90 research outputs found

    Proving Safety with Trace Automata and Bounded Model Checking

    Full text link
    Loop under-approximation is a technique that enriches C programs with additional branches that represent the effect of a (limited) range of loop iterations. While this technique can speed up the detection of bugs significantly, it introduces redundant execution traces which may complicate the verification of the program. This holds particularly true for verification tools based on Bounded Model Checking, which incorporate simplistic heuristics to determine whether all feasible iterations of a loop have been considered. We present a technique that uses \emph{trace automata} to eliminate redundant executions after performing loop acceleration. The method reduces the diameter of the program under analysis, which is in certain cases sufficient to allow a safety proof using Bounded Model Checking. Our transformation is precise---it does not introduce false positives, nor does it mask any errors. We have implemented the analysis as a source-to-source transformation, and present experimental results showing the applicability of the technique

    How to Compute Worst-Case Execution Time by Optimization Modulo Theory and a Clever Encoding of Program Semantics

    No full text
    International audienceIn systems with hard real-time constraints, it is necessary to compute upper bounds on the worst-case execution time (WCET) of programs; the closer the bound to the real WCET, the better. This is especially the case of synchronous reactive control loops with a fixed clock; the WCET of the loop body must not exceed the clock period. We compute the WCET (or at least a close upper bound thereof) as the solution of an optimization modulo theory problem that takes into account the semantics of the program, in contrast to other methods that compute the longest path whether or not it is feasible according to these semantics. Optimization modulo theory extends satisfiability modulo theory (SMT) to maximization problems. Immediate encodings of WCET problems into SMT yield formulas intractable for all current production-grade solvers; this is inherent to the DPLL(T) approach to SMT implemented in these solvers. By conjoining some appropriate "cuts" to these formulas, we considerably reduce the computation time of the SMT-solver. We experimented our approach on a variety of control programs, using the OTAWA analyzer both as baseline and as underlying microarchitectural analysis for our analysis, and show notable improvement on the WCET bound on a variety of benchmarks and control programs

    Vérification relationnelle pour des programmes avec des données entières

    Get PDF
    Les travaux présentés dans cette thèse sont lies aux problèmes de vérification de l'atteignabilité et de la terminaison de programmes qui manipulent des données entières non-bornées. On décrit une nouvelle méthode de vérification basée sur une technique d'accélération de boucle, qui calcule, de manière exacte, la clôture transitive d'une relation arithmétique. D'abord, on introduit un algorithme d'accélération de boucle qui peut calculer, en quelques secondes, des clôtures transitives pour des relations de l'ordre d'une centaine de variables. Ensuite, on présente une méthode d'analyse de l'atteignabilité, qui manipule des relations entre les variables entières d'un programme, et applique l'accélération pour le calcul des relations entrée-sortie des procédures, de façon modulaire. Une approche alternative pour l'analyse de l'atteignabilité, présentée également dans cette thèse, intègre l'accélération avec l'abstraction par prédicats, afin de traiter le problème de divergence de cette dernière. Ces deux méthodes ont été évaluées de manière pratique, sur un nombre important d'exemples, qui étaient, jusqu'a présent, hors de la portée des outils d'analyse existants. Dernièrement, on a étudié le problème de la terminaison pour certaines classes de boucles de programme, et on a montré la décidabilité pour les relations étudiées. Pour ces classes de relations arithmétiques, on présente un algorithme qui s'exécute en temps au plus polynomial, et qui calcule l'ensemble d'états qui peuvent générer une exécution infinie. Ensuite on a intégré cet algorithme dans une méthode d'analyse de la terminaison pour des programmes qui manipulent des données entières.This work presents novel methods for verification of reachability and termination properties of programs that manipulate unbounded integer data. Most of these methods are based on acceleration techniques which compute transitive closures of program loops. We first present an algorithm that accelerates several classes of integer relations and show that the new method performs up to four orders of magnitude better than the previous ones. On the theoretical side, our framework provides a common solution to the acceleration problem by proving that the considered classes of relations are periodic. Subsequently, we introduce a semi-algorithmic reachability analysis technique that tracks relations between variables of integer programs and applies the proposed acceleration algorithm to compute summaries of procedures in a modular way. Next, we present an alternative approach to reachability analysis that integrates predicate abstraction with our acceleration techniques to increase the likelihood of convergence of the algorithm. We evaluate these algorithms and show that they can handle a number of complex integer programs where previous approaches failed. Finally, we study the termination problem for several classes of program loops and show that it is decidable. Moreover, for some of these classes, we design a polynomial time algorithm that computes the exact set of program configurations from which non-terminating runs exist. We further integrate this algorithm into a semi-algorithmic method that analyzes termination of integer programs, and show that the resulting technique can verify termination properties of several non-trivial integer programs.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF

