was malicious or not 
[ 55 ]. LLMs, specifically Autoregressive Language Models (ALM) , that use Transformer archi- 
tecture are exceptional at assessing probability distributions of text sequences [ 16 , 28 , 36 ]. How 

the power of LLMs can be leveraged defensively and specifically for malware detection is an on- 
going area of research; for example, could ChatGPT be used to generate functional descriptions 
of opcode sequences to capture the semantics that persist across syntactically distinct malware 
variants that may use polymorphic or and metamorphic techniques [ 28 , 36 ]? 

Ferrag et al. [ 28 ] developed Security LLM, which uses the Bidirectional Encoder Represen- 

tations from the Transformers (BERT) model [ 89 ] for threat detection and FalconLLM [ 42 ] for 
incidence response. The EdgeIIoT dataset, which contains numerous attacks related to the IoT, was 
used to evaluate the efficiency of the model [ 28 ]. The performance of several ML and DL models 
was compared to Security LLM, where RF was the highest-performing ML model at 81%, CNN was 
the highest-performing DL model at 95%, and Security LLM achieved 98% [ 28 ]. 

Amer and Zelinka [ 3 ] have proposed a method to detect Windows malware based on a Natural 

Language Processing (NLP) -inspired contextual understanding and correlation of malicious API 
call sequences. Word embedding and a clustering similarity matrix were used to generate a vector 
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Table 8. Summary of Datasets, Features, Models, and Results 

Paper Dataset Features Model Acc. % 

[ 28 ] 

Edge-IIoTset [ 27 ] DDoS-UDP, DDoS-ICMP, 
SQL-injection, Password, 

Vulnerability-scanner, 
DDoS-TCP, DDoS-HTTP, 

Uploading, Backdoor, 
Port-Scanning, XSS, 
Ransomware, MITM, 

Fingerprinting 

SecurityLLM 98 

CNN 95 

Transformer Model 95 

RNN 94 

DNN 93 

RF 81 

KNN79 93 

SVM 78 

DT 67 

[ 3 ] 

[ 49 ]: 23,080 malware and 
21,116 benign samples 

Clusters of dynamically 
extracted API call sequences 

API sequence cluster 
transition matrices 

99.9 

[ 50 ]: 151 malware & 69 
benign samples 

99 

CSDMC2010: 320 
malware & 68 benign 

samples 

98.5 

[ 19 ]: 7,107 malware & 169 
benign samples 

98.7 

[ 84 ] 

Benign applications from 

Software-informer 
50 FastICA features from 

initial 15,972 Cuckoo 
features 

TensorFlow CNN with 

512 nodes in Layer 1 & 

Layer 2 500 epochs 

94.84

Originally 1,232 
ransomware samples 

across 14 families from 

VirusShare & VirusTotal 

Original 15,972 features 
from Cuckoo JSON report 

TensorFlow CNN with 

1,024 nodes in Layer 1 & 

Layer 2 500 epochs 

95.96

Functional samples: 483 
ransomware & 754 benign 

RF 90.95 

SVM 89.96 

MC 88.12 

[ 48 ] 

150 ransomware & 150 
benign 

DNA sequence for 26 most 
significant using MOGWO 

& BCS 

Proposed LR & AL 87.91 

AB 83.22 

NB 78.52 

DS 75.83 

[ 53 ] 13,075 malware & 19,747 
benign samples 

5 static feature vectors, 
including strings, opcode, 
API, library, permission, 

component & 

environmental features 

Multi Modal Keras DNN, 
5 initial networks with 2 

hidden layers & final 
network with 2 hidden 

layers 

98.0 

[ 95 ] 

70,140 benign & 69,860 
malware samples 

EMBER static features DNN 98.9 

RF 97.0 

DT 96.9 

SVM 96.1 

KNN 95.1 

AB 83.0 

LR 54.0 

NB 53.8 

(Continued) 
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Table 8. Continued 

