
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. R. Guerraoui, président du jury
Prof. V. Kuncak, directeur de thèse

Prof. C. Koch, rapporteur
Prof. D. Monniaux, rapporteur
Dr A. Rybalchenko, rapporteur

Automatic Verification with Abstraction and Theorem Proving

THÈSE NO 5828 (2013)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE le 15 AOUT 2013

À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE D'ANALYSE ET DE RAISONNEMENT AUTOMATISÉS

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2013

PAR

Hossein Hojjat

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147996712?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Everything has its tax and the tax of knowledge is to teach others.

— Ali bin Abu-Talib

To the memory of Christophe Paus

who saved lives after lives

whose life ended tragically in the Flight 447

Acknowledgements
In a Ph.D thesis in the area of formal methods, the only place left to be “informal” sounds

to be the Acknowledgements section. This section gives a unique chance to recognize the

importance of the helps received from others. Regrettably, due to space limitations, it is

impossible to include all the nice people without whom none of this would be possible.

Looking back at my first months at EPFL, I and my wife were unlucky to experience an

unfortunate situation. My wife had a massive brain stroke just three months after I joined the

Ph.D program of EPFL. Her rehabilitation program took a very long time; all along my doctoral

studies. I am happy to be finishing the thesis write-up as she has mostly recovered. Here, I’ll

do my best to include the name of the people who were of help to me in research and in facing

the challenging problems of life.

I would like to extend my sincerest thanks and appreciation to Viktor and Barbara. During

the first year of my Ph.D I was working with Barbara. After that I became a student of Viktor.

I am indebted to the proportionate, careful and tactical supervision of Viktor during my

research in the last four years. He allowed me to choose a topic on program analysis. My initial

attempts with developing verification tools and my first research papers during Ph.D were

not so successful. Viktor was always incredibly encouraging by persuading me to think about

the weaknesses of the failed attempts and to collaborate with the other researchers. Being a

student of Viktor gave the feeling that I was always being accompanied in the research. I’ll

always remember the day that Viktor and Barbara kindly offered to drive me in their own car

to Grenoble. The productive discussion with the researchers in Verimag led to new interesting

joint research topics.

I am delighted to have the opportunity to work with different people during my Ph.D. Most

notably, working with Philipp Rümmer was a valuable experience for me. Philipp’s profound

insight into both theory and practice of software verification made him an ideal collaborator

for me. I was always very enthusiastic to discuss different problems with him and I enjoyed our

cooperation in implementing the new ideas in practice. I also had the chance to visit his group

at the Uppsala University and to work with his student Paul. Paul is the kind of friend you

never get tired to discuss different subjects with him and we had interesting debates over the

semantics of timed systems. The Chapters 5 and 6 of this thesis are done in collaboration with

Philipp and Paul. I’m extremely glad to have known and have worked with Radu Iosif since the

first year of my Ph.D. I had the chance the take the class “Logic and Automata Theory” of him

and Barbara. With Radu and his then-student Filip Konečný we could combine and connect

the approaches of predicate abstraction and loop acceleration. This result is presented in

v

Acknowledgements

Chapter 4. Filip’s tool pushed me to improve the performance of Eldarica since Flata was

always a strong competitor in solving benchmarks.

I’d like to thank the jury members of my thesis defense, Rachid Guerraoui, Christoph Koch,

David Monniaux and Andrey Rybalchenko for accepting to be a member of this committee

and for their fruitful discussion during the defense. I appreciate the constructive comments of

David Monniaux on the draft of this thesis.

I am thankful to the current and previous LARA members for all the wonderful moments that

we had together: Andrej, Etienne, Eva, Filip, Giuliano, Mikael, Philippe, Pierre-Emmanuel,

Ravi, Regis, Ruzica, Swen and Tihomir. In particular I thank Regis and Philippe for helping me

to write the French abstract of this thesis. I am appreciative to the efforts of our secretary Yvette

to handle the administrative issues and Fabien for solving the problems of our computers.

The Persian community in Lausanne was beyond my initial imagination. It is unbelievable

to have such great people in thousand kilometers from home who never let me and my wife

feel the absence of our families. Our friends were remarkably supportive during the period

of hospitalization of my wife. It will be difficult for us to leave these nice people after my

graduation and we’ll miss them all. If I want to just to name a few of them here I can think

of Mohammad Hossein Manshaei, Fatemeh HosseinZadeh and Venus Sharifi. Mohammad

Hossein was really like a brother to me and Mrs. HosseinZadeh and Mrs. Sharifi loved my wife

as their own daughter.

My special thank to my family and family-in-law. My father is the one who shaped my

education and career from my childhood with his great excitement in introducing me to the

wonderful world of programming. When I was in primary school he bought me a laptop with

an Intel 80386 processor and 640KB of RAM and he taught me about programming in BASIC.

My enjoyment of programming started from those days and it appears that it has not lessened

until today. I’d like to thank my mother for showing me how patience and hope can make the

tough moments in life more tolerable. Nahal, your return from the probable death opened new

windows into my life and I will be thankful to God during the rest of my life that you did not

leave me in such a tragic manner. Indeed, I believe that finishing your bachelor’s degree after

having four brain surgeries is a far greater achievement than my graduation. I also thank my

father-in-law and my mother-in-law for their unconditional love and support. I am fortunate

to have two lovely elder sisters, who have always stood by me. I’m really glad to have both of

you.

Finally, I finish this part with remembering the memories that I have from Dr. Christophe

Paus, the late neurosurgeon of the CHUV hospital. If I am now writing this thesis and finishing

my graduation is because of you, Christophe. You saved many people including my wife in

this world, but unfortunately your lifetime was very short to save more. I hope wherever you

are you are in peace.

Lausanne, June 2013 Hossein Hojjat.

vi

Preface
Things like even software verification,

this has been the Holy Grail of computer

science for many decades but now in

some very key areas, for example, driver

verification we’re building tools that can

do actual proof about the software and

how it works in order to guarantee the

reliability

Bill Gates, April 18, 2002

Software verification, rigorously ensuring that software meets the desired properties for all

execution, remains a grand challenge for computer science. One place to look for inspiration

for solution is hardware verification, which, after decades of research, proved immensely

fruitful. Indeed, major hardware manufacturers today routinely verify their microprocessor

designs using model checking and theorem proving. Successful companies such as Jasper

Design Automation provide high-quality verification tools as a main product.

Can we hope for a similar success in software verification? The emergence of software model

checking, pioneered by Susanne Graf and Hassen Saidi in 1996, provided hope and started an

exciting direction within automated software verification. SLAM tool developed in Microsoft

Research by, among others, Thomas Ball, Rupak Majumdar, Todd D. Millstein, Sriram K.

Rajamani led to one of the first successful examples of using software verification to impose

software quality standards in a large software company, and was closely followed by further

advances such as the ones in the BLAST tool by Thomas A. Henzinger, Ranjit Jhala, Rupak

Majumdar, and Gregoire Sutre. The idea of predicate abstraction is to automatically abstract

an infinite-state software and obtain a simpler finite-state problem, which can then be tackled

by successful methods of hardware verification.

Notwithstanding the brilliance of the original idea, a large number of fundamental issues still

remained opened regarding predicate abstraction in practice. A basic question is the very

meaning of verifying a C program, given that even a single unverified memory access in a

C program technically renders all other verification results meaningless. A more technical

question includes a good mechanism for refining the abstraction in the face of false counterex-

amples. Indeed, it is the refinement step that hides many of the undecidability aspects of the

verification problem. This thesis makes important contributions to both of these questions.

vii

Preface

To address the first question, of rigorous semantics, the thesis adopts a logical representation

as the verification starting point, instead of a particular programming language with messy

semantics. This representation is in essence a recursive integer transition system; it is seman-

tically unambiguous, rich enough to capture the notion of infinite-state system verification,

and also related to fundamental models of computation such as Minsky machines and Petri

nets. For practice it is crucial that such logical descriptions can be generated automatically,

and the tool developed by the author does this for a subset of Scala, as well as for programs in

a Numerical Transition Systems format developed by Radu Iosif, which can be automatically

generated from C programs. Recent efforts (of which this thesis results are part) have led

to a library of rigorously described verification problems, which puts automated software

verification on a sound semantic and experimental basis, arguably for a first time.

To address the second question counterexample refinement (and the related termination of

the verification process), the thesis builds on an observation by Henzinger, Jhala, Majumdar,

and Kenneth L. McMillan that connected the refinement of abstract counterexample paths, a

crucial part of predicate abstraction, to the logical notion of interpolation. This results provide

further structure that help address the undecidable verification problem: interpolation prob-

lem remains decidable for many logical constraints describing program paths, and suggests

that the refinements for counterexamples, even if not uniquely given, can be often found by

examining unsatisfiability proofs.

Further crucial to the results of this thesis is an observation (which we learned from Andrey Ry-

balchenko) that considering inter-procedural and concurrent programs requires generalizing

the notions of paths to inter-procedural trees, and that interpolation in such generalized case

can be explained by solving recursion-free Horn clauses. The design space of verification algo-

rithms becomes an interplay between solving recursion-free constraints (which approximate

a recursive constraint) and using their solutions to constructively make progress in solving

the overall recursive problem. What emerges is a hierarchy of recursive and recursion-free

constraints whose solution has different algorithmic difficulty: more complex constraints are

more difficult to solve, but also allow a verification tool to make more rapid progress in the

overall verification problem. Two classes of constraints presented in the thesis are particularly

worth emphasizing: disjunctive interpolation problems, and accelerable recursive constraints.

Disjunctive interpolation problems arise as a useful generalization of tree interpolants that,

remarkably enough, does not increase the theoretical complexity of the satisfiability of con-

straints but can results in handling exponentially many tree interpolation problems at once.

The evaluation and implementation of this functionality in a verification system was made

possible thanks to a unique interpolation theorem prover Princess, developed by Philipp

Rümmer.

A second class of constraints are accelerable constraints, which correspond to loops whose

transitive closure can be solved in an exact way. They describe some of the situations where it

is possible to algorithmically verify systems with the infinite state space and infinitely many

traces. It is extremely valuable to incorporate such exact analysis into a general-purpose

verification system, whenever an opportunity arises. The new concept of accelerated inter-

polants shows that it is indeed possible to include such exact computation into a predicate

viii

Preface

abstraction engine. In the cases when it applies, the method can exclude infinitely many

paths at once. Moreover, the method also applies when programs are under-approximated or

over-approximated, and can be used to deliver final correct results thanks to the flexibility of

the predicate abstraction approach.

These techniques have been implemented in the tool Eldarica, which is publicly available and

has shown promising results in this remarkably difficult and important domain of algorithmic

software verification. What is particularly remarkable that these techniques are general enough

to apply to a wide range of domains, from hardware descriptions, to C and Scala programs, to

concurrent timed systems.

Lausanne, June 2013

Viktor Kuncak

ix

Abstract
Software verification is an important and complex discipline of research. Among different soft-

ware verification techniques, predicate abstraction has shown potentials in practice, notably

in verification of device drivers. The predicate abstraction technique works in an incremental

and iterative fashion. It constructs an abstraction of the given program with respect to a set

of predicates. With the help of spurious counter-examples it refines the coarse abstractions

to recover the missing precision introduced during abstraction. It keeps on performing the

abstraction refinement cycle until it finally proves the (in-)correctness of a program or it con-

tinues forever. The refinement step is commonly carried out with the help of Craig interpolants.

There are major fundamental bottlenecks and restrictions facing the predicate abstraction

approach. An important obstacle is the number of required refinement steps that can possibly

grow to infinity. This thesis introduces two novel techniques, acceleration of interpolants and

disjunctive interpolants to reduce the refinement steps and to increase convergence. The

idea behind the acceleration of interpolants is to strengthen the generation of interpolants

by computing the transitive closure of the loops. In the disjunctive interpolation technique

the refinement step can exclude several counter-examples together by just a single call to the

interpolating theorem prover.

I have implemented both of these novel techniques as part of a new predicate abstraction

framework called Eldarica. To be able to compare to other approaches, Eldarica supports

(among its other input formats) the intermediate languages of Integer Numerical Transition

Systems (INTS) and Horn clauses. This thesis classifies the recursion-free Horn clauses with

respect to the corresponding interpolation problem. The problem of solving a set of recursion-

free Horn clauses arises in the refinement phase of the general case of recursive Horn clauses.

The classification of recursion-free Horn clauses opens up new perspectives in building

predicate abstraction solvers for Horn clauses. As a challenging domain for verification

we finally introduce a compositional approach to verify the timed concurrent systems using

translation to Horn clauses. In the concurrent timed systems not only the parallel computation

of data matters but the exact time of generating the result is vital.

We have tried the Eldarica framework on several benchmarks coming from several sources.

The technical contributions of this dissertation offer novel algorithms that enable Eldarica to

verify some benchmarks that the earlier methods, based on the classical predicate abstraction

approach could not handle.

Keywords: software verification, predicate abstraction, interpolation, Horn clause, timed

systems.

xi

Résumé
La vérification logicielle est un domaine de recherche important et complexe. Une technique

de vérification qui s’est avérée efficace en pratique dans l’analyse de systèmes, et en particulier

de pilotes de périphériques, est l’abstraction par prédicats. Cette technique fonctionne de

manière itérative et incrémentale ; elle construit une abstraction d’un programme donné par

rapport à ensemble de prédicats sur ses états. À l’aide de contre-exemples, elle raffine les

approximations grossières et corrige les erreurs de précision introduites par l’abstraction.

La procédure itère le cycle d’abstraction et de raffinement jusqu’à finalement prouver la

validitié (ou l’invalidité) du programme ou, si cela s’avère impossible, ne termine pas. L’étape

de raffinement est habituellement calculée à l’aide d’interpolants de Craig. L’abstraction par

prédicats fait face à certaines limites fondamentales. Un obstacle en particulier est le nombre

d’étapes de raffinement qui peut croître à l’infini.

La présente thèse introduit deux nouvelles techniques pour réduire le nombre d’étapes de

raffinement et ainsi améliorer la convergence : l’accélération des interpolants, et les interpo-

lants disjonctifs. Le principe de l’accélération est de renforcer la génération d’interpolants

en calculant la fermeture transitive des boucles. En utilisant la technique d’interpolants dis-

jonctifs, l’étape de raffinement peut exclure plusieurs contre-exemples en un seul appel à une

procédure d’interpolation. J’ai implémenté ces deux nouvelles techniques au sein d’un nou-

veau outil de raisonnement par abstraction des prédcats appelé Eldarica. Afin de pouvoir se

comparer à d’autres approches, Eldarica supporte (parmi divers formats d’entrée) le langage

intermédiaire des «Integer Numerical Transition Systems (INTS)» et une représentation en

clauses de Horn.

Une autre contribution de cette thèse est la classification des systèmes de clauses de Horn

sans récursion par rapport aux problèmes d’interpolations correspondants. La résolution de

systèmes de clauses de Horn sans récursion est un problème qui se pose lors de la phase de

raffinement dans le cas général de systèmes de clauses de Horn récursives. La classification

des clauses de Horn sans récursion ouvre de nouvelles perspectives pour la construction de

systèmes d’abstraction par prédicats.

Finalement, adressant un difficile problème de vérification, je propose une approche com-

positionnelle pour la vérification de systèmes concurrents synchrones qui se base sur une

traduction vers des clauses de Horn. Dans ces systèmes concurrents synchrones, il faut non

seulement considérer la calcul de données en parallèle, mais également le minutage précis de

la génération des résultats. J’ai évalué le système Eldarica sur plusieurs benchmarks obtenus

de sources variées.

xiii

Preface

Les contributions techniques de cette thèse résultent en de nouveaux algorithmes qui per-

mettent à Eldarica de vérifier certains benchmarks hors de portée des approches classiques

d’abstraction par prédicats.

Mots-clés : vérification logicielle, abstraction par prédicats, interpolation, clauses de Horn,

systèmes temporisés.

xiv

Contents
Acknowledgements v

Preface vii

Abstract (English/Français) xi

List of figures xvii

1 Introduction 1

1.1 Software verification: From Its Origins to Predicate Abstraction 2

1.2 Predicate Abstraction . 5

1.2.1 Challenges and Limitations . 7

1.3 Technical Achievements . 8

1.3.1 Tools and Applications . 8

1.4 Outline . 8

2 Precise Modeling of Software 11

2.1 Program Model . 12

2.2 The INTS Infrastructure . 14

2.3 Horn Clauses . 16

2.4 Discrete vs. Dense Domains . 17

3 Background on Predicate Abstraction 19

3.1 Predicate Abstraction . 19

3.2 Interpolation-Based Abstraction Refinement . 21

3.3 Example for Interpolation . 22

3.4 Algorithm for Constructing an ART . 23

4 Accelerating Interpolants 25

4.1 Motivating Example . 26

4.2 Preliminaries . 27

4.2.1 Acceleration . 28

4.3 Interpolation-Based Abstraction Refinement . 28

4.4 Counterexample-Guided Accelerated Abstraction Refinement 30

4.5 Computing Accelerated Interpolants . 32

xv

Contents

4.5.1 Precise Acceleration of Bounded Trace Schemes 33

4.5.2 Bounded Overapproximations of Trace Schemes 36

4.5.3 Bounded Underapproximations of Trace Schemes 37

4.6 Experimental Results . 38

5 Interpolation and Solving Horn Clauses 41

5.1 Example: Verification of Recursive Predicates . 42

5.2 Formulae and Horn Clauses . 44

5.2.1 Horn Clauses . 45

5.3 The Relationship between Craig Interpolation and Horn Clauses 47

5.3.1 Binary Craig Interpolants . 48

5.3.2 Inductive Sequences of Interpolants . 49

5.3.3 Tree Interpolants . 50

5.3.4 Restricted (and Unrestricted) DAG Interpolants 53

5.4 Disjunctive Interpolants and Body-Disjoint Horn Clauses 55

5.4.1 Solvability of Body-Disjoint Horn Clauses 58

5.5 Solvability of Recursion-free Horn Clauses . 60

5.6 The Complexity of Recursion-free Horn Clauses 62

5.6.1 The Complexity of Different Classes of Horn Clauses 66

5.7 From Recursion-free Horn Clauses to Well-founded Clauses 68

5.8 Model Checking with Recursive Horn Clauses . 71

5.8.1 A Predicate Abstraction-based Model Checking Algorithm 72

5.8.2 Global Model Checking with Disjunctive Interpolation 75

5.9 Experimental Evaluation . 76

5.10 Towards a Library of Interpolation Benchmarks 79

6 Compositional Verification of Timed Systems Using Horn Clauses 81

6.1 The Theory of Timed Automata . 82

6.2 Reasoning about Concurrent Programs . 83

6.3 Motivating Example . 84

6.4 Modeling Local Transitions . 86

6.5 Interleaving and Concurrency Rules . 88

6.5.1 Owicki-Gries Method . 88

6.5.2 Rely-Guarantee Method . 89

6.5.3 Modeling Parameterized Systems . 90

6.6 Evaluation . 90

7 Related Work 93

7.1 Counterexample-Guided Accelerated Abstraction 93

7.2 Disjunctive Interpolants . 94

7.3 Horn Clauses . 95

7.4 Verification of Timed Systems . 96

xvi

Contents

8 Conclusion 97

8.1 Future Directions . 98

Bibliography 106

Curriculum Vitae 107

xvii

List of Figures
1.1 A program with control flow and reachability graphs 6

2.1 Example of a Program with corresponding integer transition system 14

2.2 Integer Numerical Transition System Infrastructure 15

2.3 The encoding of the program in Figure 2.1 (c) into a set of recursive Horn clauses. 16

2.4 Solution of the Horn clauses in Fig. 2.3. 17

3.1 Counter-Example Guided Abstraction Refinement (CEGAR) 20

3.2 Proof about path constraints . 22

3.3 The CEGAR algorithm . 23

4.1 Example Program and its Control Flow Graph with Large Block Encoding 26

4.2 The CEGAAR algorithm - Accelerated Refinement 32

4.3 Underapproximation of unbounded trace schemes 32

4.4 The Interpolation Function . 33

4.5 Benchmarks for Flata and Eldarica. 39

5.1 Horn clauses computing the greatest common divisor of two numbers 43

5.2 Extended recursion-free approximation of the Horn clauses in Fig. 5.1. 43

5.3 Equivalence of interpolation problems and systems of Horn clauses. 48

5.4 Tree interpolation problem for the clauses in Example 5.3.3 52

5.5 Tree interpolant solving the interpolation problem in Figure 5.4 53

5.6 A Turing machine moving right . 66

5.7 Complexity of Recursion-free Horn Clauses and Interpolation Problems 67

5.8 Algorithm for construction of abstract reachability graphs. 74

5.9 Pseudo-code for the global algorithm ARG . 76

5.10 Benchmarks for model checking Horn clauses . 77

5.11 Experimental Result on Comparing the required refinement steps for Tree Inter-

polation and Disjunctive Interpolation . 78

5.12 Average time of solving interpolation categories by Eldarica and Z3 80

6.1 Pedestrian Crossing Light and the local clauses of each automaton 85

6.2 Encoding of timed transitions in Figure 6.1 . 85

6.3 Owicki-Gries and Rely-Guarantee Encoding . 87

xix

List of Figures

6.4 Owicki-Gries interference-freedom and synchronization clauses 88

6.5 Horn clauses for the Rely-Guarantee approach . 89

6.6 Execution time for proving the correctness of non-paramatrized benchmarks . 90

xx

1 Introduction

Pay attention to zeros. If there is a zero,

someone will divide by it.