    Path Logics for Querying Graphs: Combining Expressiveness and Efficiency

    Get PDF
    International audienceWe study logics expressing properties of paths in graphs that are tailored to querying graph databases: a data model for new applications such as social networks, the Semantic Web, biological data, crime detection, and others. The basic construct of such logics, a regular path query, checks for paths whose labels belong to a regular language. These logics fail to capture two commonly needed features: counting properties, and the ability to compare paths. It is known that regular path-comparison relations (e.g., prefix or equality) can be added without significant complexity overhead; however, adding common relations often demanded by applications (e.g., subword, subsequence, suffix) results in either undecidability or astronomical complexity. We propose, as a way around this problem, to use automata with counting functionalities, namely Parikh automata. They express many counting properties directly, and they approximate many relations of interest. We prove that with Parikh automata defining both languages and relations used in queries, we retain the low complexity of the standard path logics for graphs. In particular, this gives us efficient approximations to queries with prohibitively high complexity. We extend the best known decidability results by showing that even more expressive classes of relations are possible in query languages (sometimes with restriction on the shape of formulae). We also show that Parikh automata admit two convenient representations by analogs of regular expressions, making them usable in real-life querying

    Verification and falsification of programs with loops using predicate abstraction

    Get PDF
    Predicate abstraction is a major abstraction technique for the verification of software. Data is abstracted by means of Boolean variables, which keep track of predicates over the data. In many cases, predicate abstraction suffers from the need for at least one predicate for each iteration of a loop construct in the program. We propose to extract looping counterexamples from the abstract model, and to parametrise the simulation instance in the number of loop iterations. We present a novel technique that speeds up the detection of long counterexamples as well as the verification of programs with loop

    IST Austria Thesis

    Get PDF
    This dissertation concerns the automatic verification of probabilistic systems and programs with arrays by statistical and logical methods. Although statistical and logical methods are different in nature, we show that they can be successfully combined for system analysis. In the first part of the dissertation we present a new statistical algorithm for the verification of probabilistic systems with respect to unbounded properties, including linear temporal logic. Our algorithm often performs faster than the previous approaches, and at the same time requires less information about the system. In addition, our method can be generalized to unbounded quantitative properties such as mean-payoff bounds. In the second part, we introduce two techniques for comparing probabilistic systems. Probabilistic systems are typically compared using the notion of equivalence, which requires the systems to have the equal probability of all behaviors. However, this notion is often too strict, since probabilities are typically only empirically estimated, and any imprecision may break the relation between processes. On the one hand, we propose to replace the Boolean notion of equivalence by a quantitative distance of similarity. For this purpose, we introduce a statistical framework for estimating distances between Markov chains based on their simulation runs, and we investigate which distances can be approximated in our framework. On the other hand, we propose to compare systems with respect to a new qualitative logic, which expresses that behaviors occur with probability one or a positive probability. This qualitative analysis is robust with respect to modeling errors and applicable to many domains. In the last part, we present a new quantifier-free logic for integer arrays, which allows us to express counting. Counting properties are prevalent in array-manipulating programs, however they cannot be expressed in the quantified fragments of the theory of arrays. We present a decision procedure for our logic, and provide several complexity results
    corecore