Paper Dataset Features Model Acc. % 

121,701 benign & 118,717 
malware samples 

Cuckoo JSON report SVM 96.1 

CNN 93.6 

DNN 91.0 

RF 89.5 

DT 86.0 

KNN 81.5 

AB 73.3 

LR 67.4 

NB 54.6 

52,245 benign & 50,792 
malware samples 

Cuckoo JSON report & 

Python Psutil 
CNN 96.6 

DNN 90.4 

RF 89.9 

SVM 89.0 

KNN 85.9 

DT 82.5 

AB 82.1 

LR 57.34 

NB 50.5 

[ 25 ] Android 4,354 malware & 

5,065 benign samples, 
only 429 malware & 1,700 

benign had network 
traffic 

Static permission, intent & 

component from 

manifest.xml Network 
traffic 18.5 G benign & 19.0 
G malicious, converted to 

images 

First NN for static feature 
vector, CACNN for 

network traffic images if 
classified as benign by 

first NN 

99.19 

[ 26 ] 

Android 18,000 malware 
& 18,000 benign 

2,290 API calls & 625 
manifest properties 
TensorFlow models 

RNN Bidirection GRU 96.78 

RNN GRU 96.75 

RNN Stacked GRU 96.67 

RNN Stacked LSTM 96.64 

RNN Bidirection LSTM 96.61 

RNN LSTM 96.56 

CNN 95.11 

18,000 malware & 18,000 
benign samples Android 

2,290 API and 625 manifest 
properties TensorFlow Lite 

RNN GRU 96.75 

70,130 malware 21 
families 

2,290 API & 625 manifest 
properties 

RNN GRU 94.45 

[ 75 ] 

Real crypto mining traffic 
with web surfing, video 
and audio streaming, file 
transfer, email & others 

51 network traffic features 
from Tstat tool & 8 features 

from NetFlow metrics 

NN 100 

RF 100 

DT 100 

LR 100 

CART 99.99 

(Continued) 
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Table 8. Continued 

Paper Dataset Features Model Acc. % 

[ 17 ] 

43,530 malware samples 
from VirusShare & 3,591 

benign samples from 

Windows 7 OS 

Feature vector from 

debugger & count of the 610 
opcodes in the Intelx86/x64 

architecture 

RC 99.06

RSS 99.05

RF 99.05

AB 99.02

Bagging 98.96

PART 98.51

IBk 98.34

LWL 98.33

J48 98.12

KStar 98.09

J RIP 97.83

REPTree 97.63

RT 97.06

DT 94.70

HT 92.11

OneR 90.42

DS 81.91

ZeroR 49.95

[ 68 ] 

VirusShare: 31,609, 
VXHeaven: 20,713 & 

MALICIA: 11,368 
malware & 13,752 benign 

samples 

Images generated from 

dynamic CFG *Recall as 
accuracy not presented 

YOLO-based CNN 90.26* 

AIS 85.88* 

Simple-CNN 84.85* 

SVM 74.36* 

[ 72 ] 

56 benign and 50 malware 
samples for 21,800 

volatile memory dumps 
from Ubuntu VMs: DNS 
server & HTTP server 

171 from the memory 
dumps. All samples used for 

training, but trained with 

different dumps & behaviors 
for same sample 

DNS RF 98.7 

DNS ANN 98.2 

DNS DNN 97.9 

DNS SVM 97.8 

DNS KNN 97.7 

DNS LR 95.6 

DNS NB 77.6 

HTTP ANN 99.9 

HTTP KNN 99.9 

HTTP RF 99.8 

HTTP SVM 99.8 

HTTP DNN 99.5 

HTTP LR 99.5 

HTTP NB 94.0 

171 extracted from memory 
dumps, 8 benign and 8 

malware samples used for 
testing 

DNS DNN 95.9 

DNS RF 93.8 

DNS LR 93.5 

DNS ANN 87.9 

DNS SVM 84.5 

DNS KNN 80.4 

(Continued) 
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Table 8. Continued 

Paper Dataset Features Model Acc. % 

DNS NB 67.3 

HTTP KNN 98.9 

HTTP RF 98.5 

HTTP DNN 97.3 

HTTP SVM 96.7 

HTTP NB 96.0 

HTTP ANN 95.0 

HTTP LR 95.0 

[ 103 ] 