Cem Kaner

Software is everywhere. In one form or another programs are integrated in everyday life. There

are numerous examples of ways in which we are under the influence of software. Take, for

example, trading. The financial transactions from smallest, such as buying a book online to

largest, such as transactions in the level of banks and finance companies are basically done

by software. Likewise, software plays an essential role in our transportation. It is estimated

that a premium automobile nowadays runs around 100 million lines of code [Cha09]. The

level of software presence in jet airliner can go well beyond. Just the avionics systems in the

Airbus A380 include more than 100 millions lines of code [WDD+12]. To bring it even closer

to ourselves, we are probably carrying a piece of code in our pockets right now. Cell phones

usually include some sort of software; even the most basic models include an address book

program. Many models of mobile phones these days are able to execute software on their

operating systems. The Android system which is one of the most successful operating systems

in the market of cell phones runs more than a million lines of code in version 4.0 [Rub11].

In the examples above and in many more cases, we are placing our confidence in software:

we trust the computer programs not to miscalculate the financial transactions, not to crash

our cars or airplanes and not to reveal the personal data from our cell phones. The defects in

software not only impose serious economic losses to a company to recall the faulty products

but it can also lead to possible damages and human casualties. The creator of the web-page

[Der] has gathered more than 100 horror stories in which software problems has resulted in

disastrous accidents. The purpose of the formal program verification research is to assure the

reliability of software. Along those lines of research, this dissertation proposes new techniques

in proving the safety of critical systems. Given the source code of a program, the goal of the

techniques in this thesis is to determine whether a program can hit the error state.

1

Chapter 1. Introduction

The formal software verification approach that this thesis adopts is based on the successful

method of predicate abstraction with counterexample-guided abstraction refinement, some-

times abbreviated as CEGAR [CGJ+00]. The effectiveness of this method is widely proved

in practice [HJMM04, GPR11a, BLR11, BHJM07]. Although much success has been achieved

with regard to the verification of complicated programs there are still few fundamental short-

comings affecting both the performance and the ability of the CEGAR tools to handle some

challenging benchmarks. One deficiency is due to the repetitive nature of the procedure.

CEGAR is basically a loop of abstraction and refinement which continues until the program

is proved to be correct or incorrect. Having a complete procedure that always terminates is

theoretically impossible, but, this thesis presents heuristics to reduce the number of required

iterations and to increase convergence. The established framework in this thesis is also able to

verify recursive and concurrent programs. To put the new techniques in a suitable perspective

and to make clear the claims I start by giving a short background on the history of software

verification.

1.1 Software verification: From Its Origins to Predicate Abstraction

The ideas behind formal program verification were developed at the same time by the birth

of computer science. Alan Turing, the father of modern computer science, in one of his

pioneering papers [Tur49] suggests the programmers put assertions about the correctness of

programs at various points. The condition of an assertion should always be satisfied when

the execution reaches a program point. He describes a checker to verify the assertions in

order to prove the correctness of a particular program. The assertions remain to be one of the

most prevalent ways of describing the correctness of software. Tony Hoare, another pioneer of

computer science, reported that more than a quarter million of assertions were used in the

code of Microsoft Office at the time of publication of the paper [Hoa03].

On verification of programs, a natural question arises. Namely, is it possible to devise an

oracle that can verify every program? To put it in other words, can we have a general and

complete procedure that can determine if a particular assertion fails at some point in an

arbitrary program? The answer to this question came again early in the beginning days of

computer science. In his seminal paper of 1936, Alan Turing proved that there is no general

algorithm that would always terminate and solve the halting problem for all programs. Rice’s

theorem [Ric53] states that any nontrivial property of a program can be reduced to the halting

problem. A direct impact of this impossibility result in practice is that for an automatic verifier

targeting general programs there exits challenging programs for which the verifier loops

endlessly on them.

In spite of theoretical limitations in achieving an ultimate verifier, the research on developing

formal verification techniques started from the early ages of computer science. The initial

approaches of proving correctness were not mechanized in the sense that the programmer had

to come up with proofs manually. The formal system of Hoare logic [Hoa69] is one of the initial

2

1.1. Software verification: From Its Origins to Predicate Abstraction

proof approaches to verify programs. This system uses a set of logical rules, known as Hoare

triples, for reasoning about programs. There are basically three components in a Hoare triple:

pre-condition, program fragment and post-condition. A Hoare triple is an assertion about the

behavior of a program fragment. The assertion expresses that the terminating executions of

the program fragment which start in a state satisfying the pre-condition should terminate in a

state satisfying the post-condition. There are Hoare triple rules associated to each program

command in the programming language. There are also rules describing the composition of

commands. The set of all rules together forms an inductive set of proof rules for a program.

In the Hoare logic rules, the rule corresponding to iteration or loop represents a formidable

challenge. Reasoning about a loop requires the existence of an invariant in a suitable logic.

The loop invariant is an assertion that holds before and after each iteration of the loop. Finding

the invariant of the loop requires the insight from the programmer. The programmer has to

come up with a suitable invariant formula described in a suitable logic to be able to prove the

programs containing loops.

Amir Pnueli used temporal logic [Pnu77] for specification and reasoning about sequential

and concurrent programs. Temporal logic is an extension of classical logic by operators

relating to time. The time operators include operators for specifying the next moment, every

future moment and some future moment in time. The behavior of concurrent programs

is commonly reactive: they have an ongoing behavior through interactions between the

concurrent components and the program environment. The language of temporal logic

defines predicates over infinite sequences of the program executions. The general proof

principle in [Pnu77] for proving program safety is by induction which depends on the existence

of an invariant. The invariant describes a property that holds initially and is transferred along

all the valid transitions of the system. In temporal logic some other properties related to time

are also considered such as termination which are beyond the scope of this thesis.

Soon after computers gained a tremendous popularity there was inevitably an increase in the

number of software developers. It may not be straightforward for an average programmer

to carry out a formal proof of correctness by finding suitable invariants. Furthermore, the

size of the typical programs increases constantly as the time passes. This makes the software

verification task beyond the human capabilities. Exploiting automatic techniques and tools

has become a necessary force in the formal verification research after the advent of initial

manual proof systems. Model checking appeared in early 1980s as one of the first successful

attempts to solve the formal verification problem algorithmically. It was first observed in

[Pnu77] that checking the validity of temporal logic on a finite state system is decidable. The

model checking approach inspects a finite state system automatically in order to determine if

the system conforms to a temporal logic specification.

The model checking method was invented by Clarke and Emerson [CE81] and independently

by Queille and Sifakis [QS82]. It checks the satisfaction of a specification logical formula over a

system represented by a graph. The predominant specification logic that is used is temporal

logic. The algorithm exhaustively searches the state space of the program and checks the

3

Chapter 1. Introduction

satisfaction of the desired formula. If one of the states violates the desired property a counter

example is generated and reported to the user. Noteworthy, the key restriction is the size

of state space. One of the main research directions in the model checking community has

been developing heuristics to tackle the state space explosion problem. No matter how big

the state space becomes, model checking was designed as a verification technique for finite

state systems. This is in particular the case with hardware systems in which the size of the

memory and registers is fixed. In contrast to hardware, the model for software systems is

usually considered to be “infinite-state”, since they contain variables and data structures over

unbounded domains such as Integers [MCF+97]. Even in the simple case of a program with

neither recursive functions nor dynamic allocations which only uses bounded scalar types the

state space is so enormously large that it should be treated as infinite for all practical purposes.

A reasonable way to come up with verifiers for programs is to approximate the verification

problem. To make sense the approximation should be sound here. The verifier checking

an approximated version of the program is not allowed to make misleading reports on the

(in-)correctness.

Cousot and Cousot formalized the approximative program verifiers in the framework of

Abstract Interpretation [CC77]. The purpose of this framework is to correctly approximate

a program in a conservative way such that the approximation does not lead to erroneous

conclusions. To put it simple, abstract interpretation transfers the concrete program to an

abstract program which is decidable and the analysis techniques can fully investigate it. By

neglecting some details from the program during construction of an approximation a set of

new execution paths are possibly included in the abstraction. The original program may not

be able to necessarily perform the newly included traces in its execution. If the outcome of the

over-approximation of the program is safe we can conclude that the original concrete program

was also a safe program due to conservative abstraction. In the case that the verification

procedure locates an error in the abstract program we cannot confidently determine that the

concrete program was unsafe. We have to examine the error trace in the original program. If

the error trace turns out to be genuine then a true error is found. Otherwise the error trace

was just a result of over-approximation. Such error is usually known as “spurious counter-

example”.

Over the last decade a great deal of effort has been given to design verification methods

that benefit from the advantages of both model checking and abstract interpretation. These

techniques target the infinite state space of software yet are fully automatic in a push-button

style of model checking. A notable approach is bounded model checking. Bounded model

checking emerged as a technique for falsification of the properties of finite state hardware

systems [BCCZ99]. The basic idea is to search for counterexamples within a certain depth of ex-

ecution. If the algorithm finds a counterexample, it encodes the counterexample symbolically

and checks the satisfiability of the resulted formula using a SAT solver. If the path turns out to

be genuine the algorithm gets a satisfying assignment from the SAT solver and reports it to the

user. Otherwise it increases the bound of search and continues. The bounded model checking

is useful for finding bugs up to certain lengths. The authors of the C Bounded Model Checker

4

1.2. Predicate Abstraction

(CBMC) [CKL04] applied bounded model checking to software systems. CBMC unwinds the

loops up to a certain depth. To handle variables it “bit blasts” the variables before passing the

formula to a SAT solver. The bit blasting approach considers the bit-vector representation of a

variable and represents each bit by a propositional variable. It then replaces the arithmetic

operators by their equivalent circuits in order to obtain a propositional formula. With the

progress in SMT solvers the variables are not unavoidably bit blasted to their bit-vector repre-

sentation in the newer software bounded model checkers. The new tools provide freedom in

choosing data types over the mathematical domains or bit-vectors [SFS11, AMP06].

The CEGAR approach that was mentioned in the beginning of this chapter is one of the pre-

dominant approaches in automatic software model checking. In the most recent Competition

on Software Verification (SV-COMP 2013) [Bey13] the CEGAR approach and bounded model

checking were the most popular techniques among the software verifiers. The insights from

three specific advances in formal verification gave rise the idea behind the modern CEGAR-

based tools. The first inspiration was the predicate abstraction technique [GS97] which is an

abstract interpretation approach for abstracting a program with respect to a set of predicates

defined over the program variables. The choice of the predicates in [GS97] is manual and

is inspired by the guards and assignments of the program. The second invention was the

CEGAR [CGJ+00] methodology that extended the predicate abstraction framework by intro-

ducing an abstraction refinement loop. The main difference between the original predicate

abstraction approach and CEGAR is in refinement: if the abstraction is too coarse and gen-

erates spurious counterexamples the abstraction is refined automatically. The refinement

procedure of [CGJ+00] considers an abstraction as an equivalence relation on the states of the

original program. It then tries to divide the equivalence classes to smaller classes with the goal

of excluding the unreachable states. The suitability of the existing refinement techniques for

software systems was a question until interpolants appeared as the third novel conception.

Craig Interpolants are shown to be a reasonable mechanism to refine the abstractions in soft-

ware verification [HJMM04]. Nowadays the common-sense meaning of “predicate abstraction”

is usually the CEGAR approach with interpolation as the refinement phase.

1.2 Predicate Abstraction

For the purpose of this chapter I describe the predicate abstraction methodology by using the

small program in Figure 1.1. Chapter 3 gives a formal overview of the method. The program in

Figure 1.1(a) contains two integer variables x and y. It starts by assuming the condition that the

variables are greater than or equal to 0. Then in a while loop with a non-deterministic condition

(represented by *) it decrements x by y if x is greater than y . Otherwise it decrements y by x.

After the exit from the loop there is an assertion to ensure that the variable x is not equal to −1.

The control flow graph of the program is in Figure 1.1(b). In the transitions of the control flow

graph the primed variables represent the values of the variables in the destination vertex.

Intuitively, a predicate is simply a statement on the variables of the program. For example,

5

Chapter 1. Introduction

int x,y;
assume(x≥0∧y≥0);
while(∗) {
if (x>y) then
x:=x−y;

else y:=y−x;
}
assert(x6= −1);

q0

q1

[x ≥ 0]
[y ≥ 0]

q2 q3

[x > y] [x ≤ y]

[x = −1]

x := x− y y := y − x

errerr

(q0, ∅)
[x ≥ 0]
[y ≥ 0]

x = −1

err

(q1, ∅)

(q0, ∅)
[x ≥ 0]
[y ≥ 0]

(q1, {x ≥ 0})

[x = −1] (q2, ∅)
[x > y]

(q1, ∅)
x := x− y

[x = −1]
err

(a) (b) (c) (d)

Figure 1.1: (a) The source code of a program. (b) The control flow graph. (c),(d). The reachabil-
ity graphs for two possible iterations of CEGAR.

the formula x > y or x = 0 are all proper predicates. The algorithm starts with an initial set

of predicates. This can be empty, here we also assume that no predicates are given at the

beginning. The basic task of predicate abstraction is to construct an abstract reachability

graph (ARG). This graph is obtained by unwinding the control flow graph from its start state

in the abstract space. To find the children of a node in the ARG we compute the abstract

successors with respect to the outgoing transitions. The abstract successor basically assumes

the abstraction of the current node, computes the set of predicates in the destination that are

valid under the outgoing transition to that destination. The set of all valid predicates in the

destination child constitutes the abstraction of the child. Since initially we do not have any

predicate there are no predicates (the abstraction is true) in every node in the first reachability

tree in Figure 1.1(c) and we immediately hit the error state.

After observing an error state in a path in the abstract program we have to check its legitimacy.

For this purpose we convert the path to a mathematical formula by converting it to static

single assignment form (SSA) [CFR+91]. A formula for the path in Figure 1.1(c) is x1 ≥ 0∧y1 ≥ 0

∧ x1 = −1. A theorem prover call confirms the unsatisfiability of the formula hence the

spuriousness of the path. Now we enter the refinement phase by calling an interpolating

theorem prover. The interpolation at each step of the path allows us to remove irrelevant

information that is not needed to maintain the unsatisfiability of path. In other words, the

interpolant expresses the essence of the reason for unsatisfiability of a trace in the program.

There can be generally multiple explanations for unsatisfiability of a formula. In practice, the

result of a query to an interpolating theorem prover depends on the implemented interpolation

technique and on the syntax of the given formula. Assuming that the interpolating theorem

prover returns x1 ≥ 0 as an interpolant we add the predicate x ≥ 0 as a candidate predicate for

the state q1.

6

1.2. Predicate Abstraction

Now it is the time to rerun the CEGAR loop, this time with a nonempty set of predicates. After

constructing the initial abstraction for q0 which is the empty set ;, we look into the transition

from q0 to q1. There is a candidate predicate for q1 which is x ≥ 0. Indeed this predicate is

valid after the transition assume(x ≥ 0∧ y ≥ 0) so we keep it as an abstraction for q1. Having

the assumption x ≥ 0 in the state (q1, {x ≥ 0}) prevents us from again hitting the error state. So

we cut the direct transition to error and continue with another possibility in q1, the transition

to q2. This is the right branch in the reachability graph of Figure 1.1(d). Since there is no

candidate predicate for q2, by the transition to q2 we construct the ARG node (q2,;) with the

assumption true (empty set). Making the transition x := x − y with the assumption tr ue from

(q2,;) to q1 again makes an abstract state with no predicates (q1,;). Nothing prevents this

state from making a transition to error. In general, after hitting the error state it suffices to just

consider a suffix of the path which is still infeasible. The last three steps of the path to error

is an infeasible path itself [x > y]; x := x − y ; [x = −1]. The SSA formula for this suffix of the

path to error is (x1 > y1)∧(x2 = x1− y1)∧(x2 =−1). We get the two interpolants x1 > y1 , x2 ≥ 0

from the interpolating theorem prover. We had the predicate x ≥ 0 for the state q1 before. We

just add the predicate x > y to q2 and rerun the abstraction. The algorithm similarly traverses

the loop q1—q3 and finally constructs a complete reachability graph to show that the program

is safe.

1.2.1 Challenges and Limitations

There are some fundamental key questions to ask about predicate abstraction even in the small

example of this section. We proved the problem using three refinement steps; first by removing

the direct path to error, then a path going through the q1—q2 loop and finally a path going

though the q1—q3 loop. One might ask if it is possible to remove the three discovered counter-

examples of the abstract program by just a single refinement step. This can reduce the calls to

the interpolating theorem prover to a single call. This thesis systematically studies the problem

of reducing the number of interpolation calls as one of its goal. It introduces a new notion of

disjunctive interpolants for handling several counter-examples together. Another fundamental

question is the generality of the generated interpolants. In this example we got general

interpolants from the interpolating theorem prover that removed all the possible unfolding of

the loops. In general it is possible that the interpolating theorem prover computes specific

interpolants for each traversal of the loop. To address this problem we present an acceleration

methodology that basically prevents the system from diverging. One of the ultimate challenges

for the CEGAR tools is being able to analyze inter-procedural and concurrent programs. This

dissertation uses the intermediate language of Horn clauses as a useful technique in proving

such programs. Researchers have observed that Horn clauses are suitable for representation

of many complicated domains.

7

Chapter 1. Introduction

1.3 Technical Achievements

The technical contributions of this dissertation are summarized as the following.

• We propose disjunctive interpolants as a new form of interpolation which removes

several counter-examples together to increase convergence and improve performance.

We present a predicate abstraction based solver for recursive Horn clauses that uses

disjunctive interpolants for refinement.

• We introduce a taxonomy for recursion-free Horn clauses and show the corresponding

interpolation problem that they solve. We give computational complexities in each

of the proposed classes for the underlying languages of Boolean logic and Presburger

arithmetic.

• We introduce the counter-example guided accelerated abstraction refinement (CEGAAR)

algorithm as an improved CEGAR approach. The novelty of the proposed algorithm

is in combining the two approaches of predicate abstraction and the computation of

transitive closure of loops in a program. The CEGAAR algorithm is able to solve problems

on which the traditional tools mostly diverge.

1.3.1 Tools and Applications

We have implemented all the techniques presented in this thesis in the framework of Eldarica
1 that works in the domain of Integer Presburger arithmetic. Eldarica is able to input several

languages. The input languages are the following: A subset of Scala, the numerical transition

system [HKG+12], Horn clauses in Prolog format [GLPR12], Horn clauses in SMT-LIB2 format

and UPPAAL 2 benchmarks. We have used Eldarica in the verification of different benchmarks.

The benchmarks come from a wide variety of sources. They include benchmarks from ver-

ification conditions for programs with arrays, C programs with challenging loops, models

extracted from programs with singly-linked lists, C programs provided as benchmarks in the

NECLA static analysis suite, C programs with asynchronous procedure calls, models extracted

from VHDL models of circuits, benchmarks from the HSF library and benchmarks from the

International Competition on Software Verification. The experiments sections of Chapters 4

and 5 give more information about the benchmarks.

1.4 Outline

This thesis opens with an overview of the program model in Chapter 2 that is used in the rest

of the thesis. It then continues to present a background on predicate abstraction in Chapter 3,

the main technique that is exploited and pursued in the thesis. Chapter 4 is devoted to the

1http://lara.epfl.ch/w/eldarica
2http://www.uppaal.org/

8

http://lara.epfl.ch/w/eldarica
http://www.uppaal.org/

1.4. Outline

idea of combining predicate abstraction with computation of transitive closures of the loops,

namely accelerating the interpolants. The entire Chapter 5 is about solving Horn clauses and

the correspondence between recursion-free Horn clauses and interpolation. Our initial steps

on verification of timed systems using Horn clauses are the subject of Chapter 6. This thesis

concludes with Chapter 7 on related works and conclusions in Chapter 8.

9

2 Precise Modeling of Software

There’s no sense in being precise when

you don’t even know what you’re talking

about.

John von Neumann

In this section we define our model for programs. The analysis in the later sections is based

on the model defined in this section. Unless explicitly stated otherwise, this dissertation

focuses on verification of programs which their underlying transition relation is expressed

using Presburger arithmetic. Such transition relation are known as counter automata, counter

systems, counter machines or Integer Numerical Transition Systems (INTS) [HKG+12]. This

model is an infinite-state extension of the model of finite-state boolean transition systems. In

principle any Turing-complete class of systems can be simulated by counter systems [Min67].

The interest for transitions systems manipulating Integers comes from the fact that they

can encode various classes of systems with unbounded (or very large) data domains, such

as hardware circuits, cache memories, or software systems with variables of non-primitive

types, such as integer arrays, pointers and/or recursive data structures. A number of recent

works have revealed cost-effective approximate reductions of verification problems for several

classes of complex systems to decision problems phrased in terms of integer transition systems.

Examples of systems that can be effectively verified by means of integer programs include:

specifications of hardware components [SV07], programs with singly-linked lists [BBH+06],

trees [HIRV07], and integer arrays [BHI+09].

We introduce two common representation languages in this section that can essentially encode

different programs: INTS and Horn clauses. Common representation languages offer many

potential benefits to software verification research by providing a robust communication

mechanism for exchanging information and comparison among verification tools.

11

Chapter 2. Precise Modeling of Software

2.1 Program Model

In the following, let Z denote the set of integer numbers. Presburger arithmetic is the first-

order logic theory of integer addition. Let x = {x1, . . . , xn} be a set of variables. Without

loss of generality, a Presburger formula φ(x) is a quantified Boolean combination of atomic

propositions of the form t1 ≤ t2, where t1 and t2 are linear terms over the variables x. A linear

term t over a set of variables in x is a linear combination of the form a0 +∑n
i=1 ai xi , where

a0, a1, . . . , an ∈Z. A variable not occurring under the scope of a quantifier is said to be free. If

FV (φ) ⊆ x is the set of free variables in φ and ν : x →Z is an interpretation of the variables in x,

we say that ν satisfies φ, written ν |=φ, if the formula resulting by replacing each variable x ∈ x

by ν(x) in φ is logically equivalent to true. Notice that each formula defines a set of integer

tuples which satisfies it. Let x′ denote the set {x ′
1, . . . , x ′

n}. A relation R ∈Zn ×Zn is defined by

a formula R(x,x′). We denote by~x an ordered sequence 〈x1, · · ·xn〉 of variables and |~x| is the

length of sequence.