VirusChaser: 139,384 
malware & 10,475 benign 

samples, labelled with 

VirusTotal 

79 Pefile utility static 
features, 513 Cuckoo 

dynamic 

AI-Hydra: RF and MLP 85.1 

Sophos AV 74.9 

Clam AV 74.5 

Bitdefender AV 52 

[ 105 ] 

582 ransomware in 11 
families & 942 benign 

samples 

Dynamic, binary strings 
Windows API, Windows 

registry, file, system file & 

directory operations, CAE 

features reduced from 16,382 
to 500 & 100 features 

CSPE-R ensemble: CFH, 
SVM, RF, LR, DNN 

93 

CFH-RF100 92 

CFH-SVM500 92 

CFH-SVM100 90 

CFH-LR100 90 

LR 90 

CFH-RF500 89 

CFH-LR500 89 

SVM 88 

RF 80 

[ 43 ] BODMAS: 400,000 
training, 200,000 testing 
& 19,000 GAN samples 

Static BODMAS features NLP with BERT & 

TensorFlow DNN 

85.82 

[ 78 ] 

Malware DB: 3,653 
malware samples & 554 

benign samples, 5 
categories: backdoor, 

password stealer, rogue, 
trojan & worm 

Intel Pin DBI: opcode 
frequency, memory 

addresses, memory reads, 
memory writes, and 

unaligned memory access 

Specialized DNN Average 
over the five specialized 

detectors 

93.0

Specialized LR Average 
over the five specialized 

detectors 

91.0

General DNN Average 
over the five types of 

malware 

89.0 

General LR Average over 
the five types of malware. 

87.0 

model and malware and benign application clusters from their API call sequence [ 3 ]. A transition 

model was generated from the sequences and clusters to capture the relationship between API 
calls. Maximum Likelihood Estimation (MLE) was used to determine the transition probability 

between the states of the transition model and to create the malware and benign application cluster 
transition matrices [ 3 ]. For each test sample, the sequence of API calls was extracted and clustered, 
after which the transition probability for the cluster sequence was calculated and compared to the 
malware and benign application cluster transition matrices using MLE to make a classification. 
Four datasets were used to validate the approach, where the average detection accuracy was 99% 

using the model outlined above and only 52.3% based on non-contextual clustering [ 3 ]. 
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Sharmeen et al. [ 84 ] used the TensorFlow CNN and ML classifiers—SVM, RF, and Multi Class 

Classifier (MCC) —to determine the most accurate approach for detecting Windows ransomware. 
The initial dataset contained 1,232 ransomware samples and 1,308 benign samples. However, af- 
ter deduplication and removing samples that did not run, only 483 ransomware samples and 

754 benign samples remained. The significant drop in the number of ransomware samples could 

be due to the C2 servers were down, or the samples may have been evasive. The Cuckoo sand- 
box JSON report contained 15,972 features for each of the samples that ran. Sharmeen et al. [ 84 ] 
used Fast Independent Component Analysis (FastICA) to reduce the features to sets to 40, 
50, 80, and 100. Three different CNN architectures were used, each with a different number of 
nodes and epochs for each of the FastICA features sets, as well as the complete set of features 
from Cuckoo. The highest accuracy with the CNN and the FastICA features was obtained with the 
dataset containing 50 features, where the accuracy was 94.83%. The accuracy obtained with the 
CNN and the complete set of features was 95.96%, however, the authors noted that it took consider- 
ably longer to train the model with this large number of features. The SVM, RF, and MCC achieved 

accuracies of 89.98%, 90.95%, and 88.12%, respectively. The dataset was small, which could lead to 

overfitting and models not performing well with other ransomware families and different types of 
malware. 

Khan et al. [ 48 ] have used Multi-Objective Grey Wolf Optimization (MOGWO) and Binary 

Cuckoo Search (BCS) algorithms to select 26 key features from 16,383 pre-processed features, 
generating digital DNA sequence and a k-mer frequency vector. Each two-bit pair has four possible 
values—00, 01, 10, and 11—which were mapped to the four biological DNA bases of adenine (A), 

thymine (T), guanine (G) , and cytosine (C) . Further to this, constraints were applied on the 
composition and k-mer frequency; however, the exact method for this was not specified. The initial 
dataset included 582 Windows ransomware samples and 942 benign applications; however, this 
was reduced to 150 ransomware samples and 150 benign samples, where no explicit reason for 
this reduction was given. Khan et al. [ 48 ] reported that: NB achieved a 78.5% detection accuracy; 
Decision Stump (DS) 75.8%; AdaBoost 83.2%; and their proposed active learning algorithm, which 

is a variation on LR with a feedback loop, achieved an accuracy of 87.9%. Once again, the dataset 
was small and the models may not perform well with other types of malware. 

Vinayakumar et al. [ 95 ] have used static and dynamic feature extraction with ML and DL clas- 
sifiers for Windows malware detection. Different datasets and different techniques were used for 
static analysis and dynamic analysis. The EMBER dataset and privately collected malware and 

benign samples were used for static analysis, where the features were extracted using the source 
code provided with the EMBER dataset. The dataset from research conducted by Rhode et al. [ 80 ] 
and benign applications from Softonic and Source forge were used with Cuckoo dynamic feature 
extraction. Windows Static Brain Droid (WSBD) , which is composed of both ML and DL mod- 
els, was used in the various experiments. Vinayakumar et al. [ 95 ] reported that DL outperformed 

ML with all datasets and with both static and dynamic feature extraction. With regard to static fea- 
ture extraction, the DNN was most accurate at 98.9%. With dynamic feature extraction, the CNN 

achieved the highest accuracy at 96.6%. 
Carlin et al. [ 17 ] have applied dynamic opcode analysis, which examines the assembly language 

instructions passed to a CPU at runtime, under escalating data conditions. The debugger OllyDbg 

V2 was used to run the PE files and extract the opcode traces. The anti anti-debug plugin Strong OD 

was used to hide the debugger from the malware, but no other evasive techniques were countered. 
Carlin et al. [ 17 ] performed a count of each of the 610 Intel x86/x64 architecture opcodes to create 
the feature vector. Carlin et al. [ 17 ] further identified a number of gaps between academia and 

production deployment. Given the large datasets available, underfitting of AI models should be a 
concern, where the limitations of memory and time may constrain the models. That is, underfitting 
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should be a problem for AI models trained on large datasets; however, this does not appear to be 
the case, which indicates the datasets underpinning current research are inadequate [ 17 ]. Further, 
little attention has been paid to the application of AI to escalating data, where, instead, studies 
have focused on single static datasets. Carlin et al. suggest that most research studies highlight 
the exponential growth of malware but use fixed size datasets. Carlin [ 17 ] created a dataset of 
43,530 malware samples from VirusShare, with 3,591 benign applications from the Windows 7 OS. 
Initially a broad search across all available WEKA 3-9 ML classifiers was performed to determine 
which performed the best with the feature vectors. Two ML classifiers were dropped due to their 
very long training times, and 23 ML classifiers were used in the next stage. Several phases of hyper 
parameter tuning and feature selection optimization were then performed. Of the 23 ML classifiers, 
15 achieved a greater than 98% detection accuracy, where Carlin et al. [ 17 ] stated that RF was the 
optimal classifier for several reasons; it was fast to train, it was fast to classify, it was able to handle 
data explosion, and was robust and highly accurate. 