We represent a program using a control-flow graph (or control-flow automaton) with nodes

representing program points and the edges are annotated with relations between initial and

final values of variables. In a relation between the initial and final values of variables the

unprimed variables x denote the values of the variables at the source whereas the primed

variables x′ denote the values of the variables at the destination of a transition.

Definition 2.1.1. A program is a tuple P = 〈xg, {S1, · · · ,Sn},Sm〉 where xg represents a set of

global variables, S1, · · · ,Sn are procedures, and Sm is the main procedure (1 ≤ m ≤ n). Each

procedure is a tuple Si = 〈xi,~xi
i n ,~xi

out ,Qi , q i ni t
i ,Fi ,Ei ,→i 〉, where:

• xi is the set of variables in Si including the global variables.

• ~xi
i n ⊆ xi is the set of input variables and ~xi

out ⊆ x is the set of output variables.

• Qi is the set of control states of Si . We require that the sets of control states are pairwise

disjoint, i.e., for all i 6= j , Qi ∩Q j =;.

• q i ni t
i ∈Qi is the initial state, Fi ,Ei ⊆Qi are the final and error states.

• →i is a set of transition rules of the following forms.

– q
R(xi,x′

i)−−−−−→ q ′ is an internal transition, where q, q ′ ∈Qi are the source and destination

states, and R(xi,x′i) is a Presburger arithmetic formula defining a relation.

– q
~z′=call j (~t)−−−−−−−→ q ′ is a procedure call transition, where q, q ′ ∈ Qi are the source and

destination states, 1 ≤ j ≤ n is the index of the callee,~t is a sequence of linear terms

over xi called the actual parameters,~z ⊆ xi is a sequence of variables called the return

variables. We require that the numbers of parameters and return variables of the call

transition match the numbers of input and output variables of the callee, |~t| = |~xj
i n |

and |~z| = |~xj
out |.

12

2.2. The INTS Infrastructure

In the case that the set of procedures is empty we deal with the single procedure Sm without

any procedure call. Analyzing such programs is within the scope of intraprocedural analysis.

For a program with only the main procedure Sm the configuration of the program is a pair

〈q,ν〉 where q ∈ Qm is a control state, and ν : xm → Z is a valuation of the variables. A run

of Sm is a finite sequence c0,c1, . . . ,ck of configurations such that ci = 〈qi ,νi 〉 and q0 = q i ni t
m ,

qk ∈ E ∪F and for all 0 ≤ i < k, qi
Ri−−→ qi+1 and νi ∪νi+1 |=Ri . A run is said to be safe if qk ∈ F .

The system represented by Sm is said to be safe if all its runs are safe. We sometimes represent

a program with a single main procedure Sm with only the model of the its main procedure Sm :

〈x,Q, q i ni t ,F,E ,→〉.

In the inter-procedural case the transitions can be either internal or procedure calls. In a run of

a system with procedure calls whenever a callee reaches a final state, the execution returns back

to the caller. A path in the program is a sequence of transitions in which the calls and returns

matches. A call graph is a directed graph that represents the calling relationships between

procedures of a program. Specifically, each node in a call graph represents a procedure and

existence of the edge (i , j) indicates that procedure Pi calls the procedure P j . A program is

recursive if there exists a cycle in the call graph.

Consider the program in Figure 2.1(a). This program contains a single non-recursive procedure.

The model for the main procedure is the following.〈
{x, y, i , j } , 〈〉 , 〈〉 , {l0, l1, l2, l3, l4, l5,er r } , l0 , ; , {er r },{
l0 → l1 (i ′ ≥ 0∧ j ′ ≥ 0)

l1 → l2 (x ′ = i ∧ y ′ = j ∧ i ′ = i ∧ j ′ = j)

l4 → l2 (y ′ = y −1∧x ′ = x ∧ i ′ = i ∧ j ′ = j)

l3 → l4 (x ′ = x −1∧ y ′ = y ∧ i ′ = i ∧ j ′ = j)

l2 → l3 (x 6= 0∧x ′ = x ∧ y ′ = y ∧ i ′ = i ∧ j ′ = j)

l2 → l5 (x = 0∧x ′ = x ∧ y ′ = y ∧ i ′ = i ∧ j ′ = j)

l5 → er r (i = j ∧x 6= y ∧x ′ = x ∧ y ′ = y ∧ i ′ = i ∧ j ′ = j)
}〉

Figure 2.1(b) shows the model graphically. Most programmers would have little difficulty

observing that the assertion will always succeed, but many tools, including non-relational

abstract interpretation, as well as predicate abstraction with arbitrary interpolation can fail to

prove the assertion to hold [JM06]. The program in Figure 2.1(c) is a recursive program gener-

ally known as the McCarthy 91 function. The havoc function assigns an arbitrary number to

its argument non-deterministically. The Figure 2.1(d) is the corresponding integer numerical

transition system. This program has a complex recursion pattern and it is usually considered

as a challenging problem for formal verification [Man74]. The ELDARICA framework in fact

succeeds for verification of both of these examples.

13

Chapter 2. Precise Modeling of Software

def main() {
var i,j: Int

l0: havoc(i: Int >= 0)
havoc(j: Int >= 0)

l1: var x: Int = i
var y: Int = j

l2: while (x != 0) {
l3: x = x − 1
l4: y = y − 1

}
l5: if (i == j)

assert(x == y)
}

///.-,()*+l0
i′ ≥ 0 ∧ j′ ≥ 0

��

�� ���� ��err

/.-,()*+l1
x′ = i ∧ y′ = j

��?
??

??
??

/.-,()*+l5
i = j ∧ x 6= y

OO

/.-,()*+l2
x = 0

>>}}}}}}}

x 6= 0
 A

AA
AA

AA

/.-,()*+l4
y′ = y − 1

??������� /.-,()*+l3
x′ = x− 1
oo

(a) (b)

def mc91(n: Int)
returns rec: Int = {

l0: if (n > 100)
l1: rec = n − 10

else {
l2: rec = mc91(n+11)
l3: rec = mc91(rec)

}
}
def main() {

l4: havoc(x: Int <= 100)
l5: var y: Int = mc91(x)
l6: assert(y == 91)

}

�� ��/.-,()*+l4
x′≤100

��

/.-,()*+l0n≤100

��
n>100
��/.-,()*+l5

y′=callm91(x)
��

/.-,()*+l2
rec′=callm91(n+11)

��

/.-,()*+l1

◦

rec′=n− 10

��

/.-,()*+l6
y 6= 91

��

/.-,()*+l3
◦rec′=callm91(rec) ++

�� ���� ��err

main m91
(c) (d)

Figure 2.1: Example of a non-recursive program (a) and a recursive program (c) with corre-
sponding integer transition systems (b), (d). By convention, if a variable v does not appear
in the transition relation formula, we implicitly assume that the frame condition v = v ′ is
conjoined.

2.2 The INTS Infrastructure

INTS (Integer Numerical Transition System) is a common representation language for repre-

senting integer transition systems. The INTS syntax is a textual description of a control flow

graph labeled by Presburger arithmetic formulae, as in Figure 2.1 (b). We have developed a

toolkit for rigorous automated verification of programs in INTS format. The unifying compo-

nent is the INTS library1, which defines the syntax of the INTS representation by providing a

parser and a library of abstract syntax tree classes.

At this point, there are several tools supporting the INTS format, as input and/or output lan-

guage. The INTS library is designed for easy bridging with new tools, which can be either front-

1http://richmodels.epfl.ch/ntscomp/ntslib

14

http://richmodels.epfl.ch/ntscomp/ntslib

2.2. The INTS Infrastructure

INTS
Flata-C

c2s

Eldarica

Flata

front-end back-end

Figure 2.2: Integer Numerical Transition System Infrastructure

ends (translators from mainstream programming languages into INTS), back-ends(verification

tools), or both. Figure 2.2 shows a schematic diagram of the INTS framework. Currently, there

exist tools to generate INTS from sequential and concurrent C (Flata-C), Scala (Eldarica front-

end), and Boogie (c2s). The acceleration based tool Flata and the predicate abstraction based

tool Eldarica can verify INTS benchmarks [HKG+12].

Flata verifier. FLATA2 is a verification tool for hierarchical non-recursive INTS models. The

tool computes the summary relation for each INTS independently of its calling context, thus

avoiding the overhead of procedure inlining. The verification is based on computing transitive

closure of loops. Classes of integer relations for which transitive closures can be computed

precisely include: (1) difference bounds relations, (2) octagons, and (3) finite monoid affine

transformations. For these three classes, the transitive closures can be effectively defined

in Presburger arithmetic. FLATA integrates the transitive closure computation method for

difference bounds and octagonal relations from [BIK10] in a semi-algorithm computing the

summary relation incrementally, by eliminating control states and composing incoming with

outgoing relations.

Eldarica verifier. ELDARICA3 implements predicate abstraction with Counter-Example Guided

Abstraction Refinement (CEGAR). It generates an abstract reachability tree (ART) of the system

on demand, using lazy abstraction with Cartesian abstraction, and uses interpolation to

refine the set of predicates [HJMM04]. For checking the feasibility of paths, and constructing

abstractions, ELDARICA employs the provers Z34 and Princess.5 In addition, ELDARICA uses

caching of previously explored states and formulae to prevent unnecessary reconstruction of

trees. Large block encoding can be performed to reduce the number of calls to the interpolating

theorem prover.

Eldarica refines abstractions with the help of Craig Interpolants, extracted from infeasibility

2http://www-verimag.imag.fr/FLATA.html
3http://lara.epfl.ch/w/eldarica
4http://research.microsoft.com/en-us/um/redmond/projects/z3/
5http://www.philipp.ruemmer.org/princess.shtml

15

http://www-verimag.imag.fr/FLATA.html
http://lara.epfl.ch/w/eldarica
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.philipp.ruemmer.org/princess.shtml

Chapter 2. Precise Modeling of Software

(1) r0(N,Rec) ← true
(2) r1(N,Rec) ← r0(N,Rec) ∧ N > 100
(3) r2(N,Rec) ← r0(N,Rec) ∧ N ≤ 100
(4) r3(N,Rec’) ← r2(N,Rec) ∧ rf(N + 11,Rec’)
(5) rf (N,Rec’) ← r1(N,Rec) ∧ Rec’ = N − 10
(6) rf (N,Rec’) ← r3(N,Rec) ∧ rf(Rec,Rec’)

(7) r4(X,Y) ← true
(8) r5(X’,Y) ← r4(X,Y) ∧ X’ ≤ 100
(9) r6(X,Y’) ← r5(X,Y) ∧ rf(X,Y’)
(10) false ← r6(X,Y) ∧ Y 6= 91

Figure 2.3: The encoding of the program in Figure 2.1 (c) into a set of recursive Horn clauses.

proofs for spurious counterexamples. The complete interpolation procedure for Presburger

arithmetic was proposed in [BKRW11], and is implemented as part of Princess. We refer to

Chapter 3 for a more detailed description of predicate abstraction.

2.3 Horn Clauses

The problem of verifying the correctness of a program reduces to finding the solution to a

set of recursive predicates [BMR12]. Recent advances in theorem proving and interpolation

in different subsets of logic gave rise to new software model checking tools which accept

recursive predicates as their native input format. Most notably, HSF [GGL+12] inputs recursive

predicates encoded as Prolog style Horn clauses and µZ [HB12] uses an extension of the SMT-

LIB format with recursive predicates. The predicate abstraction framework Eldarica [HKG+12]

is also able to verify Horn clauses in both Prolog style and SMT-LIB formats.

We treat Horn clauses in greater detail later in Chapter 5. Informally, a Horn clause is a

disjunction of literals with at most one positive literal. Fixing a vocabulary of relation symbols

R a Horn clause is a formula of the following form.

∀x. l0(x) ∧ ·· · ∧ ln(x) −→ l (x)

The literals li (x) in the Horn clause are either a relation symbol r (x) from R or an arithmetic

formula over x without any symbol of R. We describe the mapping of the recursive program

in Figure 2.1 (c) to recursive Horn clauses in Figure 2.3. For translation to Horn clauses we

assign an uninterpreted relation symbol ri to each state li of the control flow graph. The

arguments of the relation symbol ri act as placeholders of the visible variables in the state

li . The relation symbol rf corresponds to the summary of the function mc91. In the relation

symbol for function summaries we do not include the local variables since they are invisible

from outside of the function. The first argument of rf is the input and the second one is the

output. We do not dedicate any relation symbol to the error state er r .

16

2.4. Discrete vs. Dense Domains

r0(N ,Rec) ≡ tr ue

r1(N ,Rec) ≡ (N ≥ 101)

r2(N ,Rec) ≡ (N ≤ 100)

r3(N ,Rec) ≡ (Rec ≤ 101)

r4(X ,Y) ≡ tr ue

r5(X ,Y) ≡ (X ≤ 100)

r6(X ,Y) ≡ (Y = 91)

r f (N ,Rec) ≡ ((Rec = 91)∨ (((N −Rec) ≥ 10)∧ (N ≥ 102)))

Figure 2.4: Solution of the Horn clauses in Fig. 2.3.

The initial states of the functions are not constrained at the beginning; they are just implied by

true. The clause that has false as its head corresponds to the assertion in the program. In order

to satisfy the assertion with the head false, the body of the clause should also be evaluated

to false. We put the condition leading to error in the body of this clause to ensure the error

condition is not happening. The rest of the clauses are one to one translation of the edges in

the control flow graph.

For the edges with no function calls we merely relate the variables in the previous state to

the variables in the next state using the transfer functions on the edges. For example, the

clause (2) expresses that rec is kept unchanged in the transition from l0 to l1 and the value

of n is greater than 100 in l1. For the edges with function call we should also take care of the

passing arguments and the return values. For example, the clause (4) corresponds to the edge

containing a function call from l2 to l3. This clause sets the value of rec in the state l3 to

the return value of the function mc91 called with n +11. Note that the only clauses in this

example that have more than one relation symbols in the body are the ones related to edges

with function calls.

The solution of the obtained system of Horn clauses demonstrates the correctness of the

program. In a solution each relation symbol is mapped to an expression over its arguments. If

we replace the relation symbols in the clauses by the expressions in the solution we should

obtain only valid clauses. In a system with a genuine path to error we cannot find any solution

to the system since we have no way to satisfy the assertion clause. Fig. 2.4 gives one possible

solution of the Horn clauses in terms of concrete formulae, found by our verification tool

Eldarica.

2.4 Discrete vs. Dense Domains

An important trend in verification of numerical systems assumes that all variables range over

rational (real) numbers. This results in an overapproximation of the set of behaviors of the

17

Chapter 2. Precise Modeling of Software

system, which, in turn, can be verified by cost-effective methods on rational (real) numbers,

such as: invariant discovery using polyhedra and widening, constraint solving using linear

programming, template-based linear and polynomial invariant inference, linear interpolation,

etc.

However, using rational (real) domains results in a loss of precision and spurious error reports

that are impossible to revert by typical classical refinement methods. Moreover, in some

situations, one explicitly needs to reason about modular constraints (i.e., congruence modulo

an integer constant), which is not possible within the rational domain. These situations

typically occur when verifying pointer arithmetic properties—here one needs to check if all

memory accesses are aligned with respect to the machine-dependent integer size.

18

3 Background on Predicate Abstraction

The purpose of abstraction is not to be

vague, but to create a new semantic level

in which one can be absolutely precise.

Edsger W. Dijkstra

Predicate abstraction with Counter-Example Guided Abstraction Refinement (CEGAR) is one

of the most prominent technologies for software verification. This technique has been used in

a number of successful software model checkers including BLAST [HJMS02]. The approach

proceeds in a three-step loop: (i) Compute a conservative over-approximation of the original

state space with respect to a set of predicates. The conservative abstraction guarantees that,

for every execution in the concrete system, there is a corresponding execution in the abstract

system. (ii) Model check the abstract model. If the abstract model satisfies the (reachability)

property, then the concrete system also satisfies the property and the verification stops.

Otherwise, the verifier checks whether the counter-example trace is genuine by concretizing

an abstract trace and calling a theorem prover. If the example is real, the verifier reports the

counterexample and stops. (iii) Otherwise the process continues and the counter-example

suggests additional predicates to refine the abstraction, avoiding that particular spurious trace.

The loop restarts from the beginning with the extended set of predicates. The loop stops as

soon as it finds a real bug or it proves the correctness, but may run forever, because the general

verification problem is undecidable. Figure 3.3 depicts the high level structure of CEGAR.

3.1 Predicate Abstraction

Predicate abstraction computes an overapproximation of the transition system generated

by a program and verifies whether an error state is reachable in the abstract system. If no

error occurs in the abstract system, the algorithm reports that the original system is safe.

Otherwise, if a path to an error state (counterexample) has been found in the abstract system,

the corresponding concrete path is checked. If this latter path corresponds to a real execution

19

Chapter 3. Background on Predicate Abstraction

Compute approximation of system

w.r.t. set of predicates

Abstract model has

a path to error?

No
Correct

Yes

Spurious? Has Error
No

Refine abstraction
Yes

CEGAR

Figure 3.1: Counter-Example Guided Abstraction Refinement (CEGAR)

of the system, then a real error has been found. Otherwise, the abstraction is refined in order

to exclude the counterexample, and the procedure continues.

Consider the program model G = 〈x,Q, q i ni t ,F,E ,→〉 introduced in Chapter 2. A predicate P is

a first-order arithmetic formula on x. Assume that we have a set of predicates P . For a set of

n-tuples S ⊆Zn and a relation R ⊆Zn ×Zn , let sp(S,R) = {~v ∈Zn | ∃~u ∈ S . (~u,~v) ∈ R} denote

the strongest postcondition of S via R. We use sp for sets and relations, as well as for logical

formulae defining them.

Definition 3.1.1. An abstract reachability tree (ART) for G is a tuple T = 〈S,π,r,e〉 where

S ⊆Q ×2P \{⊥} is a set of nodes (we do not introduce any node for empty set of predicates 〈q,;〉),

π : Q → 2P is a mapping associating control states with sets of predicates, r = 〈q i ni t , {>}〉 is the

root node, e ⊆ S ×S is a tree-structured edge relation:

• all nodes in S are reachable from the root r

• for all n,m, p ∈ S, e(n, p)∧e(m, p) ⇒ n = m

• e(〈q1,Φ1〉,〈q2,Φ2〉) ⇒ q1
R−→ q2 and Φ2 = {P ∈π(q2) | sp(

∧
Φ1,R) → P }

We say that an ART node 〈q1,Φ1〉 is subsumed by another node 〈q2,Φ2〉 if and only if q1 = q2

and
∧
Φ1 → ∧

Φ2. During the construction of the abstract reachability tree whenever the

model checker discovers a node that is subsumed by an existing node in the tree it backtracks

and prunes the searching state space from the subsumed node.

It can be easily checked that each path σ : r = 〈q i ni t
1 , {>}〉,〈q2,Φ2〉, . . . ,〈qk ,Φk〉, starting from

the root in T , can be mapped into a trace θ : q i ni t
1

R1−→ q2 . . . qk−1
Rk−1−−−→ qk of G , such that

sp(>,R1◦R2◦. . .◦Rn−1) →∧
Φk . The composition of two relations R1,R2 ∈Zn×Zn is denoted by

R1◦R2 = {(~u,~v) ∈Zn×Zn | ∃~t ∈Zn . (~u,~t) ∈ R1 and (~t ,~v) ∈ R2}. We say that θ is a concretization of

σ, or thatσ concretizes to θ. A path in an ART is said to be spurious if none of its concretizations

is feasible.

20

3.2. Interpolation-Based Abstraction Refinement

3.2 Interpolation-Based Abstraction Refinement

By refinement we understand the process of enriching the predicate mapping π of an ART

T = 〈S,π,r,e〉 with new predicates. The goal of refinement is to prevent spurious counterex-

amples (paths to an error state) from appearing in the ART. A key difficulty in the predicate

abstraction approach is to automatically find predicates to make the abstraction sufficiently

precise [BPR02]. A breakthrough technique is to generate predicates based on Craig inter-

polants [Cra57] derived from the proof of unfeasibility of a spurious trace [HJMM04]. To this

end, an effective technique used in many predicate abstraction tools is that of interpolation.

Given an unsatisfiable conjunction A ∧B , an interpolant I is a formula using the common

variables of A and B , such that A → I is valid and I ∧B is unsatisfiable. Intuitively, I is the

explanation behind the unsatisfiability of A∧B . Below we introduce a slightly more general

definition of a trace interpolant, also known as inductive sequences of interpolants.

Definition 3.2.1 (Trace Interpolant([HJMM04, McM06, JM06])). Let G = 〈x,Q, q i ni t ,F,E ,→〉
be a CFG and

θ : q1
R1−→ q2

R2−→ q3 . . . qn−1
Rn−1−−−→ qn

be an infeasible trace of G. An interpolant for θ is a sequence of predicates 〈I1, I2, . . . , In〉 with

free variables in x, such that: I1 =>, In =⊥, and for all i = 1, . . . ,n −1, sp(Ii ,Ri) → Ii+1.

Interpolants exist for many theories, including all theories with quantifier elimination, and

thus for Presburger arithmetic. Moreover, a trace is infeasible if and only if it has an interpolant.

Including any interpolant of an infeasible trace into the predicate mapping of an ART suffices

to eliminate any abstraction of the trace from the ART. We can thus refine the ART and exclude

an infeasible trace by including the interpolant that proves the infeasibility of the trace.

Note that the refinement technique using Definition 3.2.1 only guarantees that one spurious

counterexample is eliminated from the ART with each refinement step. This fact hinders the

efficiency of predicate abstraction tools, which must rely on the ability of theorem provers to

produce interpolants that are general enough to eliminate more than one spurious counterex-

ample at the time. The theorem provers however have limited knowledge of the structure of

the system and producing general interpolants that exclude several (or all) spurious traces is

merely a matter of luck.