Nguyen et al. [ 68 ] have used a CNN and a You Only Look Once (YOLO) -based CNN. The 
dataset contained 13,752 benign Windows applications and 50,000 malware samples from several 
repositories. Nguyen et al. [ 68 ] used the Binary Emulation for Pushdown Model (BE-PUM) 

analysis tool, which dynamically runs the PE file and generates a Control Flow Graph (CFG) . 
A CFG is a directed graph of the PE file under analysis, where each vertex corresponds to an 

instruction in the file and the transitions between vertices are the execution flow of the program 

[ 68 ]. BE-PUM supports lazy binding, where if an instruction at a location changes, then the CFG is 
updated to reflect the operation of the program [ 68 ]. Further, each vertex is considered a state and 

has three segments: the value of the register, the flag, and the memory. An innovative approach 

was used in this scenario to reduce the size of the memory component, where its contents were 
too large to include every vertex. That is, an MD5 hash of the memory was generated for each 

point [ 68 ]. The CFG vertices were then converted to an adjacency matrix, which transformed the 
values and was used to generate the pixel values of an RGB image. Nguyen et al. [ 68 ] note there 
are limitations with this approach, particularly the time it takes to generate the features and train 

the models. Accuracy was not reported in this context, and the other metrics were at the low end 

of comparable studies, but the approach to feature generation is novel. 
Yoo et al. [ 103 ] have created AI-Hydra, which uses a hybrid approach for malware detection 

that implements Multi-Layer Perceptron (MLP) , RF, and a rule-based voting method to en- 
hance detection performance. The Python library Pefile was used to extract 79 static features, and 

the Cuckoo sandbox was used to extract 513 dynamic features. To evaluate appropriate classifiers, 
10 popular ML and DL models were tested using Weka and a dataset that contained 149,859 mal- 
ware samples from Virus Chaser and 10,475 benign Windows applications that were labelled with 

VirusTotal. From the results, RF and MLP were chosen for implementation in AI-Hydra [ 103 ]. A 

part of the Korean Internet and Security Agency (KISA) 2017 dataset was used to evaluate 
AI-Hydra, with 6,395 benign and malicious samples. KISA is considered a challenging dataset, 
as it contains benign files that exhibit malicious behavior [ 103 ]. Including the time for feature 
extraction, AI-Hydra took an average of 60.9 seconds for a detection accuracy of 85.7% with a 
False Positive (FP) rate of 16.1%. The AV applications BitDefender, ClamAV, and Sophos were 
also tested, and while the detection accuracy of the AV products was lower than AI-Hydra, they 

were much faster, and their FP was very low to zero [ 103 ]. 
Zahoora et al. [ 105 ] have created a novel multi-phase framework, Cost Sensitive Pareto En- 

semble (CSPE-R) , to detect novel Windows ransomware. The dataset contained 582 malware 
samples across 11 families from Sgandurra et al. [ 82 ] and 942 benign samples. The dataset was 
split into seen and unseen samples, as the goal was to detect zero-day ransomware. In the fea- 
ture extraction phase, Core Feature Hunting (CFH) was implemented using an unsupervised 
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Contractive Autoencoder (CAE) to extract core ransomware features. In the second phase, the 
vectors were extracted from the core features identified in the first phase. In the third phase, SVM, 
RF, and LR classifiers were trained on the feature vectors and a cost matrix was generated. In 

the last phase, a Pareto optimality strategy and cost matrix were used to select and aggregate the 
classifiers. The proposed CSPE-R ensemble classifier achieved an accuracy of 93% for detecting 

never-before-seen ransomware [ 105 ]. 
Ismail et al. [ 43 ] have used a natural language processing model, Bidirectional Encoder Rep- 

resentations from Transformers (BERT) , to detect Windows malware. The dataset consisted 

of 600,000 samples from EMBER and a Generative Adversarial Network (GAN) was used to 

generate 19,000 new malware examples using the EMBER metadata file. The samples were to- 
kenized, and a Self-Supervised TensorFlow model was implemented. The model was pre-trained 

using unlabeled data and was fine-tuned with a much smaller labelled dataset. The model achieved 

a detection accuracy of 85.52% [ 43 ]. 
Ponomarev et al. [ 78 ] have implemented an ensemble detector with feature extraction and LR 

and NN models on a Field Programmable Gate Array (FPGA) . The Hardware Malware De- 

tectors (HMD) were specialized for a particular family of malware. The dataset consisted of 
3,653 malware samples across five categories: Backdoor, Password Stealer, Rogue, Trojan, and 

Worm from MalwareDB, and 554 benign samples. The specialized detectors were trained on only 

1 of the 5 different malware categories, and Intel Pin was used to collect dynamic traces after 150 
system calls for a duration of 1,500 system calls or 15 million committed instructions, whichever 
came first. The detectors did not generalize well: When new types of malware were introduced, 
the performance declined significantly [ 78 ]. The specialized models achieved accuracies ranging 

from 87% to 93% when classifiying the type of malware it had been trained with [ 78 ]. 
The study by Pastor et al. [ 75 ] supports the assertion that AI models are dependent on the 

quality of the features they are trained on. It is challenging to profit from cryptocurrency mining, 
and this has led to the creation of legitimate mining pools but also illegal botnets. In both these 
cases, the mining traffic is encrypted and can use proxy servers. Pastor et al. [ 75 ] have captured 

32 million packets of network traffic that included real, encrypted mining pool traffic amongst 
web surfing, video and audio streaming, file transfer, email, and others. Pastor et al. [ 75 ] used a 
DNN and ML classifiers RF and LR, all of which achieved 100% detection accuracy of the mining 

traffic. Importantly, the captured network traffic was 100% genuine, which provides support for 
the argument that if genuine features can be extracted from sophisticated and evasive malware, 
then the resultant AI model should be very accurate. 

The deployment of AI malware detection on mobile devices is problematic because of perfor- 
mance constraints. Consequently, most Android malware detection is done on the server side, 
that is, within the markets [ 25 ]. Feng et al. [ 25 ] have proposed a new approach for mobile device 
deployment using TensorFlow light. Feng et al. [ 25 ] used static feature extraction, network traf- 
fic data, a DNN, and a Cascading CNN (CACNN) with a TensorFlow backend for the proposed 

Android malware detection system. Static analysis was used to generate feature vectors from the 
manifest.xml properties: permission, intent, and component information. Furthermore, the traffic 
data was converted to greyscale images. The static features were used by the first DNN, where only 

those applications that were classified as benign had their network traffic data, if it was available, 
input into the CACNN to confirm the benign classification. The model proposed by Feng et al. [ 25 ] 
achieved a high detection accuracy of 99.19%. 

Feng et al. [ 26 ] created MobiTive that uses a TensorFlow Lite Gated Recurrent Unit (GRU), 

Recurrent Neural Network (RNN) , static analysis, and a performance-based feature selection 

algorithm to detect Android malware on the device. Feng et al. [ 26 ] indicate that most Android 

malware detection is done on the server side and not on the device and suggest that, with recent 
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hardware advances, lightweight AI models could provide a foundation for universal deployment. 
During experimentation, Feng et al. [ 26 ] used varied RNN architectures, features, and dataset sizes. 
The features were extracted directly from the binary files, where they were not decompiled but 
rather extracted by analyzing the structure of the .dex file and manifest.xml, which can be obtained 

from unzipping an APK. A feature dictionary of 613 manifest properties and 1,509 API calls was 
initially created to which an additional 781 new API calls and 12 new manifest properties were 
added from Symantec Threats. A dataset of 18,000 malware samples and 18,000 benign samples 
was assembled from numerous sources where VirusTotal was used to validate the sample labels. 
Feng et al. [ 26 ] note that DL models are often customized, where the size, efficiency, and memory 

consumption are altered before deploying to constrained platforms, such as Android, and that 
this can affect the accuracy of the trained models. However, both the trained TensorFlow RNN 

GRU and the migrated TensorFlow lite RNN GRU that was deployed to a mobile device in their 
experiments achieved a detection accuracy of 96.75%. The TensorFlow lite RNN GRU was deployed 

on six different Android phones where the total time, including unzipping, feature extraction, 
and prediction, ranged from 0.46 to 3.96 seconds. Given the model is run on a device, if a file is 
detected as malicious, then its name and checksum could be saved in a local database, and this 
could also be pushed to the cloud where other devices could synchronize with it [ 26 ]. A number 
of limitations were highlighted in their study, including that while static analysis is faster and 

dynamic analysis does require more resources, it may provide higher-quality features that are more 
discriminatory between malware and benign applications. Further, MobiTive may not detect new 

malware, because just the manifest properties and API calls do not provide enough information for 
the model to generalize to new types of malware. Feng et al. [ 26 ] also highlight that an adversarial 
attack would not break the entire functionality of MobiTive and suggest that more focus should 

be on the evasive techniques used by malware. 
Kim et al. [ 53 ] have used a multimodal deep learning approach for Android malware detection. 