Theorem 3.2.1. Let G = 〈x,Q, q i ni t ,F,E ,→〉 be a CFG and θ : q1 = q i ni t R1−→ q2 . . . qn−1
Rn−1−−−→ qn

be an infeasible trace of G. If T = 〈S,π,r,e〉 is an ART for G such that there exists an interpolant

〈Ii ∈π(qi)〉n
i=1 for θ, then no path in T concretizes to θ.

Proof. By contradiction, suppose that there exists a path

σ : 〈q1,Φ1〉,〈q2,Φ2〉, . . . ,〈qn ,Φn〉

in T , that concretizes to θ. We show by induction on i , that Ii ∈Φi , for all i = 1, . . . ,n. By the

21

Chapter 3. Background on Predicate Abstraction

definition of T , I1 =>∈Φ1, always. For the induction step, assume that Ii−1 ∈Φi−1, for some

i > 1. By the definition of T we have Φi = {P ∈π(qi) | sp(
∧
Φi−1,Ri) → P }. Since sp(Ii−1,Ri) →

Ii , by Definition 3.2.1 and Ii−1 ∈ Φi−1, we have
∧
Φi−1 → Ii−1, and by monotonicity of the

sp operator, sp(
∧
Φi−1,Ri) → Ii . But Ii ∈ π(qi) which implies Ii ∈Φi , by the definition of T .

Consequently In = ⊥ ∈ Φn , which is in contradiction with the fact that no node in T may

contain ⊥ in its second component.

3.3 Example for Interpolation

As an example for interpolation, consider the infeasible path l0, l1, l2, l5,err from the example

program in Figure 2.1(a). By converting the statements and guards into a formula, we extract

the following path constraint:

i0 ≥ 0∧ j0 ≥ 0∧x0 = i0 ∧ y0 = j0 ∧x0 = 0︸ ︷︷ ︸
φ(i0, j0,x0,y0)

∧ i0 = j0 ∧x0 6= y0︸ ︷︷ ︸
ψ(i0, j0,x0,y0)

We derive the inconsistency of constraints like this by linear combination of the equations,

as shown in Figure 3.2, forming the unsatisfiable consequence 0 6= 0. For the given partition-

ing of the constraint into φ(i0, j0, x0, y0),ψ(i0, j0, x0, y0), an interpolant can be computed by

projecting this linear combination to the equations originating from the left partition:

I (i0, j0, x0, y0) ≡−1 · (x0 − i0 = 0)+1 · (y0 − j0 = 0) ≡ (y0 −x0 + i0 − j0 = 0)

The resulting predicate, i0 − j0 = x0 − y0, enables Eldarica to refine the abstract reachability

tree and construct an inductive invariant for the loop in the example program, proving its

safety.

Left partition
φ(i0, j0, x0, y0)

Right partition
ψ(i0, j0, x0, y0)

x0 − i0 = 0

y0 − j0 = 0

x0 − y0 6= 0

i0 − j0 = 0

i0 − y0 6= 0

i0 − j0 6= 0

0 6= 0

+-

+
+

+

-

Figure 3.2: Proof about path constraints. All atoms are normalized to have right-hand side 0.

The paper [BKRW11] provides an elaborate discussion on interpolation in the Presburger

arithmetic theory.

22

3.4. Algorithm for Constructing an ART

1 input CFG G = 〈x,Q, q i ni t ,F,E ,→〉
2 output ART T = 〈S,π,Root ,e〉
3 WorkList = [], S,π,e =;, Root = ni l

4 def ConstructART(q i ni t , initialAbstraction) {
5 node = newARTnode(q i ni t , initialAbstraction)
6 if (Root = nil) Root = node
7 WorkList.add(〈q i ni t ,node〉)
8 while (!(WorkList.empty)) {
9 〈nextCFGvertex,nextARTnode〉 = WorkList.remove()

10 for (chi l d = children(nextCFGVertex)) {

11 Let R be such that nextCFGvertex
R−→ chi l d in G

12 Φ= {p ∈π(chi l d) | sp(
∧

next ART node.abstr acti on,R) ` p}
13 if (⊥∈Φ or

(∃ 〈chi l d ,Ψ〉 ∈ S ∧Φ ` Ψ
)
)

14 continue
15 node = newARTnode(child,Φ)
16 S = S ∪ {node}
17 e = e ∪{

(next ART node,node)
}

18 if (chi l d ∈ E and checkRefineError(node))
19 report ‘‘ERROR’’
20 WorkList.add(〈chi l d ,node〉)
21 WorkList.removeAll(nodes from WorkList subsumed by node)
22 }
23 }
24 }

Figure 3.3: The CEGAR algorithm

3.4 Algorithm for Constructing an ART

A set of predicates P can define 2|P | abstract states. To compute the abstraction of the program

we need to call the theorem prover totally (2|P |)2 times. In the algorithm of this section in

order to make a polynomial number of calls we use the idea of Cartesian abstraction [BPR01].

In Cartesian abstraction we ignore the correlation between the predicates and treat each

predicate separately. Basically in each node we compute the set of predicates that hold

individually. We then compute the conjunction of the valid predicates as an abstraction for the

node. The Cartesian abstraction will decrease our accuracy in making the abstraction. We rely

on the refinement step to compensate the disregarded accuracy in abstraction by providing

inclusive predicates.

Figure 3.3 presents the pseudocode of the CEGAR algorithm. The main procedure is Con-
structART which builds an ART for a given CFG and an abstraction of the set of initial values.

ConstructART is a worklist algorithm that expands the ART according to a certain exploration

strategy (depth-first, breadth-first, etc.) determined by the type of the structure used as a

worklist. We assume without loss of generality that the CFG has exactly one initial vertex. The

ConstructART procedure starts with q i ni t and expands the tree according to the definition of

the ART (lines 11 and 12). New ART nodes are constructed using newARTnode, which receives

23

Chapter 3. Background on Predicate Abstraction

a CFG state and a set of predicates as arguments. The algorithm backtracks from expanding

the ART when either the current node contains ⊥ in its set of predicates, or it is subsumed by

another node in the ART (line 13). In the algorithm (Fig. 3.3), we denote logical entailment by

φ`ψ in order to avoid confusion. The refinement step is performed by the checkRefineError
function. This function returns true if and only if a feasible error trace has been detected;

otherwise, further predicates are generated to refine the abstraction.

24

4 Accelerating Interpolants

In order to understand recursion, you

must understand recursion.

Anonymous

While empirically successful on a variety of domains, abstraction refinement using inter-

polants suffers from the unpredictability of interpolants computed by provers, which can

cause the verification process to diverge and never discover a sufficient set of predicates

(even in case such predicates exist). The failure of such a refinement approach manifests

in a sequence of predicates that rule out longer and longer counterexamples, but still fail to

discover inductive invariants.

Following another direction, researchers have been making continuous progress on techniques

for computing the transitive closure of useful classes of relations on integers [BIK10, FL02,

Boi99]. These acceleration techniques can compute closed form representation of certain

classes of loops using Presburger arithmetic.

We present Counterexample-Guided Accelerated Abstraction Refinement (CEGAAR), a new

algorithm for verifying infinite-state transition systems. CEGAAR combines interpolation-

based predicate discovery in counterexample-guided predicate abstraction with acceleration

technique for computing the transitive closure of loops. CEGAAR applies acceleration to dy-

namically discovered looping patterns in the unfolding of the transition system, and combines

overapproximation with underapproximation. It constructs inductive invariants that rule

out an infinite family of spurious counterexamples, alleviating the problem of divergence in

predicate abstraction without losing its adaptive nature.

A key contribution of this chapter is an algorithmic solution to apply these specialized analyses

for particular classes of loops to rule out an infinite family of counterexamples during predicate

abstraction refinement. An essential ingredient of this approach are interpolants that not only

rule out one path, but are also inductive with respect to loops along this path. We observe

25

Chapter 4. Accelerating Interpolants

that we can start from any interpolant for a path that goes through a loop in the control-flow

graph, and apply a postcondition (or, equivalently a weakest precondition) with respect to

the transitive closure of the loop (computed using acceleration) to generalize the interpolant

and make it inductive. Unlike previous theoretical proposals [CFLZ08], our method treats

interpolant generation and transitive closure computation as black boxes: we can start from

any interpolant and strengthen it using any loop acceleration. We call the resulting technique

Counterexample-Guided Accelerated Abstraction Refinement, or CEGAAR for short. Our

experience indicates that CEGAAR works well in practice.

We present theoretical and experimental justification for the effectiveness of CEGAAR, showing

that inductive interpolants can be computed from classical Craig interpolants and transitive

closures of loops. We present an implementation of CEGAAR that verifies integer transition

systems. We show that the resulting implementation robustly handles a number of difficult

transition systems that cannot be handled using interpolation-based predicate abstraction or

acceleration alone.

4.1 Motivating Example

To illustrate the power of the technique that we propose, consider the example in Figure 6.1.

The example is smaller than the examples we consider in our evaluation (Section 4.6), but

already illustrates the difficulty of applying existing methods.

Note that the innermost loop requires a very expressive logic to describe its closed form, so

that standard techniques for computing exact transitive closure of loops do not apply. In

particular, the acceleration technique does not apply to the innermost loop, and the presence

of the innermost loop prevents the application of acceleration to the outer loop. On the other

hand, predicate abstraction with interpolation refinement also fails to solve this example.

Namely, it enters a very long refinement loop, considering increasingly longer spurious paths

with CFG node sequences of the form 0(12)i 1e, for 0 ≤ i < 1000. The crux of the problem

int x,y;
x = 1000; y = 0;
while(x > 0){
x−−;
while(∗) {
y = 2∗(x + y);

}
y = y + 2;

}
assert(y != 47 && x

== 0);

///.-,()*+0

x′ = 1000 ∧ y′ = 0
��/.-,()*+1

¬(x > 0) ∧ ¬(y 6= 47 ∧ x = 0)��

x > 0 ∧ x′ = x− 1
,,/.-,()*+2

y′ = y + 2

ll

y′ = 2(x+ y) ∧ x′ = x
ee

�� ���� ��err

(a) (b)

Figure 4.1: Example Program and its Control Flow Graph with Large Block Encoding

26

4.2. Preliminaries

is that the refinement eliminates each of these paths one by one, constructing too specific

interpolants.

Our combined CEGAAR approach succeeds in proving the assertion of this program by deriving

the loop invariant y%2 == 0∧ x ≥ 0. Namely, once predicate abstraction considers a path

where the CFG node 1 repeats (such as 0121e), it applies acceleration to this path. CEGAAR

then uses the accelerated path to construct an inductive interpolant, which eliminates an

infinite family of spurious paths. This provides predicate abstraction with a crucial predicate

y%2 = 0, which enables further progress, leading to the discovery of the predicate x ≥ 0.

Together, these predicates allow predicate abstraction to construct the invariant that proves

program safety. Note that this particular example focuses on proving the absence of errors, but

our experience suggests that CEGAAR can, in many cases, find long counterexamples faster

than standard predicate abstraction.

4.2 Preliminaries

The program model that we use in this chapter is the model of Chapter 2. We consider an

intraprocedural program with the model G = 〈x,Q, q i ni t ,F,E ,→〉. A path in the program is

a sequence θ : q1
R1−→ q2

R2−→ q3 . . . qn−1
Rn−1−−−→ qn , where q1, q2, . . . , qn ∈ Q and qi

Ri−→ qi+1 is an

edge in G , for each i = 1, . . . ,n −1. We assume without loss of generality that all variables in

x∪x′ appear free in each relation labeling an edge of G1. The path θ is said to be a cycle if

q1 = qn , and a trace if q1 = q i ni t . The path θ is said to be feasible if and only if there exist

valuations ν1, . . . ,νn : x →Z such that νi ,νi+1 |= Ri , for all i = 1, . . . ,n −1. A control state is said

to be reachable in G if it occurs on a feasible trace. We denote the relation R1 ◦R2 ◦ . . .◦Rn−1 by

ρ(θ) and assume that the set of free variables of ρ(θ) is x∪x′.

To define the algorithm in this Chapter we use concepts from binary relations. The compo-

sition of two binary relations R1,R2 ∈ Zn ×Zn is denoted by R1 ◦R2 = {(~u,~v) ∈ Zn ×Zn | ∃~t ∈
Zn . (~u,~t) ∈ R1 and (~t ,~v) ∈ R2}. Let ε be the identity relation {(~u,~u) | ~u ∈ Zn ×Zn}. We define

R0 = ε and R i = R i−1◦R , for any i > 0. With these notations, R+ =⋃∞
i=1 R i denotes the transitive

closure of R, and R∗ = R+∪ε denotes the reflexive and transitive closure of R. We sometimes

use the same symbols to denote a relation and its defining formula.

For a set of n-tuples S ⊆Zn and a relation R ⊆Zn×Zn , let sp(S,R) = {~v ∈Zn | ∃~u ∈ S . (~u,~v) ∈ R}

denote the strongest postcondition of S via R, and w p(S,R) = {~u ∈Zn | ∀~v . (~u,~v) ∈ R →~v ∈ S}

denote the weakest precondition of S with respect to R. We use sp and w p for sets and

relations, as well as for logical formulae defining them. The operations sp and w p form a

Galois connection: sp(S,R) ⊆ T ⇐⇒ S ⊆ w p(T,R).

In this chapter we are interested in checking safety properties, which can be expressed in terms

of control state reachability. Assume I represents the initial condition of the program in q i ni t .

1For variables that are not modified by a transition, this can be achieved by introducing an explicit update
x′ = x.

27

Chapter 4. Accelerating Interpolants

A program is said to be safe if and only if sp(I ,−→∗)∩E =;, or equivalently iff I∩w p(E ,−→∗) =;.

Computing sp(I ,−→∗) is usually referred to as forward analysis, whereas computing w p(E ,−→∗)

is referred to as backward analysis.

4.2.1 Acceleration

The goal of acceleration is, given a relation R in a fragment of integer arithmetic, to compute

its reflexive and transitive closure, R∗. In general, defining R∗ in a decidable fragment of

integer arithmetic is not possible, even when R is definable in a decidable fragment such as,

e.g. Presburger arithmetic. There are two fragments of arithmetic in which transitive closures

of relations are Presburger definable.

Definition 4.2.1. An octagonal relation is a relation defined by a constraint of the form ±x±y ≤
c, where x and y range over the set x∪x′, and c is an integer constant.

The transitive closure of an octagonal relation has been shown to be Presburger definable and

effectively computable [BIK10].

Definition 4.2.2. A linear affine relation is a relation of the form R(~x,~x ′) ≡C~x ≥ ~d ∧ ~x ′ = A~x+~b,

where A ∈Zn×n , C ∈Zp×n are matrices and~b ∈Zn , ~d ∈Zp . R is said to have the finite monoid

property if and only if the set {Ai | i ≥ 0} is finite.

It is known that the finite monoid condition is decidable [Boi99], and moreover that the

transitive closure of a finite monoid affine relation is Presburger definable and effectively

computable [FL02, Boi99].

4.3 Interpolation-Based Abstraction Refinement

In Section 3.2 we introduced an interpolation based approach for excluding a spurious counter

example. The following is a stronger notion of an interpolant, which ensures generality with

respect to an infinite family of counterexamples.

Definition 4.3.1. ([CFLZ08], Def. 2.4) Given a CFG G, a trace scheme in G is a sequence of the

following form.

ξ : q0
O1−−→

L1y
q1

O2−−→ . . .
On−1−−−→

Ln−1y
qn−1

On−−→
Lny
qn

On+1−−−→ qn+1 (4.1)

where q0 is the initial state q i ni t and:

• Oi = ρ(θi), for some non-cyclic paths θi of G, from qi−1 to qi

• Li =∨ki

j=1ρ(λi j), for some cycles λi j of G, from qi to qi

28

4.3. Interpolation-Based Abstraction Refinement

Intuitively, a trace scheme represents an infinite regular set of traces in G . The trace scheme is

said to be feasible if and only if at least one trace of G of the following form is feasible.

θ1;λ1i1 . . .λ1i j1
;θ2; . . . ;θn ;λnin . . .λni jn

;θn+1

The trace scheme is said to be bounded if ki = 1, for all i = 1,2, . . . ,n. A bounded trace scheme

is a regular language of traces, of the form σ1 ·λ∗
1 · . . . ·σn ·λ∗

n ·σn+1, where σi are acyclic paths,

and λi are cycles of G . Note that there is an analogy between the definition of bounded trace

schemes and the notion of bounded languages [GS64].

Definition 4.3.2. ([CFLZ08], Def. 2.5) Let G = 〈x,Q, q i ni t ,F,E ,→〉 be a CFG and ξ be an infea-

sible trace scheme of the form (4.1). An interpolant for ξ is a sequence of predicates 〈I0, I1, I2,

. . . , In , In+1〉, with free variables in~x, such that:

1. I0 => and In+1 =⊥

2. sp(Ii ,Oi+1) → Ii+1, for all i = 0,1, . . . ,n

3. sp(Ii ,Li) → Ii , for all i = 1,2, . . . ,n

The main difference with Definition 3.2.1 is the third requirement, namely that each inter-

polant predicate (except for the first and the last one) must be inductive with respect to the

corresponding loop relation. It is easy to see that each of the following two sequences are

interpolants for ξ, provided that ξ is infeasible (Lemma 2.6 in [CFLZ08]).

〈>, sp(>,O1 ◦L∗
1), . . . , sp(>,O1 ◦L∗

1 ◦O2 ◦ . . .On ◦L∗
n)〉 (4.2)

〈w p(⊥,O1 ◦L∗
1 ◦O2 ◦ . . .On ◦L∗

n), . . . , w p(⊥,On ◦L∗
n), ⊥〉 (4.3)

Just as for finite trace interpolants, the existence of an inductive interpolant suffices to prove

the infeasibility of the entire trace scheme.

Lemma 4.3.1. Let G = 〈x,Q, q i ni t ,F,E ,→〉 be a CFG and ξ be an infeasible trace scheme of

G of the form (4.1). If T = 〈S,π,r,e〉 is an ART for G, such that there exists an interpolant

〈Ii ∈π(qi)〉n+1
i=0 for ξ, then no path in T concretizes to a trace in ξ.

Proof. By contradiction, suppose that there exists a path σ:

〈q0,Φ0〉, 〈q11,Φ11〉, . . . ,〈q1i1 ,Φ1i1〉, . . . , 〈qn1,Φn1〉, . . . ,〈qnin ,Φnin 〉, 〈qn+1,Φn+1〉〉

29

Chapter 4. Accelerating Interpolants

in T which concretizes to a trace in ξ. In analogy with the proof of Lemma 3.2.1, one shows

that:

• I0 ∈Φ0

• Ik ∈Φk j , for all k = 1, . . . ,n and j = 1, . . . , ik

• In+1 ∈Φn+1

The third condition of Definition 4.3.2 is needed for the proof of the second point above.

Since In+1 = ⊥, this contradicts the fact that no node in T may contain ⊥ in its second

component.

4.4 Counterexample-Guided Accelerated Abstraction Refinement

This section presents the CEGAAR algorithm for predicate abstraction with interpolant-based

accelerated abstraction refinement. Since computing the interpolant of a trace scheme is

typically more expensive than computing the interpolant of a finite counterexample, we apply

acceleration in a demand-driven fashion. The main idea of the algorithm is to accelerate only

those counterexamples in which some cycle repeats a certain number of times. For example, if

the abstract state exploration has already ruled out the spurious counterexamples σ ·τ, σ ·λ ·τ
and σ ·λ ·λ ·τ, when it sees next the spurious counterexample σ ·λ ·λ ·λ ·τ, it will accelerate

it into σ ·λ∗ ·τ, and rule out all traces which comply to this scheme. The maximum number

of cycles that are allowed to occur in the acyclic part of an error trace, before computing the

transitive closure, is called the delay, and is a parameter of the algorithm (here the delay was

2). A smaller delay results in a more aggressive acceleration strategy, whereas setting the delay

to infinity is equivalent to performing predicate abstraction without acceleration.

The procedure for predicate abstraction is the same as ConstructART in Figure 3.3. The main

difference lies in how checkRefineError function refines the abstraction. Figure 4.2 shows

the pseudo-code of the checkRefineError function. This function returns true if and only if a

feasible error trace has been detected; otherwise, further predicates are generated to refine

the abstraction. Figure 4.4 shows the pseudo code of the interpolateRefine function that is

responsible for refining abstractions. The checkRefineError function determines a minimal

infeasible ART path to node in line 4. This path is generalized into a trace scheme (line 6). The

generalization function Fold takes Path and the delay parameter δ as input and produces

a trace scheme which contains Path. The Fold function creates a trace scheme of the form

(4.1) out of the spurious path given as argument. The spurious path is traversed and control

states are recorded in a list. When we encounter a control state which is already in the list,

we have identified an elementary cycle λ. If the current trace scheme ends with at least

δ occurrences of λ, where δ ∈ N∞ is the delay parameter, then λ is added as a loop to the

trace scheme, provided that its transitive closure can be effectivelly computed. For efficiency

reasons, we syntactically check the relation on the loop, namely we check whether the relation

30

4.4. Counterexample-Guided Accelerated Abstraction Refinement

is syntactically compliant with the definition of octagonal relations. Notice that a relation can

be definable by an octagonal constraint even if it is not a conjunction of octagonal constraints,

i.e. it may contain redundant atomic propositions which are not of this form.

Once the folded trace scheme is obtained, there are three possibilities:

1. If the trace scheme is not bounded (the test on line 7 passes), we compute a bounded

overapproximation of it, in an attempt to prove its infeasibility (line 8). We describe the

computation of bounded overapproximation of trace schemes in Section 4.5.2. If the

test on line 9 succeeds, the original trace scheme is proved to be infeasible and the ART

is refined using the interpolants for the overapproximated trace scheme.