Their initial dataset contained 41,260 malware and benign samples. Static analysis and disassembly 

tools were used to extract features; however, only 78% of the dex files, 79% of the manifest files, 
and 69% of the .so files could be analyzed. No explicit reasons were given for this, but it is possible 
that the samples that could not be analyzed used obfuscation techniques. The resulting dataset 
contained 13,075 malware samples and 19,747 benign samples. Kim et al. [ 53 ] used seven fea- 
tures: string feature, method opcode feature, method API feature, shared library function opcode 
feature, permission feature, component feature, and environmental feature. However, permission, 
component, and environment features were merged into one vector, resulting in 5 vectors for each 

sample. Five parallel DNNs were used, one for each of the feature vectors. The last layers of the 
initial five are the input for the final DNN that produces the classification result. The Keras library 

was used, and this multimodal DL architecture achieved 98% accuracy [ 53 ]. 
While malware has typically targeted Windows and Android, there are increasing reports of so- 

phisticated ransomware and crypto miners that target Linux virtual servers that are widely used 

by cloud service providers [ 72 ]. Panker and Nissim [ 72 ] have generated features from volatile 
memory snapshots of virtual Linux servers and tested their features with numerous ML and DL 

models to detect known and unknown malware. The experimental setup included 56 benign ap- 
plications and 50 malware samples from nine categories run on Ubuntu DNS and HTTP VMs. As 
the behavior of the applications changed over time, multiple memory snapshots were captured for 
each benign and malware sample. The feature set encompassed a broad range of process interac- 
tions, information gathering, and generic behaviors represented by 171 individual features [ 72 ]. 
DL and ML models were used, and the KNN and RF classifiers achieved the highest accuracies with 

never-before-seen samples at 98.9% and 98.5% respectively. 
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5 DISCUSSION 

It is challenging to create a highly accurate and robust AI model to detect malware for numerous 
reasons. Sophisticated malware that may be evasive, novel, or use AI are challenging to analyze 
and extract genuine features. Evasive malware can use obfuscation to limit static analysis and anti- 
analysis techniques to change behavior and hide its malicious intent [ 3 , 29 , 30 , 48 , 72 , 74 , 77 , 84 , 
103 ]. Novel and AI-powered malware present even greater challenges [ 17 , 22 , 73 , 84 , 95 ]. Novel 
malware that has not been seen before and may exploit zero-day vulnerabilities, and AI-powered 

malware that embed the target class and instance in an NN, may be immune to analysis unless a 
triggered sample is captured [ 46 , 54 ]. 

There are numerous malware analysis tools used by security researchers, where each have their 
limitations. Maffia et al. [ 59 ] have shown that approximately 60% of the malware samples they 

analyzed used some form of obfuscation, which severely limits static analysis. Dynamic analysis 
tools, including debuggers, sandboxes, and DBI, are not affected by obfuscation, as they run the 
malware in a controlled environment. However, evasive malware can implement multiple types of 
anti-debug, anti-sandbox, anti-instrumentation, and anti-VM techniques to defeat dynamic anal- 
ysis [ 69 , 72 ]. Kim et al. [ 51 ] and Polino et al. [ 77 ] have reported anti-instrumentation techniques, 
which target DBI, in 16.21% and 15.6% of the analyzed malware samples. Contrastingly, Galloro 

et al. [ 30 ] and Sharma et al. [ 83 ] have reported the more general anti-analysis techniques in 80% 

and 99.36% of the malware samples analyzed. This indicates the evasive techniques used by mal- 
ware authors are not focused on DBI. 