2. Else, if the overapproximation was found to be feasible, it could be the case that the

abstraction of the scheme introduced a spurious error trace. In this case, we compute a

bounded underapproximation of the trace scheme, which contains the initial infeasible

path, and replace the current trace scheme with it (line 10). We describe the compu-

tation of bounded underapproximation of trace schemes in Section 4.5.3. The only

requirement we impose on the Underapprox function is that the returned bounded trace

scheme contains Path, and is a subset of newScheme.

3. Finally, if the trace scheme is bounded (either because the test on line 7 failed, or because

the folded path was replaced by a bounded underapproximation on line 10) and also

infeasible (the test on line 13 passes) then the ART is refined with the interpolants

computed for the scheme. If, on the other hand, the scheme is feasible, we continue

searching for an infeasible trace scheme starting from the head of Path upwards (line

14).

Example Let θ : q1
P−→ q2

Q−→ q2
R−→ q1

P−→ q2
R−→ q1 be a path. The result of applying Fold to

this path is the trace scheme ξ shown in the left half of Fig. 4.3. Notice that this path scheme

is not bounded, due to the presence of two loops starting and ending with q2. A possible

bounded underapproximation of ξ, containing the original path θ, is shown in the right half of

Fig. 4.3.

The iteration stops either when a refinement is possible (lines 9,13), in which case checkRefi-
neError returns false, or when the search reaches the root of the ART and the trace scheme

is feasible, in which case checkRefineError returns true (line 16) and the main algorithm in

Figure 3.3 reports a true counterexample. Notice that, since we update node to the head of

Path (line 14), the position of node is moved upwards in the ART. Since this cannot happen

indefinitely, the main loop (lines 3-15) of the checkRefineError is bound to terminate.

The interpolateRefine function is used to compute the interpolant of the trace scheme, update

the predicate mapping π of the ART, and reconstruct the subtree of the ART whose root is

the first node on Path (this is usually called the pivot node). The InterpolateRefine (Fig. 4.4)

31

Chapter 4. Accelerating Interpolants

1 def checkRefineError (node): Boolean {
2 traceScheme = []
3 while (the ART path Root −→ ·· · −→ node is spurious) {

4 Let Path = 〈q1,Φ1〉 −→ . . . −→〈qn ,Φn〉 be the (unique) minimal ART path with

5 pi vot = 〈q1,Φ1〉 and 〈qn ,Φn〉 = node such that the CFG path q1 −→ ·· · −→ qn is infeasible

6 newScheme =Fold(Path,del ay)
7 if (! isBounded(newScheme)) {
8 absScheme =Concat(Overapprox(newScheme), tr aceScheme)
9 if (interpolateRefine (absScheme, pi vot)) return false

10 else newScheme =Underapprox(newScheme,Path)
11 }
12 tr aceScheme=Concat(newScheme, tr aceScheme)
13 if (interpolateRefine (tr aceScheme, pi vot)) return false
14 node = Path.head
15 }
16 return true
17 }

Figure 4.2: The CEGAAR algorithm - Accelerated Refinement

function returns true if and only if its argument represents an infeasible trace scheme. In

this case, new predicates, obtained from the interpolant of the trace scheme, are added to

the nodes of the ART. This function uses internally the TransitiveClosure procedure (line 2)

in order to generate the meta-trace scheme (4.5). The AccelerateInterpolant function (line 5)

computes the interpolant for the trace scheme, from the resulting meta-trace scheme. Notice

that the refinement algorithm is recursive, as ConstructART calls checkRefineError (line 18),

which in turn calls InterpolateRefine (lines 9,13), which calls back ConstructART (line 10). Our

procedure is sound, in the sense that whenever function ConstructART terminates with a

non-error result, the input program does not contain any reachable error states. Vice versa, if

a program contains a reachable error state, ConstructART is guaranteed to eventually discover

a feasible path to this state, since the use of a work list ensures fairness when exploring ARTs.

4.5 Computing Accelerated Interpolants

This section describes a method of refining an ART by excluding an infinite family of infeasible

traces at once. Our method combines interpolation with acceleration in a way which is

q1
P−→

Qy
q2

R−→ q1

P ↑↓ R

q1

q1
P−→

Qy
q2

ε−→ q2
R−→ q1

P ↑↓ R

q1

Figure 4.3: Underapproximation of unbounded trace schemes. ε stands for the identity
relation.

32

4.5. Computing Accelerated Interpolants

1 def InterpolateRefine (traceScheme, Pivot) : Boolean {
2 metaTrace = TransitiveClosure(traceScheme)
3 interpolant = InterpolatingProverCall (metaTrace)
4 if (interpolant = ;) return false
5 I = AccelerateInterpolant (interpolant)
6 for (ψ ∈ I) {
7 let v be the CFG vertex corresponding to ψ
8 π = π[v ← (π(v)∪ψ)]
9 }

10 ConstructART(Pivot,Pivot.abstraction)
11 return true
12 }

Figure 4.4: The Interpolation Function

oblivious of the particular method used to compute interpolants. For instance, it is possible to

combine proof-based [McM05b] or constraint-based [RSS07] interpolation with acceleration,

whenever computing the precise transitive closure of a loop is possible. In cases when the

precise computation fails, we may resort to both over- and under-approximation of the

transitive closure. In both cases, the accelerated interpolants are at least as general (and many

times more general) than the classical interpolants extracted from a finite counterexample

trace.

4.5.1 Precise Acceleration of Bounded Trace Schemes

We consider first the case of bounded trace schemes of the form (4.1), where the control states

q1, . . . , qn belong to some cycles labeled with relations L1, . . . ,Ln . Under some restrictions

on the syntax of the relations labeling the cycles Li , the reflexive transitive closures L∗
i are

effectively computable using acceleration algorithms [Boi99,FL02,BHI+09]. Among the known

classes of relations for which acceleration is possible we consider: octagonal relations and

finite monoid affine transformations. These are all conjunctive linear relations. We consider in

the following that all cycle relations Li belong to one of these classes. Under this restriction,

any infeasible bounded trace scheme has an effectivelly computable interpolant of one of the

forms (4.2),(4.3).

However, there are two problems with applying definitions (4.2),(4.3) in order to obtain inter-

polants of trace schemes. On one hand, relational composition typically requires expensive

quantifier eliminations. The standard proof-based interpolation techniques (e.g. [McM05b])

overcome this problem by extracting the interpolants directly from the proof of infeasibility of

the trace. Alternatively, constraint-based interpolation [RSS07] reduce the interpolant compu-

tation to a Linear Programming problem, which can be solved by efficient algorithms. Both

methods apply, however, only to finite traces, and not to infinite sets of traces defined as trace

schemes. Another, more important, problem is related to the sizes of the interpolant predicates

from (4.2), (4.3) compared to the sizes of interpolant predicates obtained by proof-theoretic

33

Chapter 4. Accelerating Interpolants

methods (e.g. [KLR10]), as the following example shows.

Example Let R(x, y, x ′, y ′) : x ′ = x+1∧ y ′ = y +1 and φ(x, y, . . .),ψ(x, y, . . .) be some complex

Presburger arithmetic formulae. The trace scheme:

q0
z=0∧z ′=z∧φ−−−−−−−−−→

z′ = z +2∧Ry
q1

z=5∧ψ−−−−−→ q2 (4.4)

is infeasible, because z remains even, so it cannot become equal 5. One simple interpolant

for this trace scheme has at program point q1 the formula z%2 = 0. On the other hand, the

strongest interpolant has (z = 0∧ z ′ = x ∧φ)◦ (z ′ = z +2∧R)∗ at q1, which is typically a much

larger formula, because of the complex formula φ. Note however that φ and R do not mention

z, so they are irrelevant.

We can also describe the difference between obtaining interpolants by quantifier elimination

and by the standard proof-based approaches geometrically. Consider a simple case of un-

satisfiability where the conjunction of two convex polyhedra P and Q is unsatisfiable. The

quantifier elimination approach comes up with the polyhedron P as the interpolant. In fact

any hyperplane containing P that has empty intersection with Q is a legitimate interpolant.

The strongest or weakest interpolants obtained by quantifier elimination are usually too

complex to be useful in practice.

To construct useful interpolants instead of the strongest or the weakest ones, we therefore

proceed as follows. Let ξ be a bounded trace scheme of the form (4.1). For each control

loop qi
Ri−→ qi of ξ, we define the corresponding meta-transition q ′

i

R∗
i−−→ q ′′

i labeled with the

reflexive and transitive closure of Ri . Intuitively, firing the meta-transition has the same effect

as iterating the loop an arbitrary number of times. We first replace each loop of ξ by the

corresponding meta-transition. The result is the meta-trace:

ξ : q0
O1−−→ q ′

1
L∗

1−→ q ′′
1

O2−−→ q ′
2 . . . q ′′

n−1
On−−→ q ′

n
L∗

n−→ q ′′
n

On+1−−−→ qn+1 (4.5)

Since we supposed that ξ is an infeasible trace scheme, the (equivalent) finite meta-trace ξ

is infeasible as well, and it has an interpolant I
ξ
= 〈>, I ′1, I ′′1 , I ′2, I ′′2 , . . . , I ′n , I ′′n ,⊥〉 in the sense of

Definition 3.2.1. This interpolant is not an interpolant of the trace scheme ξ, in the sense of

Definition 4.3.2. In particular, none of I ′i , I ′′i is guaranteed to be inductive with respect to the

loop relations Li . To define compact inductive interpolants based on I
ξ

and the transitive

closures L∗
i , we consider the following sequences:

I
sp
ξ

= 〈>, sp(I ′1,L∗
1), sp(I ′2,L∗

2), . . . , sp(I ′n ,L∗
n),⊥〉

I
w p
ξ

= 〈>, w p(I ′′1 ,L∗
1), w p(I ′′2 ,L∗

2), . . . , w p(I ′′n ,L∗
n),⊥〉

34

4.5. Computing Accelerated Interpolants

The following lemma proves the correctness of this approach.

Lemma 4.5.1. Let G = 〈x,Q, q i ni t ,F,E ,→〉 be a CFG and ξ be an infeasible trace scheme of

the form (4.1). Then I
sp
ξ

and I
w p
ξ

are interpolants for ξ, and moreover I
w p
ξi

→ I
sp
ξi

, for all

i = 1,2, . . . ,n.

Proof. To prove that I
sp
ξ

is an interpolant for ξ, we show the three points of Definition 4.3.2.

The first point holds by the construction of I
sp
ξ

. For the second point, we have to show

sp(I sp
ξi

,Oi+1) →I
sp
ξi+1

.

sp(I ′i ,L∗
i) → I ′′i , since I

ξ
is an interpolant for ξ

sp(sp(I ′i ,L∗
i),Oi+1) → sp(I ′′i ,Oi+1) , since sp is monotone

sp(I sp
ξi

,Oi+1) → I ′i+1 , since I
ξ

is an interpolant for ξ

We must show next that I ′i+1 →I
sp
ξi+1

. For this, we compute:

sp(I ′i+1,L∗
i+1) = ∃~z . I ′i+1(~z)∧L∗

i+1(~z,~x)

= ∃~z . I ′i+1(~z)∧∨∞
k=0 Lk

i+1(~z,~x)

= ∨∞
k=0∃~z . I ′i+1(~z)∧Lk

i+1(~z,~x)

= ∃~z . I ′i+1(~z)∧ε ∨ ∨∞
k=1∃~z . I ′i+1(~z)∧Lk

i+1(~z,~x)

We have that ∃~z . I ′i+1(~z)∧ε is equivalent to I ′i+1, which concludes the second point. For the

third point, we compute:

sp(I sp
ξi

,Li) = ∃~z . sp(I ′i ,L∗
i)(~z)∧Li (~z,~x)

= ∃~z∃~t . I ′i (~t)∧L∗
i (~t ,~z)∧Li (~z,~x)

= ∃~t . I ′i (~t)∧L+
i (~t ,~x)

→ ∃~t . I ′i (~t)∧L∗
i (~t ,~x)

= sp(I ′i ,L∗
i) =I

sp
ξi

The proof for the I
w p
ξ

interpolant is symmetric, using the fact that sp and w p form a Galois

connection. Finally, we have w p(I ′′i ,L∗
i) → I ′i → sp(I ′i ,L∗

i) which proves the last statement.

Notice that computing I
sp
ξ

and I
w p
ξ

requires n relational compositions, which is, in principle,

just as expensive as computing directly one of the extremal interpolants (4.2),(4.3). However,

by re-using the meta-trace interpolants, one potentially avoids the worst-case combinatorial

explosion in the size of the formulae, which occurs when using (4.2), (4.3) directly.

35

Chapter 4. Accelerating Interpolants

Example Let us consider again the trace scheme (4.4). The corresponding infeasible finite

trace ξ is:

q0
z=0∧z ′=z∧φ−−−−−−−−−→ q ′

1
∃k≥0 . z ′=z+2k ∧ x ′=x+k ∧ y ′=y+k−−−−−−−−−−−−−−−−−−−−−−−−−→ q ′′

1
z=5∧ψ−−−−−→ q2

A possible interpolant for this trace is 〈>, z = 0,∃k ≥ 0 . z = 2k,⊥〉. An inductive interpolant

for the trace scheme, derived from it, is I
sp
ξ

= 〈>, sp(z = 0,∃k ≥ 0.z ′ = z +2k ∧x ′ = x +k ∧ y ′ =
y +k),⊥〉= 〈>, z%2 = 0, ⊥〉.

4.5.2 Bounded Overapproximations of Trace Schemes

Consider a trace scheme (4.1), not necessarily bounded, where the transitive closures of the

relations Li labeling the loops are not computable by any available acceleration method

[BHI+09, Boi99, FL02]. One alternative is to find abstractions L]i of the loop relations, i.e.

relations L]i ← Li , for which transitive closures are computable. If the new abstract trace

remains infeasible, it is possible to compute an interpolant for it, which is an interpolant

for the original trace scheme. However, replacing the relations Li with their abstractions

L]i may turn an infeasible trace scheme into a feasible one, where the traces introduced by

abstraction are spurious. In this case, we give up the overapproximation, and turn to the

underapproximation technique described in the next section.

The overapproximation method computes an interpolant for a trace scheme ξ of the form (4.1)

under the assumption that the abstract trace scheme:

ξ] : q0
O1−−→

L
]
1y

q1
O2−−→ . . .

On−1−−−→
L
]
n−1y

qn−1
On−−→

L
]
ny

qn
On+1−−−→ qn+1 (4.6)

is infeasible. In this case one can effectivelly compute the interpolants I
sp
ξ]

and I
w p
ξ]

, since the

transitive closures of the abstract relations labeling the loops are computable by acceleration.

The following lemma proves that, under certain conditions, computing an interpolant for the

abstraction of a trace scheme is sound.

Lemma 4.5.2. Let G be a CFG and ξ be a trace scheme (4.1) such that the abstract trace scheme

ξ] (4.6) is infeasible. Then the interpolants I
sp
ξ]

and I
w p
ξ]

for ξ] are also interpolants for ξ.

Proof. We show that I
sp
ξ]

meets the three conditions of Definition 4.3.2. The first condition is

trivially true, while the proof of the second condition is essentially the same as in the proof of

Lemma 4.5.1. For the third point, since Li → L]i , we have:

sp(I sp
ξ]

,Li) = sp(sp(I ′i ,L]i
∗

),Li)

→ sp(sp(I ′i ,L]i
∗

),L]i)

= sp(I ′i ,L]i
+

) →I
sp
ξ]

36

4.5. Computing Accelerated Interpolants

The proof for I
w p
ξ]

is symmetrical.

4.5.3 Bounded Underapproximations of Trace Schemes

Let ξ be a trace scheme of the form (4.1), where each relation Li labeling a loop is a disjunction

Li 1 ∨ . . .∨Li ki of relations for which the transitive closures are effectively computable and

Presburger definable. A bounded underapproximation scheme of a trace scheme ξ is obtained

by replacing each loop qi
Li−→ qi in ξ by a bounded trace scheme of the form:

Li 1y
q1

i
ε−→

Li 2y
q2

i
ε−→ . . .

Li kiy
qki

i

where ε denotes the identity relation. Let us denote2 the result of this replacement by ξ[. It is

manifest that the set of traces ξ[is included in ξ.

Since we assumed that the reflexive and transitive closures L∗
i j are effectivelly computable

and Presburger definable, the feasibility of ξ[is a decidable problem. If ξ[is found to be

feasible, this points to a real error trace in the system. On the other hand, if ξ[is found to

be infeasible, let Iξ[= 〈>, I 1
1 , . . . , I k1

1 , . . . , I 1
n , . . . , I kn

n ,⊥〉 be an interpolant for ξ[. A refinement

scheme using this interpolant associates the predicates {I 1
i , . . . , I ki

i } with the control state qi

from the original CFG. As the following lemma shows, this guarantees that any trace that

follows the pattern of ξ[is excluded from the ART, ensuring that a refinement of the ART using

a suitable underapproximation (that includes a spurious counterexample) is guaranteed to

make progress.

Lemma 4.5.3. Let G = 〈x,Q, q i ni t ,F,E ,→〉 be a CFG, ξ be an infeasible trace scheme of G

(4.1) and ξ[a bounded underapproximation of ξ. If T = 〈S,π,r,e〉 is an ART for G, such that

{I 1
i , . . . , I ki

i } ⊆π(qi), then no path in T concretizes to a trace in ξ[.

Proof. By contradiction, suppose that there exists a path in T which concretizes to a trace in

ξ[, and let

〈qi ,Φ1
i 1〉, . . . , 〈qi ,Φ1

i`i ,1
〉︸ ︷︷ ︸

Li 1y
qi

, . . . ,〈qi ,Φki

i 1〉, . . . , 〈qi ,Φki

i`i ,ki
〉︸ ︷︷ ︸

Li kiy
qi

be the fragment of the path which corresponds to the unfolding of the sub-trace:

Li 1y
qi

ε−→
Li 2y
qi

ε−→ . . .

Li kiy
qi

One can show, among the lines of the proof of Lemma 4.5.1, that I j
i ∈Φ j

i`, for all j = 1, . . . ,ki

2The choice of the name depends on the ordering of particular paths Li 1,Li 2, . . . ,Li ki
, however we shall denote

any such choice in the same way, in order to keep the notation simple.

37

Chapter 4. Accelerating Interpolants

and `= 1, . . . ,`i , j . In this way, we obtain that the last setΦ contains ⊥, which contradicts the

definition of the ART.

Notice that a refinement scheme based on underapproximation guarantees the exclusion of

those traces from the chosen underapproximation trace scheme, and not of all traces from the

original trace scheme. Since a trace scheme is typically obtained from a finite counterexample,

an underapproximation-based refinement still guarantees that the particular counterexample

is excluded from further searches. In other words, using underapproximation is still better

than the classical refinement method, since it can potentially exclude an entire family of

counterexamples (including the one generating the underapproximation) at once.

4.6 Experimental Results

We have implemented CEGAAR by building on the predicate abstraction engine Eldarica3

[HKG+12], the FLATA verifier4 [HKG+12] based on acceleration, and the Princess interpolating

theorem prover [BKRW11,Rüm08]. Tables in Figure 4.5 compares the performance of the Flata,

Eldarica, static acceleration and CEGAAR on a number of benchmarks (the platorm used for

experiments is Intel® Core™2 Duo CPU P8700, 2.53GHz with 4GB of RAM).

The benchmarks are all in the Numerical Transition Systems format5 (NTS). We have consid-

ered seven sets of examples, extracted automatically from different sources.

(a) C programs with arrays provided as examples of divergence in predicate abstraction [JM06].

We have used the tool FLATA-C6 to extract the NTS models for these programs. For the

array operations FLATA-C basically check that they happen within the array bounds.

(b) verification conditions for programs with arrays, expressed in the SIL logic of [BHI+09]

and translated to NTS.

(c) small C programs with challenging loops.

(d) NTS extracted from programs with singly-linked lists by the L2CA tool. [BBH+06]

(e) C programs provided as benchmarks in the NECLA static analysis suite

(f) C programs with asynchronous procedure calls translated into NTS using the approach

of [GM12] (the examples with extension .optim are obtained via an optimized translation

method [Gan]

(g) models extracted from VHDL models of circuits following the method of [SV07].

3http://lara.epfl.ch/w/eldarica
4http://www-verimag.imag.fr/FLATA.html
5http://richmodels.epfl.ch/ntscomp_ntslib
6http://www-verimag.imag.fr/FLATA-C.html

38

http://lara.epfl.ch/w/eldarica
http://www-verimag.imag.fr/FLATA.html
http://richmodels.epfl.ch/ntscomp_ntslib
http://www-verimag.imag.fr/FLATA-C.html

4.6. Experimental Results

The benchmarks are available from the home page of our tool. The results on this benchmark

set suggest that we have arrived at a fully automated verifier that is robust in verifying auto-

matically generated integer programs with a variety of looping control structure patterns. An

important question we explored is the importance of dynamic application of acceleration,

as well as of overapproximation and underapproximation. We therefore also implemented

static acceleration [CFLZ08], a lightweight acceleration technique generalizing large block

encoding (LBE) [BCG+09] with transitive closures. It simplifies the control flow graph prior

Model
Time [s]

F. E. S. D.
(a) Examples from [JM06]
anubhav (C) 0.8 3.0 4.0 3.1
copy1 (E) 2.0 7.2 5.8 5.9
cousot (C) 0.6 - 6.2 5.9
loop1 (E) 1.7 7.1 5.2 5.4
loop (E) 1.8 5.9 4.8 5.4
scan (E) 3.3 - 5.1 5.0
string_concat1 (E) 5.3 - 10.1 7.3
string_concat (E) 4.9 - 7.0 7.5
string_copy (E) 4.6 - 6.3 5.7
substring1 (E) 0.6 9.4 18.2 8.3
substring (E) 2.1 3.3 6.3 3.5
(b) Verification conditions
for array programs [BHI+09]
rotation_vc.1 (C) 0.6 2.0 9.5 2.0
rotation_vc.2 (C) 1.6 2.2 18.5 2.2
rotation_vc.3 (C) 1.2 0.3 18.3 0.3
rotation_vc.1 (E) 1.1 1.3 10.2 1.3
split_vc.1 (C) 3.9 3.7 91.1 3.6
split_vc.2 (C) 3.0 2.3 74.1 2.2
split_vc.3 (C) 3.3 0.6 75.0 0.6
split_vc.1 (E) 28.5 2.3 185.6 2.4
(c) Examples from L2CA [BBH+06]
bubblesort (E) 14.9 9.9 9.5 9.3
insdel (E) 0.1 1.3 2.5 1.4
insertsort (E) 2.0 4.2 5.0 4.0
listcounter (C) 0.3 - 1.9 3.7
listcounter (E) 0.3 1.4 1.6 1.4
listreversal (C) 4.5 3.0 6.0 3.3
listreversal (E) 0.8 2.7 8.1 2.8
mergesort (E) 1.2 7.7 21.3 7.4
selectionsort (E) 1.5 8.1 13.7 7.7

Model
Time [s]

F. E. S. D.
(d) Examples from [Mon]
boustrophedon (C) - - - 14.4
gopan (C) 0.4 - - 6.4
halbwachs (C) - - 7.3 7.0
rate_limiter (C) 31.7 6.1 8.1 5.5
(e) NECLA benchmarks
inf1 (E) 0.2 2.0 2.0 2.0
inf4 (E) 0.9 3.7 3.7 3.7
inf6 (C) 0.1 2.0 2.0 2.0
inf8 (C) 0.3 3.6 3.4 3.9
(f) VHDL models from [SV07]
counter (C) 0.1 1.6 1.6 1.6
register (C) 0.2 1.1 1.1 1.1
synlifo (C) 16.6 22.1 21.4 22.0
(g) Examples from [GM12]
h1 (E) - 5.1 5.6 5.1
h1.optim (E) 0.8 2.9 5.5 2.9
h1h2 (E) - 9.4 10.1 12.2
h1h2.optim (E) 1.1 3.3 4.4 3.4
simple (E) - 6.4 7.0 8.4
simple.optim (E) 0.8 3.0 5.1 2.9
test0 (C) - 23.0 23.4 29.2
test0.optim (C) 0.3 3.2 5.4 3.2
test0 (E) - 5.4 5.9 5.7
test0.optim (E) 0.6 3.0 5.8 2.9
test1.optim (C) 0.9 4.7 5.9 7.8
test1.optim (E) 1.5 4.4 5.9 4.7
test2_1.optim (E) 1.6 5.2 5.5 5.6
test2_2.optim (E) 2.9 4.6 5.9 4.6
test2.optim (C) 6.4 27.2 30.1 30.0
wrpc.manual (C) 0.6 1.2 1.4 1.2
wrpc (E) - 7.9 8.4 8.2
wrpc.optim (E) - 5.1 8.5 5.2

Figure 4.5: Benchmarks for Flata, Eldarica without acceleration, Eldarica with acceleration of
loops at the CFG level (Static) and CEGAAR (Dynamic acceleration). The letter after the model
name distinguishes Correct from models with a reachable Error state. Items with “-” led to a
timeout for the respective approach.

39

Chapter 4. Accelerating Interpolants

to predicate abstraction. In some cases, such as mergesort from the (d) benchmarks and

split_ vc.1 from (b) benchmarks, the acceleration overhead does not pay off. The problem

is that static acceleration tries to accelerate every loop in the CFG rather than accelerating

the loops occurring on spurious paths leading to error. Acceleration of inessential loops

generates large formulas as the result of combining loops and composition of paths during

large block encoding. The CEGAAR algorithm is the only approach that could handle all of our

benchmarks. There are cases in which the Flata tool outperforms CEGAAR such as test2.optim

from (f) benchmarks. We attribute this deficiency to the nature of predicate abstraction, which

tries to discover the required predicates by several steps of refinement. In the verification of

benchmarks, acceleration was exact 11 times in total. In 30 case the over-approximation of

the loops was successful, and in 15 cases over-approximation failed, so the tool resorted to

under-approximation. This suggests that all techniques that we presented are essential to

obtain an effective verifier.

40

5 Interpolation and Solving Horn
Clauses

If you want to increase your success rate,

double your failure rate.

Thomas J. Watson

Software model checking has greatly benefited from the combination of a number of seminal

ideas: automated abstraction through theorem proving [GS97], exploration of finite-state

abstractions, and counterexample-driven refinement [BPR02]. Even though these techniques

can be viewed independently, the effectiveness of verification has been consistently improving

by providing more sophisticated communication between these steps. Often, carefully chosen

search aspects are being pushed into a learning-enabled constraint solver, resulting in better

overall verification performance. An essential advance was to use interpolants derived from

unsatisfiability proofs to refine the abstraction [HJMM04]. In recent years, we have seen

significant progress in interpolating methods for different logical constraints [CGS10,BKRW11,

MR13], and a wealth of more general forms of interpolation [HHP10, AGC12a, MR13, RHK13].

This chapter sheds light on computing different types of interpolation queries, going beyond

tree interpolants and DAG interpolants towards recursion-free Horn clauses. The use of Horn

constraints as intermediate representation has been recently proposed [GPR11a, GLPR12,

MR13] as a promising direction to extend the reach of automated verification methods to a

variety of areas such as programs with procedures and concurrent programs. We gave a model

of a recursive program using Horn clauses in Section 2.3.

We systematically examine binary interpolation, inductive interpolant sequences, tree in-

terpolants, restricted DAG interpolants and show the recursion-free Horn clause problems

to which their correspond. We present an algorithm for solving the interpolation problem,

relating it to a subclass of recursion-free Horn clauses [PGS98, MLNH07, GPR11a]. We also

give a taxonomy of the various interpolation problems, and the corresponding systems of

Horn clauses, in terms of their computational complexity. We identify a new notion, disjunc-

tive interpolants, which are more general than tree interpolants and inductive sequences

41

Chapter 5. Interpolation and Solving Horn Clauses

of interpolants. Like tree interpolation [HHP10, MR13], a disjunctive interpolation query is

a tree-shaped constraint specifying the interpolants to be derived; however, in disjunctive

interpolation, branching in the tree can represent both conjunctions and disjunctions.

We then consider solving general recursion-free Horn clauses and show that this problem is

solvable whenever the logic admits interpolation. We establish tight complexity bounds for

solving recursion-free Horn clauses for propositional logic (PSPACE) and for integer linear

arithmetic (co-NEXPTIME). In contrast, the disjunctive interpolation problem remains in

coNP for these logics. We generalize our results from recursion-free Horn clauses to general

well-founded constraints, i.e., to constraints without infinite resolution proofs. We also show

how to use solvers for recursion-free Horn clauses to verify recursive Horn clauses using

counterexample-driven predicate abstraction. We present a library of recursion-free Horn

problems, designed for benchmarking Horn solvers and interpolation engines.

We finally devise a predicate abstraction based algorithm for solving general recursive Horn

clauses. The refinement step uses interpolation to find new predicates. We have improved our

predicate abstraction engine Eldarica [HKG+12] to solve recursive Horn clauses. We apply the

algorithm on a set of publicly available benchmarks.

5.1 Example: Verification of Recursive Predicates

We start by showing how our approach can verify programs encoded as Horn clauses, by

means of predicate abstraction and a theorem prover for Presburger arithmetic. Fig. 5.1 shows

an example of a system of Horn clauses that compute the greatest common divisor of its first

and its second argument in its third argument. After invoking the gcd operation on the equal

positive numbers M and N , we wish to check whether it is possible for the result R to be

more than the M . In general, we encode error conditions as Horn clauses with false in their

head, and refer to such clauses as error clauses, although such clauses do not have a special

semantic status in our system. When executed with these clauses as input, our verification tool

automatically identifies that the definition of gcd(M,N,R) as the predicate (M = N) → (M ≥ R)

gives a solution to these Horn clauses. In terms of safety (partial correctness), this means that

the error condition cannot be reached.

Our approach uses counterexample-driven refinement to perform verification. In this example,

the abstraction of Horn clauses starts with a trivial set of predicates, containing only the

predicate false, which is assumed to be a valid approximation until proven otherwise. Upon

examining a clause that has a concrete satisfiable formula on the right-hand side (e.g. M =
N ∧R = M), we rule out false as the approximation of gcd. In the absence of other candidate

predicates, the approximation of gcd becomes the conjunction of an empty set of predicates,

which is true. Using this approximation the error clause is no longer satisfied. At this point the

algorithm checks whether a true error is reached by directly chaining the clauses involved in

computing the approximation of predicates. This amounts to checking whether the following

recursion-free subset of clauses has a solution:

42

5.1. Example: Verification of Recursive Predicates

(1) gcd(M,N,R) ← M = N ∧ R = M
(2) gcd(M,N,R) ← M > N ∧ M1 = M − N ∧ gcd(M1,N,R)
(3) gcd(M,N,R) ← M < N ∧ N1 = N − M ∧ gcd(M,N1,R)
(4) false ← M ≥ 0 ∧ M = N ∧ gcd(M,N,R) ∧ R > M

Figure 5.1: Horn clauses computing the greatest common divisor of two numbers and an
assertion on result. Variables are universally quantified in each clause.

(1) gcd(M,N,R) ← M = N ∧ R = M
(1’) gcd1(M,N,R) ← M = N ∧ R = M
(2’) gcd(M,N,R) ← M > N ∧ M1 = M − N ∧ gcd1(M1,N,R)
(3’) gcd(M,N,R) ← M < N ∧ N1 = N − M ∧ gcd1(M,N1,R)
(4) false ← M ≥ 0 ∧ M = N ∧ gcd(M,N,R) ∧ R > M

Figure 5.2: Extended recursion-free approximation of the Horn clauses in Fig. 5.1.

(1) gcd(M,N,R) ← M = N ∧ R = M
(4) false ← M ≥ 0 ∧ M = N ∧ gcd(M,N,R) ∧ R > M

The solution to above problem is any formula I (M , N ,R) such that

I (M,N,R) ← M = N ∧ R = M
false ← M ≥ 0 ∧ M = N ∧ I(M,N,R) ∧ R > M

This is precisely an interpolant of M = N ∧R = M and M ≥ 0∧M = N ∧R > M . A valid inter-

polant is P1(M , N ,R) ≡ M ≥ R . Choosing this interpolant eliminates the current contradiction

for Horn clauses and P1 is added into a list of abstraction predicates for the relation gcd.

Because the predicates approximating gcd are now updated, we consider the abstraction of

the system in terms of these predicates.

The predicate P1 is not a conjunct in a valid approximation for gcd in clause (2), so the

following recursion-free unfolding is not solved by the approximation so far:

(1) gcd(M,N,R) ← M = N ∧ R = M
(2’) gcd1(M,N,R) ← M > N ∧ M1 = M − N ∧ gcd(M1,N,R)
(4’) false ← M ≥ 0 ∧ M = N ∧ gcd1(M,N,R) ∧ R > M

This particular problem could be reduced to solving an interpolation sequence, but it is more

natural to think of it simply as a solution for recursion-free Horn clauses. A solution is an

interpretation of the relations gcd and gcd1 as ternary relations on integers, such that the

clauses are true. Note that this problem could also be viewed as the computation of tree

interpolants, which are also a special case of solving recursion-free Horn clauses, as are DAG

interpolants and a new notion of disjunctive tree interpolants that we introduce. In line

with [GPR11a, GPR11b, GLPR12] we observe that recursion-free clauses are a perfect fit for

counterexample-driven verification: they allow us to provide the theorem proving procedure

with much more information that they can use to refine abstractions. In the limit, the original

set of clauses or its recursive unfoldings are its own approximations, some of them exact, but

43

Chapter 5. Interpolation and Solving Horn Clauses

the advantage of recursion-free Horn clauses is that their solvability is decidable under very

general conditions. This provides us with a solid theorem proving building block to construct

robust and predictable solvers for the undecidable recursive case. Our paper describes a new

such building block: disjunctive interpolants, which correspond to a subclass of non-recursive

Horn clauses.

To illustrate disjunctive interpolants, Fig. 5.2 provides another recursion-free approximations

of the problem. In this approximation we can distinguish 3 different paths from the error

clause (4) through the clauses (1’), (2’) and (3’) to ground formulae. The traditional refinement

approach using e.g. tree interpolation typically removes the 3 instances of the spurious

counter-examples using 3 interpolation calls. A novelty of disjunctive interpolation is removing

the different choices of counter-examples altogether using a single call to the interpolating

theorem prover. Eliminating more counter-examples at once can reduce the number of

iterations and increase convergence.

5.2 Formulae and Horn Clauses

Constraint languages. Throughout this paper, we assume that a first-order vocabulary of

interpreted symbols has been fixed, consisting of a set F of fixed-arity function symbols, and a

set P of fixed-arity predicate symbols. Interpretation of F and P is determined by a class S

of structures (U , I) consisting of non-empty universe U , and a mapping I that assigns to each

function in F a set-theoretic function over U , and to each predicate in P a set-theoretic

relation over U . As a convention, we assume the presence of an equation symbol “=” in

P , with the usual interpretation. Given a countably infinite set X of variables, a constraint

language is a set Constr of first-order formulae over F ,P ,X For example, the language of

quantifier-free Presburger arithmetic has F = {+,−,0,1,2, . . .} and P = {=,≤, |}).

A constraint is called satisfiable if it holds for some structure in S and some assignment of

the variables X , otherwise unsatisfiable. We say that a set Γ⊆ Constr of constraints entails a

constraint φ ∈ Constr if every structure and variable assignment that satisfies all constraints in

Γ also satisfies φ; this is denoted by Γ |=φ.

fv(φ) denotes the set of free variables in constraint φ. We write φ[x1, . . . , xn] to state that a con-

straint contains (only) the free variables x1, . . . , xn , andφ[t1, . . . , tn] for the result of substituting

the terms t1, . . . , tn for x1, . . . , xn . Given a constraint φ containing the free variables x1, . . . , xn ,

we write Cl∀(φ) for the universal closure ∀x1, . . . , xn .φ.

Positions. We denote the set of positions in a constraint φ by positions(φ). For instance, the

constraint a ∧¬a has 4 positions, corresponding to the sub-formulae a ∧¬a,¬a, and the two

occurrences of a. The sub-formula of a formula φ underneath a position p is denoted by φ↓p,

and we write φ[p/ψ] for the result of replacing the sub-formula φ↓p with ψ. Further, we write

p ≤ q if position p is above q (that is, q denotes a position within the sub-formula φ↓p), and

44

5.2. Formulae and Horn Clauses

p < q if p is strictly above q .

Craig interpolation is the main technique used to construct and refine abstractions in

software model checking. A binary interpolation problem is a conjunction A∧B of constraints.

A Craig interpolant is a constraint I such that A |= I and B |= ¬I , and such that fv(I) ⊆ fv(A)∩
fv(B). The existence of an interpolant implies that A ∧ B is unsatisfiable. We say that a

constraint language has the interpolation property if also the opposite holds: whenever A∧B

is unsatisfiable, there is an interpolant I .

5.2.1 Horn Clauses

To define the concept of Horn clauses, we fix a set R of uninterpreted fixed-arity relation

symbols, disjoint from P and F . A Horn clause is a formula C ∧B1 ∧·· ·∧Bn → H where

• C is a constraint over F ,P ,X ;

• each Bi is an application p(t1, . . . , tk) of a relation symbol p ∈R to first-order terms over

F ,X ;

• H is similarly either an application p(t1, . . . , tk) of p ∈ R to first-order terms, or is the

constraint false.

H is called the head of the clause, C ∧B1 ∧·· ·∧Bn the body. In case C = true, we usually leave

out C and just write B1∧·· ·∧Bn → H . First-order variables (from X) in a clause are considered

implicitly universally quantified; relation symbols represent set-theoretic relations over the

universe U of a structure (U , I) ∈S . Notions like (un)satisfiability and entailment generalise

straightforwardly to formulae with relation symbols.

A relation symbol assignment is a mapping sol : R → Constr that maps each n-ary relation sym-

bol p ∈R to a constraint sol(p) =Cp [x1, . . . , xn] with n free variables. The instantiation sol(h)

of a Horn clause h is defined by:

sol
(
C ∧p1(t̄1)∧·· ·∧pn(t̄n) → p(t̄)

) = C ∧ sol(p1)[t̄1]∧·· ·∧ sol(pn)[t̄n] → sol(p)[t̄]

sol
(
C ∧p1(t̄1)∧·· ·∧pn(t̄n) → false

) = C ∧ sol(p1)[t̄1]∧·· ·∧ sol(pn)[t̄n] → false

Definition 5.2.1 (Solvability). Let H C be a set of Horn clauses over relation symbols R.

1. H C is called semantically solvable if for every structure (U , I) ∈S there is an interpreta-

tion of the relation symbols R as set-theoretic relations over U such that the universally

quantified closure Cl∀(h) of every clause h ∈H C holds in (U , I).

2. H C is called syntactically solvable if there is a relation symbol assignment sol such that

for every structure (U , I) ∈ S and every clause h ∈ H C it is the case that Cl∀(sol(h)) is

satisfied.

45

Chapter 5. Interpolation and Solving Horn Clauses

Note that, in the special case when S contains only one structure, S = {(U , I)}, semantic

solvability reduces to the existence of relations interpreting R that extend the structure (U , I)

in such a way to make all clauses true. In other words, Horn clauses are solvable in a structure

if and only if the extension of the theory of (U , I) by relation symbols R in the vocabulary and

by given Horn clauses as axioms is consistent.

Clearly, if a set of Horn clauses is syntactically solvable, then it is also semantically solvable.

The converse is not true in general, because the solution need not be expressible in the

constraint language.

For instance, the following Horn clauses are formulated over the theory of linear arithmetic,

and semantically solvable, but no solution can be represented in terms of Presburger arith-

metic constraints:

(1) sq(1,0) ← true
(2) sq(n+2,x+n) ← sq(n,x)
(3) false ← x > 1 ∧ sq(n,x) ∧ sq(n,x+1)

The first two clauses imply that sq(n, x) holds (for some n) whenever x is a square num-

ber. The third clause states that no two consecutive numbers greater 1 are squares. Since

one-dimensional sets definable in Presburger arithmetic are ultimately periodic [GS66], no

Presburger arithmetic over-approximation of sq can satisfy all the clauses.

Definition 5.2.2 (Dependence Relation). A set H C of Horn clauses induces a dependence

relation →H C on R, defining p →H C q if there is a Horn clause in H C that contains p in its

head, and q in the body.

The set H C is called recursion-free if →H C is acyclic, and recursive otherwise. In the next

sections we study the solvability problem for recursion-free Horn clauses; in particular, The-

orem 5.5.1 below characterises the relationship between syntactic and semantic solvabil-

ity for recursion-free Horn clauses. This case is relevant, since solvers for recursion-free

Horn clauses form a main component of many general Horn-clause-based verification sys-

tems [GPR11a, GLPR12].

Definition 5.2.3 (Normal Form). A set H C of Horn clauses is in normal form [GLPR12] iff

every relation symbol has a unique and fixed pairwise distinct vector of variables and every

non-argument variable occurs in at most one clause.

In order to guarantee a fixed vector of parameters for relation symbols we may need to

duplicate the relation symbols and all the clauses defining them and solve the resulting system.

As an exmple consider the following set of clauses.

p(x, y)∧p(y, z) → r (x, z), q(x, y) → p(x, y), x ≥ 0 → q(x, x)

46

5.3. The Relationship between Craig Interpolation and Horn Clauses

We first expand the system to

p1(x, y)∧p2(y, z) → r (x, z)

q1(x, y) → p1(x, y)

x ≥ 0 → q1(x, x)

q2(x, y) → p2(x, y)

x ≥ 0 → q2(x, x)

To make the parameters unique we rename the arguments as the following.

p1(xp1 , yp1)∧p2(yp2 , zp2)∧ (yp1 = yp2)∧ (xp1 = xr)∧ (zp2 = zr) → r (xr , zr)

q1(xq1 , yq1)∧ (xq1 = xp1)∧ (yq1 = yp1) → p1(xp1 , yp1)

(xq1 ≥ 0)∧ (xq1 = yq1) → q1(xq1 , yq1)

q2(yq2 , zq2)∧ (yq2 = yp2)∧ (zq2 = zp2) → p2(yp2 , zp2)

(yq2 ≥ 0)∧ (yq2 = zq2) → q2(yq2 , zq2)

We now solve the expanded system. Afterwards we construct a solution of the original system

as

Cp [x, y] = Cp1 [x, y]∧Cp2 [x, y], Cq [x, y] = Cq1 [x, y]∧Cq2 [x, y]

This is possible because the space of (syntactic) solutions of a Horn clause is closed under

conjunction.

5.3 The Relationship between Craig Interpolation and Horn Clauses

It has become common to work with generalised forms of Craig interpolation, such as induc-

tive sequences of interpolants, tree interpolants, and restricted DAG interpolants. We show

that a variety of such interpolation approaches can be reduced to recursion-free Horn clauses.

Recursion-free Horn clauses thus provide a general framework unifying and subsuming a

number of earlier notions. As a side effect, we can formulate a general theorem about existence

of the individual kinds of interpolants in Sect. 5.6, applicable to any constraint language with

the (binary) interpolation property.