DBI is immune to anti-analysis techniques that target VMs, debuggers, and sandboxes but can be 
defeated by anti-instrumentation techniques. Consequently, several methods have been developed 

to defeat anti-instrumentation used by malware, and the countermeasures are comprehensively 

detailed in the existing body of research [ 23 , 29 , 30 , 74 , 77 ]. Further, DBI allows deep and precise 
control of the file under analysis, which in turn allows genuine, high-quality, and comprehensive 
feature extraction. 

The accuracy and effectiveness of an AI model is dependent on the quality and authenticity of 
the features it is trained with [ 3 , 45 , 90 , 103 ]. Further, the quality and authenticity of the features 
is dependent on the quality of the analysis tool and the repository. Many of the papers analyzed in 

this survey highlight the explosive growth of malware, yet many studies use small, private, curated, 
and unbalanced datasets, which makes it difficult to measure progress, compare results, and can 

lead to overfitting of AI models. Creating an open repository of malware and benign applications 
is challenging, as there are copyright restrictions on legitimate software. However, generative AI 
has the potential to produce synthetic instances of both benign and malicious samples. It would 

be advantageous to the research community if different approaches could be applied to a ver- 
sioned and regularly updated repository, ideally with a linked DBI framework to extract authentic 
features. 

Determining what syntactic and or semantic features are most discriminatory between malware 
and benign applications and what feature representation is optimal for varying AI models is not 
easily resolved. The selection of quality features is pivotal to creating an AI model that generalizes 
beyond specific samples to detect variants and never-before-seen malware. Each study examined 

employed a distinct dataset and a specific set of features. Despite the difficulties in comparing 

these studies, it is noteworthy that models achieving an accuracy exceeding 99% used dynamically 

extracted features: API calls, network traffic, opcode sequence, and memory snapshots. 
Diverse types of AI are used for malware detection, where many different models, architectures, 

approaches, and parameters are used. Comparing the performance of the different models is com- 
plicated by the use of different datasets, analysis tools, and features. In the papers that compared 
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ML and DL using the same dataset and features, there was no clear standout performer, where 
both ML and DL achieved the highest accuracies [ 72 , 75 , 78 , 84 , 95 ]. The overarching issue here, 
however, is that small, unbalanced, or otherwise poor-quality datasets are being used with analysis 
tools that are easily defeated by evasive malware. 

6 CONCLUSION 

In this article, we systematically surveyed the state-of-the-art methods across five critical aspects 
of building an accurate and robust AI malware-detection model: malware sophistication, analysis 
techniques, malware repositories, feature selection, and ML vs. DL and generative AI. 

We showed there are numerous challenges for malware detection using AI. The sophisticated 

and evasive techniques used by malware authors impact the various analysis tools differently, 
where there is no general solution. Static analysis is fast and efficient but is limited by the wide- 
spread use of obfuscation. Dynamic analysis is not impacted by obfuscation but is defeated by 

ubiquitous anti-analysis techniques and requires more computational power. The dynamic analy- 
sis tool DBI is least impacted by anti-analysis and allows deep and precise control of the file under 
analysis, which in turn allows genuine, high-quality, and comprehensive feature extraction. 

Creating a public open repository that includes benign and malicious files is challenging. Con- 
sequently, researchers tend to use small, private, and unbalanced datasets, which makes it difficult 
to measure progress and compare results and can lead to overfitting of AI models. The importance 
of a large open repository that implements version control, is regularly updated, with a linked 

DBI framework to extract authentic features is clear, where we plan to investigate this form of 
implementation in future research. 

It is evident that the accuracy and efficiency of an AI model is dependent on the quality and 

authenticity of the features it is trained on. Poor-quality features from small datasets can lead 

to a situation where a model may achieve high accuracy with one specific dataset but is fragile, 
not generalizable, and does not perform well with new variants or novel data. Finding the most 
effective AI model and set of high-quality features that can reliably detect sophisticated and novel 
malware is not easily resolved. Consequently, future research should focus on the extraction of 
genuine features from a high-quality repository as the foundation for building an AI model that 
could be deployed in a production environment. 
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