An overview of the relationship between specific forms of interpolation and specific fragments

of recursions-free Horn clauses is given in Figure 5.3, and will be explained in more detail in the

rest of this section. The table in Figure 5.3 refers to the following fragments of recursion-free

Horn clauses:

Definition 5.3.1 (Horn clause fragments). We say that a finite, recursion-free set H C of Horn

clauses

47

Chapter 5. Interpolation and Solving Horn Clauses

Form of interpolation Fragment of Horn clauses

Binary interpolation [Cra57, McM03]
A∧B

Pair of Horn clauses
A → p(x̄), B ∧p(x̄) → false with {x̄} = fv(A)∩ fv(B)

Inductive interpolant seq. [HJMM04,
McM06]
T1 ∧T2 ∧·· ·∧Tn

Linear tree-like Horn clauses
T1 → p1(x̄1), p1(x̄1)∧T2 → p2(x̄2), . . .
with {x̄i } = fv(T1, . . . ,Ti)∩ fv(Ti+1, . . . ,Tn)

Tree interpolants [McM, HHP10] Tree-like Horn clauses

(Restricted) DAG inter-
polants [AGC12a]

Linear Horn clauses

Disjunctive interpolants [RHK13] Body disjoint Horn clauses

Figure 5.3: Equivalence of interpolation problems and systems of Horn clauses.

1. is linear if the body of each Horn clause contains at most one relation symbol,

2. is body-disjoint if for each relation symbol p there is at most one clause containing p in

its body; furthermore, every clause contains p at most once;

3. is head-disjoint if for each relation symbol p there is at most one clause containing p in

its head;

4. is tree-like [GPR11b] if it is body-disjoint and head-disjoint.

Theorem 5.3.1 (Interpolation and Horn clauses). For each line of Figure 5.3 it holds that:

1. an interpolation problem of the stated form can be polynomially reduced to (syntactically)

solving a set of Horn clauses, in the stated fragment;

2. solving a set of Horn clauses (syntactically) in the stated fragment can be polynomially

reduced to solving a sequence of interpolation problems of the stated form.

5.3.1 Binary Craig Interpolants [Cra57, McM03]

The simplest form of Craig interpolation is the derivation of a constraint I such that A |= I

and I |= ¬B , and such that fv(I) ⊆ fv(A)∩ fv(B). Such derivation is typically constructed by

efficiently processing the proof of unsatisfiability of A∧B . To encode a binary interpolation

problem into Horn clauses, we first determine the set x̄ = fv(A)∩ fv(B) of variables that can

possibly occur in the interpolant. We then pick a relation symbol p of arity |x̄|, and define two

Horn clauses expressing that p(x̄) is an interpolant:

A → p(x̄), B ∧p(x̄) → false

48

5.3. The Relationship between Craig Interpolation and Horn Clauses

It is clear that every syntactic solution for the two Horn clauses corresponds to an interpolant

of A∧B .

5.3.2 Inductive Sequences of Interpolants [HJMM04, McM06]

Recall the definition of trace interpolants in 3.2.1. We repeat it here to place it in corre-

spondence with solving the appropriate recursion-free Horn clauses. Given an unsatisfiable

conjunction T1 ∧ . . .∧Tn (in practice, often corresponding to an infeasible path in a program),

an inductive sequence of interpolants is a sequence I0, I1, . . . , In of formulae such that

1. I0 = true, In = false,

2. for all i ∈ {1, . . . ,n}, the entailment Ii−1 ∧Ti |= Ii holds, and

3. for all i ∈ {0, . . . ,n}, it is the case that fv(Ii) ⊆ fv(T1, . . . ,Ti)∩ fv(Ti+1, . . . ,Tn).

While inductive sequences can be computed by repeated computation of binary interpolants [HJMM04],

more efficient solvers have been developed that derive a whole sequence of interpolants si-

multaneously [CGS10, BKRW11, McM].

Inductive sequences as linear tree-like Horn clauses. An inductive sequence of interpolants

can straightforwardly be encoded as a set of linear Horn clauses, by introducing a fresh re-

lation symbol pi for each interpolant Ii to be computed. The arguments of the relation

symbols have to be chosen reflecting condition 3 of the definition of interpolant sequences:

for each i ∈ {0, . . . ,n}, we assume that x̄i = fv(T1, . . . ,Ti)∩ fv(Ti+1, . . . ,Tn) is the vector of vari-

ables that can occur in Ii . Conditions 1 and 2 are then represented by the following Horn

clauses:

p0(x̄0), p0(x̄0)∧T1 → p1(x̄1), p1(x̄1)∧T2 → p2(x̄2), . . . , pn(x̄n) → false

Linear tree-like Horn clauses as inductive sequences. Suppose H C is a finite, recursion-

free, linear, and tree-like set of Horn clauses. We can solve the system of Horn clauses by

computing one inductive sequence of interpolants for every connected component of the

→H C -graph. First, we first normalize the set of Horn clauses (Definition 5.2.3) so that for

every relation symbol p, we have a unique vector of variables x̄p , and rewrite H C such that

p only occurs in the form p(x̄p). This is straightforward since H C is recursion-free and

body-disjoint. We then ensure, through renaming, that every variable x that is not argument

of a relation symbol occurs in at most one clause. A connected component then represents

Horn clauses

C1 → p1(x̄1), C2 ∧p1(x̄1) → p2(x̄2), C3 ∧p2(x̄2) → p3(x̄3), . . . , Cn ∧pn(x̄n) → false .

49

Chapter 5. Interpolation and Solving Horn Clauses

(If the first or the last of the clauses is missing, we assume that its constraint is false). Any

inductive sequence of interpolants for C1 ∧C2 ∧C3 ∧·· ·∧Cn solves the clauses.

5.3.3 Tree Interpolants [McM, HHP10]

Tree interpolants strictly generalise inductive sequences of interpolants, and are designed

with the application of inter-procedural verification in mind: in this context, the tree structure

of the interpolation problem corresponds to (a part of) the call graph of a program. Tree

interpolation problems correspond to recursion-free tree-like sets of Horn clauses.

Suppose (V ,E) is a finite directed tree, writing E(v, w) to express that the node w is a direct

child of v . Further, suppose φ : V → Constr is a function that labels each node v of the tree

with a formula φ(v). A labelling function I : V → Constr is called a tree interpolant (for (V ,E)

and φ) if the following properties hold:

1. for the root node v0 ∈V , it is the case that I (v0) = false,

2. for any node v ∈V , the following entailment holds:

φ(v)∧ ∧
(v,w)∈E

I (w) |= I (v) ,

3. for any node v ∈V , every non-logical symbol (in our case: variable) in I (v) occurs both

in some formula φ(w) for w such that E∗(v, w), and in some formula φ(w ′) for some w ′

such that ¬E∗(v, w ′). (E∗ is the reflexive transitive closure of E).

Since the case of tree interpolants is instructive for solving recursion-free sets of Horn clauses

in general, we give a result about the existence of tree interpolants. The proof of the lemma

computes tree interpolants by repeated derivation of binary interpolants; however, as for

inductive sequences of interpolants, there are solvers that can compute all formulae of a tree

interpolant simultaneously [McM, GPR11a, GPR11b].

Lemma 5.3.2. Suppose the constraint language Constr that has the interpolation property.

Then a tree (V ,E) with labelling function φ : V → Constr has a tree interpolant I if and only if∧
v∈V φ(v) is unsatisfiable.

Proof. “⇒” follows from the observation that every interpolant I (v) is a consequence of the

conjunction
∧

(v,w)∈E+φ(w).

“⇐”: let v1, v2, . . . , vn be an inverse topological ordering of the nodes in (V ,E), i.e., an or-

dering such that ∀i , j . (E(vi , v j) ⇒ i > j). We inductively construct a sequence of formu-

lae I1, I2, . . . , In , such that for every i ∈ {1, . . . ,n} the following properties hold:

50

5.3. The Relationship between Craig Interpolation and Horn Clauses

1. the following conjunction is unsatisfiable:∧
{Ik | k ≤ i , ∀ j . (E(v j , vk) ⇒ j > i)} ∧

(
φ(vi+1)∧φ(vi+2)∧·· ·∧φ(vn)

)
(5.1)

2. the following entailment holds:

φ(vi)∧ ∧
(vi ,v j)∈E

I j |= Ii

3. every non-logical symbol in Ii occurs both in a formula φ(w) with E∗(vi , w), and in a

formula φ(w ′) with ¬E∗(vi , w ′).

Assume that the formulae I1, I2, . . . , Ii have been constructed, for i ∈ {0, . . . ,n −1}. We then

derive the next interpolant Ii+1 by solving the binary interpolation problem(
φ(vi+1)∧ ∧

E(vi+1,v j)
I j

)
∧(∧

{Ik | k ≤ i , ∀ j . (E(v j , vk) ⇒ j > i +1)} ∧ φ(vi+2)∧·· ·∧φ(vn)
)

(5.2)

That is, we construct Ii+1 so that the following entailments hold:

φ(vi+1)∧ ∧
E(vi+1,v j)

I j |= Ii+1,

∧
{Ik | k ≤ i , ∀ j . (E(v j , vk) ⇒ j > i +1)} ∧ φ(vi+2)∧·· ·∧φ(vn) |= ¬Ii+1

Furthermore, Ii+1 only contains non-logical symbols that are common to the left and the right

side of the conjunction.

Note that (5.2) is equivalent to (5.1), therefore unsatisfiable, and a well-formed interpolation

problem. It is also easy to see that the properties 1–3 hold for Ii+1. Also, we can easily verify

that the labelling function I : vi 7→ Ii is a solution for the tree interpolation problem defined

by (V ,E) and φ.

Tree interpolation as tree-like Horn clauses. The encoding of a tree interpolation problem

as a tree-like set of Horn clauses is very similar to the encoding for inductive sequences of

interpolants. We introduce a fresh relation symbol pv for each node v ∈ V of a tree inter-

polation problem (V ,E),φ, assuming that for each v ∈ V the vector x̄v = ⋃
E∗(v,w) fv(φ(w))∩⋃

¬E∗(v,w) fv(φ(w)) represents the set of variables that can occur in the interpolant I (v). The

interpolation problem is then represented by the following clauses:

p0(x̄0) → false,
{
φ(v)∧ ∧

(v,w)∈E
pw (x̄w) → pv (x̄v)

}
v∈V

51

Chapter 5. Interpolation and Solving Horn Clauses

false:

y6 6= 91

r6(x6, y6):
x5 = x6 ∧ x6 = nf ∧ y6 = recf

rf (nf , recf):

nf = n1 ∧ recf = nf − 10

r1(n1, rec1):

n0 = n1 ∧ rec0 = rec1 ∧ n1 > 100

r0(n0, rec0):

true

r5(x5, y5):

x5 ≤ 100 ∧ y4 = y5

r4(x4, y4):

true

Figure 5.4: Tree interpolation problem for the clauses in Example 5.3.3

Tree-like Horn clauses as tree interpolation. Suppose H C is a finite, recursion-free, and

tree-like set of Horn clauses. We can solve the system of Horn clauses by computing a tree

interpolant for every connected component of the →H C -graph. As before, we first normalise

the Horn clauses by fixing, for every relation symbol p, a unique vector of variables x̄p , and

rewriting H C such that p only occurs in the form p(x̄p). We also ensure that every variable x

that is not argument of a relation symbol occurs in at most one clause. The tree interpolation

graph (V ,E) is then defined by choosing the set V =R∪ {false} of relation symbols as nodes,

and the child relation E(p, q) to hold whenever p occurs as head, and q within the body of a

clause. The labelling function φ is defined by φ(p) =C whenever there is a clause with head

symbol p and constraint C , and φ(p) = false if p does not occur as head of any clause.

Example We consider a subset of the Horn clauses given in Figure 2.3:

(1) r0(N,Rec) ← true
(2) r1(N,Rec) ← r0(N,Rec) ∧ N > 100
(5) rf (N,Rec’) ← r1(N,Rec) ∧ Rec’ = N − 10
(7) r4(X,Y) ← true
(8) r5(X’,Y) ← r4(X,Y) ∧ X’ ≤ 100
(9) r6(X,Y’) ← r5(X,Y) ∧ rf(X,Y’)
(10) false ← r6(X,Y) ∧ Y 6= 91

Note that this recursion-free subset of the clauses is body-disjoint and head-disjoint, and thus

tree-like. Since the complete set of clauses in Figure 2.3 is solvable, also any subset is; in order

to compute a (syntactic) solution of the clauses, we set up the corresponding tree interpolation

problem. Figure 5.4 shows the tree with the labelling φ to be interpolated (in grey), as well as

the head literals of the clauses generating the nodes of the tree. A tree interpolant solving the

52

5.3. The Relationship between Craig Interpolation and Horn Clauses

false

false

nf > 100

n1 > 100

true

x5 ≤ 100

true

Figure 5.5: Tree interpolant solving the interpolation problem in Figure 5.4

interpolation problem is given in Figure 5.5. The tree interpolant can straightforwardly be

mapped to a solution of the original tree-like Horn, for instance we set r f (n f ,rec f) = (n f > 100)

and r5(x5, y5) = (x5 ≤ 100).

Symmetric Interpolants

A special case of tree interpolants, symmetric interpolants, was introduced in [McM05a]. Given

an inconsistent set of formulas V = {v0, · · · , vn} a symmetric interpolant is a set of formulas

I = {I0, · · · , In} such that each vi implies Ii , and I is inconsistent, and each Ii is over the

symbols common to vi and V \ vi . Symmetric interpolants are equivalent to tree interpolants

with a flat tree structure (V ,E), i.e., V = {root, v1, . . . , vn}, where the nodes v1, . . . , vn are the

direct children of root.

5.3.4 Restricted (and Unrestricted) DAG Interpolants [AGC12a]

Restricted DAG interpolants are a further generalisation of inductive sequence of inter-

polants, introduced for the purpose of reasoning about multiple paths in a program simulta-

neously [AGC12a]. Suppose (V ,E ,en,ex) is a finite connected DAG with entry node en ∈V and

exit node ex ∈V , further LE : E → Constr a labelling of edges with constraints, and LV : V →
Constr a labelling of vertices. A restricted DAG interpolant is a mapping I : V → Constr with

1. I (en) = true, I (ex) = false,

2. for all (v, w) ∈ E the entailment I (v)∧LV (v)∧LE (v, w) |= I (w)∧LV (w) holds, and

53

Chapter 5. Interpolation and Solving Horn Clauses

3. for all v ∈V it is the case that1

fv(I (v)) ⊆
(⋃

(a,v)∈E
fv(LE (a, v))

)
∩

(⋃
(v,a)∈E

fv(LE (v, a))
)

.

The UFO verification system [ALGC12] is able to compute DAG interpolants, based on the

interpolation functionality of MathSAT [CGS10]. We can observe that DAG interpolants

(despite their name) are incomparable in expressiveness to tree interpolation. This is because

DAG interpolants correspond to linear Horn clauses, and might have shared relation symbol

in bodies, while tree interpolants correspond to possibly nonlinear tree-like Horn clauses,

but do not allow shared relation symbols in bodies. Nevertheless, it is possible to reduce

DAG interpolants to tree interpolants, but only at the cost of a potentially exponential growth

in the number of clauses. Considering the paths in the DAG as program paths this blowup

corresponds to enumerating all the possible syntactic traces of the program.

Encoding of restricted DAG interpolants as linear Horn clauses. For every v ∈V , let

{x̄v } =
(⋃

(a,v)∈E
fv(LE (a, v))

)
∩

(⋃
(v,a)∈E

fv(LE (v, a))
)

be the variables allowed in the interpolant to be computed for v , and pv be a fresh relation

symbol of arity |x̄v |. The interpolation problem is then defined by the following set of linear

Horn clauses:

For each (v, w) ∈ E : LV (v)∧LE (v, w)∧pv (x̄v) → pw (x̄w),

LV (v)∧¬LV (w)∧LE (v, w)∧pv (x̄v) → false,

For en,ex ∈V : true → pen(x̄en), pex(x̄ex) → false

Encoding of linear Horn clauses as DAG interpolants. Suppose H C is a finite, recursion-

free, and linear set of Horn clauses. We can solve the system of Horn clauses by computing a

DAG interpolant for every connected component of the →H C -graph. We first normalize the

set of Horn clauses (Definition 5.2.3) by fixing a unique vector x̄p of argument variables for

each relation symbol p, and ensure that every non-argument variable x occurs in at most one

clause. We also assume that multiple clauses C ∧p(x̄p) → q(x̄q) and D ∧p(x̄p) → q(x̄q) with

the same relation symbols are merged to (C ∨D)∧p(x̄p) → q(x̄q).

Let {p1, . . . , pn} be all relation symbols of one connected component. We then define the DAG

interpolation problem (V ,E ,en,ex),LE ,LV by

• the vertices V = {p1, . . . , pn}∪ {en,ex}, including two fresh nodes en,ex,

1The definition of DAG interpolants in [AGC12a, Def. 4] implies that fv(I (v)) =; for every interpolant I (v), v ∈V ,
i.e., only trivial interpolants are allowed. We assume that this is a mistake in [AGC12a, Def. 4], and corrected the
definition as shown here.

54

5.4. Disjunctive Interpolants and Body-Disjoint Horn Clauses

• the edge relation

E = {(p, q) | there is a clause C ∧p(x̄p) → q(x̄q) ∈H C }

∪ {(en, p) | there is a clause D → p(x̄p) ∈H C }

∪ {(p,ex) | there is a clause E ∧p(x̄p) → false ∈H C } ,

• for each (v, w) ∈ E , the edge labelling

LE (v, w) =


C ∧ x̄v = x̄v ∧ x̄w = x̄w if C ∧ v(x̄v) → w(x̄w) ∈H C

D ∧ x̄w = x̄w if v = en and D → w(x̄w) ∈H C

E ∧ x̄v = x̄v if w = ex and E ∧ v(x̄v) → false ∈H C

Note that the labels include equations like x̄v = x̄v to ensure that the right variables are

allowed to occur in interpolants.

• for each v ∈V , the node labelling LV (v) = true.

By checking the definition of DAG interpolants, it can be verified that every interpolant solving

the problem (V ,E ,en,ex),LE ,LV is also a solution of the linear Horn clauses.

5.4 Disjunctive Interpolants and Body-Disjoint Horn Clauses

Disjunctive interpolants were introduced in [RHK13] as a generalisation of tree interpolants.

Disjunctive interpolants resemble tree interpolants in the sense that the relationship of the

components of an interpolant is defined by a tree; in contrast to tree interpolants, however, this

tree is an and/or-tree: branching in the tree can represent either conjunctions or disjunctions.

Disjunctive interpolation problems can specify both conjunctive and disjunctive relationships

between interpolants, and are thus applicable for simultaneous analysis of multiple paths

in a program, but also tailored to inter-procedural analysis or verification of concurrent

programs [GLPR12].

Disjunctive interpolants correspond to sets of body-disjoint Horn clauses; in this represen-

tation, and-branching is encoded by clauses with multiple body literals (like with tree in-

terpolants), while or-branching is interpreted as multiple clauses sharing the same head

symbol. The definition of disjunctive interpolation is chosen deliberately to be as general as

possible, while still avoiding the high computational complexity of solving general systems of

recursion-free Horn clauses. Computational complexity is discussed in Sect. 5.6.

We introduce disjunctive interpolants as a form of sub-formula abstraction. For example,

given an unsatisfiable constraint φ[α] containing α as a sub-formula in a positive position,

the goal is to find an abstraction α′ such that α |=α′ and α[α′] |= false, and such that α′ only

contains variables common to α and φ[true]. Generalizing this to any number of subformulas,

55

Chapter 5. Interpolation and Solving Horn Clauses

we obtain the following.

Definition 5.4.1 (Disjunctive interpolant). Let φ be a constraint, and pos ⊆ positions(φ) a set

of positions in φ that are only underneath the connectives ∧ and ∨. A disjunctive interpolant is

a map I : pos → Constr from positions to constraints such that:

1. For each position p ∈ pos, with direct children

{q1, . . . , qn} = {q ∈ pos | p < q and ¬∃r ∈ pos. p < r < q} we have(
φ[q1/I (q1), . . . , qn/I (qn)]

)↓p |= I (p) ,

2. For the topmost positions {q1, . . . , qn} = {q ∈ pos | ¬∃r ∈ pos. r < q} we have

φ[q1/I (q1), . . . , qn/I (qn)] |= false ,

3. For each position p ∈ pos, we have fv(I (p)) ⊆ fv(φ↓p)∩ fv(φ[p/true]).

Example Consider Ap ∧B , with position p pointing to the sub-formula A, and pos = {p}.

The disjunctive interpolants for A∧B and pos coincide with the ordinary binary interpolants

for A∧B .

Example Consider the formulaφ= (· · ·(((T1
)

p1
∧T2

)
p2
∧T3

)
p3
∧·· ·)pn−1

∧Tn and positions pos =
{p1, . . . , pn−1}. Disjunctive interpolants for φ and pos correspond to inductive sequences of

interpolants [HJMM04, McM06]. Note that we have the entailments

T1 |= I (p1), I (p1)∧T2 |= I (p2), . . . , I (pn−1)∧Tn |= false.

Example Tree interpolation problems correspond to disjunctive interpolation with a set pos

of positions that are only underneath ∧ (and never underneath ∨).

Example We consider the example given in Fig. 5.2, Sect. 6.3. To compute a solution for

the Horn clauses, we first expand the Horn clauses into a constraint, by means of exhaustive

56

5.4. Disjunctive Interpolants and Body-Disjoint Horn Clauses

inlining/resolution (see Sect. 5.5), obtaining a disjunctive interpolation problem:

false M ≥ 0∧M = N ∧gcd(M , N ,R)∧R > M

 M ≥ 0

∧ M = N

∧ R > M

 ∧


M = N ∧R = M

∨
M > N ∧M1 = M −N ∧gcd1(M1, N ,R)

∨
M < N ∧N1 = N −M ∧gcd1(M , N1,R)



 M ≥ 0

∧ M = N

∧ R > M

 ∧


M = N ∧R = M

∨
M > N ∧M1 = M −N ∧ (M1 = N ∧R = M1)q

∨
M < N ∧N1 = N −M ∧ (M = N1 ∧R = M)r


p

In the last formula, the positions p, q,r corresponding to the relation symbol gcd and the two

occurrences of gcd1 are marked. It can be observed that the last formula is unsatisfiable, and

that I = {p 7→ ((M = N) → (M ≥ R)), q 7→ true, r 7→ true} is a disjunctive interpolant. A solution

for the Horn clauses can be derived from the interpolant by conjoining the constraints derived

for the two occurrences of gcd1:

gcd(M , N ,R) = ((M = N) → (M ≥ R)), gcd1(M , N ,R) = true

Theorem 5.4.1. Suppose φ is a constraint, and suppose pos ⊆ positions(φ) is a set of positions

in φ that are only underneath the connectives ∧ and ∨. If Constr is a constraint language that

has the interpolation property, then a disjunctive interpolant I exists for φ and pos if and only

if φ is unsatisfiable.

Proof. “⇒” By means of simple induction, we can derive that φ↓p |= I (p) holds for every

disjunctive interpolant I for φ and pos, and for every p ∈ pos. From Def. 5.4.1, it then follows

that φ is unsatisfiable.

“⇐” Suppose φ is unsatisfiable. We encode the disjunctive interpolation problem into a

(conjunctive) tree interpolation problem by adding auxiliary Boolean variables. 2 Wlog, we

assume that pos contains the root position root of φ. The graph of the tree interpolation

problem is (pos,E), with the edge relation E = {(p, q) | p < q and ¬∃r.p < r < q}. For every

p ∈ pos, let ap be a fresh Boolean variable. We label the nodes of the tree using the functionφL :

pos → Constr. For each position p ∈ pos, with direct children {q1, . . . , qn} = {q ∈ pos | E(p, q)}

2The concept of auxiliary Boolean variables to represent interpolation problems has also been used in [SFS11]
and [AGC12b], for the purpose of extracting function summaries in model checking.

57

Chapter 5. Interpolation and Solving Horn Clauses

we define

φL(p) =
φ[q1/aq1 , . . . , qn/aqn] if p = root

¬ap ∨ (
φ[q1/aq1 , . . . , qn/aqn]

)↓p otherwise

Observe that
∧

p∈posφL(p) is unsatisfiable. According to Lemma 5.3.2 a tree interpolant IT

exists for this labelling function. By construction, for non-root positions p ∈ pos \ {root} the

interpolant labelling is equivalent to IT (p) ≡¬ap ∨ Ip , where Ip does not contain any further

auxiliary Boolean variables. We can then construct a disjunctive interpolant I for the original

problem as

I (p) =
false if p = root

Ip otherwise

To see that I is a disjunctive interpolant, observe that for each position p ∈ pos with direct

children {q1, . . . , qn} = {q ∈ pos | E(p, q)} the following entailment holds (since IT is a tree

interpolant): φL(p)∧ (¬aq1 ∨ Iq1)∧·· ·∧ (¬aqn ∨ Iqn) |= IT (p)

Via Boolean reasoning this implies:
(
φ[q1/Iq1 , . . . , qn/Iqn]

)↓p |= I (p).

The proof provides a constructive method to solve disjunctive interpolation problems, by

means of transformation to a tree interpolation problem. This is also the algorithm that we

used in our experiments in Sect. 5.9; practical aspects of this approach are discussed in the

beginning of Sect. 5.8.

5.4.1 Solvability of Body-Disjoint Horn Clauses

Disjunctive interpolation corresponds to body disjoint recursion-free Horn clauses. An exam-

ple for body-disjoint clauses is the subset {(1), (4)} of clauses in Fig. 5.1. Syntactic solutions of

a set H C of body-disjoint Horn clauses can be computed by solving a disjunctive interpola-

tion problem; vice versa, every disjunctive interpolation problem can be translated into an

equivalent set of body-disjoint clauses.

In order to extract an interpolation problem from H C , we first normalise the clauses ((Defini-

tion 5.2.3): for every relation symbol p ∈R, we fix a unique vector of variables x̄p , and rewrite

H C such that p only occurs in the form p(x̄p). This is possible due to the fact that H C is

body disjoint. The translation from Horn clauses to a disjunctive interpolation problem is

done recursively, similar in spirit to inlining of function invocations in a program; thanks to

body-disjointness, the encoding is polynomial.

58

5.4. Disjunctive Interpolants and Body-Disjoint Horn Clauses

enc
(
H C

) = ∨
(C∧B1∧···∧Bn→false)∈H C

C ∧enc′(B1)∧·· ·∧enc′(Bn)

enc′
(
p(x̄p)

) =
(∨

(C∧B1∧···∧Bn→p(x̄p))∈H C

C ∧enc′(B1)∧·· ·∧enc′(Bn)

)
lp

Note that the resulting formula enc(H C) contains a unique position lp at which the definition

of a relation symbol p is inlined; in the second equation, this position is marked with lp . Any

disjunctive interpolant I for this set of positions represents a syntactic solution of H C , and

vice versa.

The solution of body-disjoint Horn clauses can be computed by solving a sequence of tree-like

sets of Horn clauses:

Lemma 5.4.2. Let H C be a finite set of recursion-free body-disjoint Horn clauses. H C has

a syntactic/semantic solution if and only if every maximum tree-like subset of H C has a

syntactic/semantic solution.

Proof. We outline direction “⇐” for syntactic solutions. Solving the tree-like subsets of H C

yields, for each relation symbol p ∈R, a set SCp of solution constraints. A global solution of

H C can be constructed by forming a positive Boolean combination of the constraints in SCp

for each p ∈R.

Example We consider a recursion-free unwinding of the Horn clauses in Figure 2.3. To make

the set of clauses body-disjoint, some of the clause were duplicated, introducing primed

copies of all relation symbols involved. The clauses are not head-disjoint, since (5) and (6)

share the same head symbol.

(1) r0(N,Rec) ← true
(2) r1(N,Rec) ← r0(N,Rec) ∧ N > 100
(3) r2(N,Rec) ← r0a(N,Rec) ∧ N ≤ 100
(4) r3(N,Rec’) ← r2(N,Rec) ∧ rfb(N + 11,Rec’)
(5) rf (N,Rec’) ← r1(N,Rec) ∧ Rec’ = N − 10
(6) rf (N,Rec’) ← r3(N,Rec) ∧ rfc(Rec,Rec’)

(1a) r0a(N,Rec) ← true

(1b) r0b(N,Rec) ← true
(2b) r1b(N,Rec) ← r0b(N,Rec) ∧ N > 100
(5b) rf b(N,Rec’) ← r1b(N,Rec) ∧ Rec’ = N − 10

(1c) r0c(N,Rec) ← true
(2c) r1c(N,Rec) ← r0c(N,Rec) ∧ N > 100
(5c) rf c(N,Rec’) ← r1c(N,Rec) ∧ Rec’ = N − 10

59

Chapter 5. Interpolation and Solving Horn Clauses

(7) r4(X,Y) ← true
(8) r5(X’,Y) ← r4(X,Y) ∧ X’ ≤ 100
(9) r6(X,Y’) ← r5(X,Y) ∧ rf(X,Y’)
(10) false ← r6(X,Y) ∧ Y 6= 91

There are two maximum tree-like subsets: T1 = {(1), (2), (5), (7), (8), (9), (10)}, and T2 = {(3), (4),

(6), (1a), (1b), (2b), (5b), (1c), (2c), (5c), (7), (8), (9), (10)}. The subset T1 has been discussed in

Example 5.3.3. In the same way, it is possible to construct a solution for T2 by solving a tree

interpolation problem. The two solutions can be combined to construct a solution of T1 ∪T2:

T1 T2 T1 ∪T2

r0(n,r) true − true

r1(n,r) n > 100 − n > 100

r2(n,r) − n ≤ 100 n ≤ 100

r3(n,r) − r ≤ 101 r ≤ 101

r4(x, y) true true true

r5(x, y) x ≤ 100 true true

r6(x, y) f al se y = 91 y = 91

r f (n,r) n > 100 r = 91 n > 100∨ r = 91

r a
0 (n,r) − true true

r b
0 (n,r) − true true

r b
1 (n,r) − true true

r b
f (n,r) − n − r ≥ 10 n − r ≥ 10

r c
0 (n,r) − true true

r c
1 (n,r) − n ≥ 101 n ≥ 101

r c
f (n,r) − n ≥ 102∨ (n = 101∧ r = 91) n ≥ 102∨ (n = 101∧ r = 91)

5.5 Solvability of Recursion-free Horn Clauses

The previous section discussed how the class of recursion-free body-disjoint Horn clauses can

be solved by reduction to disjunctive interpolation. We next show that this construction can

be generalised to arbitrary systems of recursion-free Horn clauses. In absence of the body-

disjointness condition, however, the encoding of Horn clauses as interpolation problems

can incur a potentially exponential blowup. We give a complexity-theoretic argument in

Section 5.6 justifying that this blowup cannot be avoided in general. This puts disjunctive

interpolation (and, equivalently, body-disjoint Horn clauses) at a sweet spot: preserving the

relatively low complexity of ordinary binary Craig interpolation, while carrying much of the

flexibility of the Horn clause framework.

We first introduce the exhaustive expansion exp(H C) of a set H C of Horn clauses, which

generalises the Horn clause encoding from the previous section. We write C ′∧B ′
1∧·· ·∧B ′

n → H ′

60

5.5. Solvability of Recursion-free Horn Clauses

for a fresh variant of a Horn clause C ∧B1 ∧·· ·∧Bn → H , i.e., the clause obtained by replacing

all free first-order variables with fresh variables. Expansion is then defined by the following

recursive functions:

exp
(
H C

) = ∨
(C∧B1∧···∧Bn→false)∈H C

C ′∧exp′(B ′
1)∧·· ·∧exp′(B ′

n)

exp′(p(t̄)
) = ∨

(C∧B1∧···∧Bn→p(s̄))∈H C

C ′∧exp′(B ′
1)∧·· ·∧exp′(B ′

n)∧ t̄ = s̄′

Note that exp is only well-defined for finite and recursion-free sets of Horn clauses, since the

expansion might not terminate otherwise.

Theorem 5.5.1 (Solvability of recursion-free Horn clauses). Let H C be a finite, recursion-free

set of Horn clauses. If the underlying constraint language has the interpolation property, then

the following statements are equivalent:

1. H C is semantically solvable;

2. H C is syntactically solvable;

3. exp(H C) is unsatisfiable.

Proof. 2 ⇒ 1 holds because a syntactic solution gives rise to a semantic solution by interpreting

the solution constraints. ¬3 ⇒ ¬1 holds because a model of exp(H C) witnesses domain

elements that every semantic solution of H C has to contain, but which violate at least one

clause of the form C ∧B1 ∧·· ·∧Bn → false, implying that no semantic solution can exist.

3 ⇒ 2 is shown by encoding H C into a disjunctive interpolation problem (Sect. 5.4), which

can solved with the help of Theorem 5.4.1. To this end, clauses are first duplicated to obtain a

problem that is body disjoint, and subsequently normalised as described in Sect. 5.4.1.

The outline of the proof for direction 3 ⇒ 2 is the following. Suppose the expansion exp(H C)

of a set H C of recursion-free Horn clauses is unsatisfiable. We compute a solution of the

Horn clauses separately for every connected component of the →H C -graph. Wlog we can

therefore assume that the →H C -graph is connected.

Renaming of first-order variables and normalisation. We normalise the resulting clauses

like in Sect. 5.4.1: for every relation symbol p, we fix a unique vector of variables x̄p , and

rewrite H C such that p only occurs in the form p(x̄p); by renaming variables, we then ensure

that every variable x that is not argument of a relation symbol occurs in at most one clause.

61

Chapter 5. Interpolation and Solving Horn Clauses

Encoding into a disjunctive interpolation problem. The translation from Horn clauses to

a disjunctive interpolation problem is done by adapting the expansion function exp:

enc
(
H C

) = ∨
(C∧B1∧···∧Bn→false)∈H C

C ′∧enc(B1)∧·· ·∧enc(Bn)

enc
(
p(x̄p)

) =
(∨

(C∧B1∧···∧Bn→p(x̄p))∈H C

C ′∧enc(B1)∧·· ·∧enc(Bn)

)
lp

Note that the resulting formula enc(H C) contains a unique position lp at which the definition

of a relation symbol p is inlined; in the second equation, this position is marked with lp .

We then derive a disjunctive interpolant I for this set of positions in enc(H C). A syntactic

solution of H C is then given by the definition ∀x̄p .
(
p(x̄p) ↔ I (lp)

)
, for all relation symbols p.

5.6 The Complexity of Recursion-free Horn Clauses

Theorem 5.5.1 gives rise to a general algorithm for (syntactically) solving recursion-free

sets H C of Horn clauses, over constraint languages for which interpolation procedures

are available. The general algorithm requires, however, to generate and solve the expan-

sion exp(H C) of the Horn clauses, which can be exponentially bigger than H C (in case H C

is not body disjoint), and might therefore require exponential time. This leads to the question

whether more efficient algorithms are possible for solving Horn clauses. We give a number

of complexity results about (semantic) Horn clause solvability. It is of crucial importance

to observe that solvability is PSPACE-hard, for every non-trivial constraint language Constr.

The authors of [LQL12] conjecture a similar complexity result for the case of programs with

procedures.

Lemma 5.6.1. Suppose a constraint language can distinguish at least two values, i.e., there

are two ground terms t0 and t1 such that t0 6= t1 is satisfiable. Then the semantic solvability

problem for recursion-free Horn clauses is PSPACE-hard.

Proof. We reduce the unsatisfiability problem of Quantified Boolean Formulae (QBF) to

solvability of recursion-free Horn clauses. The QBF problem is known to be PSPACE-hard, the

original proof of PSPACE-completeness of QBF is in [SM73]. Assume an arbitrary QBF of the

shape φ=Q1x1.Q2x2....Qn xn .F , where Qi ∈ ∃,∀ are quantifiers, xi are all variables occurring

in the formula, and F is a quantifier-free Boolean formula in CNF.

We translate φ into a recursion-free set of Horn clauses:

• a literal xi of a clause C j in F becomes a Horn clause

xi = t1 →Ci , j (x1, x2, . . . , xi−1, t1, xi+1, . . . , xn)

62

5.6. The Complexity of Recursion-free Horn Clauses

• a literal ¬xi of a clause C j in F becomes a Horn clause

xi = t0 →Ci , j (x1, x2, . . . , xi−1, t0, xi+1, . . . , xn)

• a clause C j in F becomes a set of Horn clauses

C1, j (x1, . . .) →C j (x1, . . .), C2, j (x1, . . .) →C j (x1, . . .), . . .

• the body F becomes the Horn clause

C1(x1, . . .)∧C2(x1, . . .)∧·· ·→ Fn(x1, . . .)

• a quantifier Qi =∃ is translated as the two clauses

Fi+1(x1, . . . , xi−1,0) → Fi (x1, . . . , xi−1), Fi+1(x1, . . . , xi−1,1) → Fi (x1, . . . , xi−1)

• a quantifier Qi =∀ is translated as the clause

Fi+1(x1, . . . , xi−1,0)∧Fi+1(x1, . . . , xi−1,1) → Fi (x1, . . . , xi−1)

• finally, we add the clause F1()∧ t0 6= t1 → false.

It is now easy to see that the expansion exp(H C) of the Horn clauses coincides with the

result of expanding all quantifiers in φ. By Theorem 5.5.1, unsatisfiability of the expansion is

equivalent to solvability of the set of Horn clauses.

Theorem 5.6.2. Semantic solvability of recursion-free Horn clauses over the constraint language

of Booleans is PSPACE-complete.

In combination with Lemma 5.6.1, it suffices to show that solvability is in PSPACE. This is

done by encoding a set H C of Horn clauses into a QBF formula that is equivalent to the full

expansion exp(H C), but only grows linearly in the size of H C .

The following lemma implies that solvability of recursion-free Horn clauses over the theory of

Booleans is PSPACE-complete:

Lemma 5.6.3 (Succinct expansion). Let H C be a finite, recursion-free set of Horn clauses.

If the underlying constraint language provides quantifiers, in (deterministic) linear time a

formula sexp(H C) can be extracted that is equivalent to exp(H C). The number of quantifier

alternations in sexp(H C) is at most two times the number of relation symbols in H C .

Proof. We assume that the Horn clauses are connected, i.e., the →H C -graph consists of a

single connected component. Further, we assume that the first-order variables in any two

clauses in H C are disjoint. The encoding of Horn clause as a QBF formula is then defined

by the following algorithm in pseudo-code. The algorithm maintains a list quantifiers of

quantifiers that have to be added in front of the formula.

quantifiers ← ε, checksRequired ←;
function ENCODE(H C)

Order clauses H C in topological order, starting from clauses with head false

63

Chapter 5. Interpolation and Solving Horn Clauses

matrix ← ENCODEBODIES({C ∧p1(t̄1)∧·· ·∧pn(t̄n) → false ∈H C },ε)

remaining ← {C ∧p1(t̄1)∧·· ·∧pn(t̄n) → p(t̄) ∈H C }

while remaining 6= ; do

Pick first clause C ∧p1(t̄1)∧·· ·∧pn(t̄n) → p(t̄) ∈H C in topological order

nextClauses ← {c ∈H C | head symbol of c is p}

remaining ← remaining \ nextClauses

for i ← 1, . . . ,arity(p) do

Create fresh variable xi

quantifiers ← quantifiers . ∀xi

guard ← false

for (f , p(s̄)) ∈ requiredChecks do . Checks with symbol p

guard ← guard∨ (f ∧ s̄ = 〈x1, . . . , xn〉)
matrix ← matrix∧ (guard → ENCODEBODIES(nextClauses,〈x1, . . . , xn〉))

return quantifiers . matrix

function ENCODEBODIES(clauses, s̄)

result ← false

for C ∧p1(t̄1)∧·· ·∧pn(t̄n) → p(t̄) ∈ clauses do

quantifiers ← quantifiers . ∃ fv(C ∧p1(t̄1)∧·· ·∧pn(t̄n) → p(t̄))

for i ← 1, . . . ,n do

Create fresh Boolean flag fi

quantifiers ← quantifiers . ∃ fi

checksRequired ← checksRequired∪ {(fi , pi (t̄i))}

disjunct ← t̄ = s̄ ∧C ∧ f1 ∧·· ·∧ fn

result ← result ∨disjunct

return result

We illustrate the succinct encoding using an example. Consider the clauses

(C1) r(X,Y) ← Y = X + 1
(C2) r(X,Y) ← Y = X + 2
(C3) s(X,Z) ← r(X, Y) ∧ r(Y, Z)
(C4) false ← s(X, Z) ∧ X >= 0 ∧ Z <= 0

The formula resulting from the succinct encoding is:

∃ x0, x1, f1 . ∀ x3, x4.
∃ x5, x6, x7, f2, f3 . ∀ x10, x11.
∃ x12, x13, x14, x15.

(C4) x1 >= 0 ∧ 0 >= x0 ∧ f1 ∧
((f1 ∧ x1 = x3 ∧ x0 = x4) →

(C3) (x7 = x3 ∧ x6 = x4 ∧ f2 ∧ f3)) ∧
(((f2 ∧ x7 = x10 ∧ x5 = x11) ∨
(f3 ∧ x5 = x10 ∧ x6 = x11)) →

64

5.6. The Complexity of Recursion-free Horn Clauses

(C1) ((x13 = x10 ∧ x12 = x11 ∧ x12 = x13 + 1) ∨
(C2) (x15 = x10 ∧ x14 = x11 ∧ x14 = x15 + 2)))

In terms of program analysis the Theorem 5.6.2 states that the Boolean programs with no

recursive calls are PSPACE-complete. The result for Boolean programs is proved in [GY13]

using reduction to the reachability analysis problem in transition systems over finite vectors of

Boolean variables. The programs that use more expressive Constraint languages than Booleans

lead to a significant increase in the complexity of solving Horn clauses. We will next consider

the programs over Presburger arithmetic.

Theorem 5.6.4. Semantic solvability of recursion-free Horn clauses over the constraint language

of quantifier-free Presburger arithmetic is co-NEXPTIME-complete.

Proof. Looking for upper bounds, it is easy to see that solvability of Horn clauses is in

co-NEXPTIME for any constraint language with satisfiability problem in NP (for instance,

quantifier-free Presburger arithmetic). This is because the size of the expansion exp(H C)

is at most exponential in the size of H C . We can show the lower bound by simulating

exponential-time-bounded Turing machines (possibly non-deterministic, with binary tape) to

recursion-free Horn clauses over quantifier-free Presburger arithmetic.

Following [HMU01], with simplifications, A Turing machine M = (Q,δ, q0,F) is defined by

• a finite non-empty set Q of states,

• an initial state q0 ∈Q,

• a final state f ∈Q,

• a transition relation δ⊆ ((Q \ { f })× {0,1})× (Q × {0,1}× {L,R}).

Wlog, we assume that Q = {0,1, . . . , f } ⊆Z and q0 = 0.

We define a relation symbol step(q, l ,r, q ′, l ′,r ′) to represent single execution steps of the

machine. The parameters l ,r, l ′,r ′ represent the tape, which is encoded as non-negative

integers; the bits in the binary representation of the integers are the contents of the tape cells.

l is the tape left of the head, r the tape right of the head. The least-significant bit of r is the tape

cell at the head position. l ′,r ′ are the corresponding post-state variables after one execution

step.

A tuple (q,b, q ′,b′,R) ∈ δ (moving the tape to the right) is represented by a clause

step(q, x, b +2y, q ′, b′+2x, y)

65

Chapter 5. Interpolation and Solving Horn Clauses

where x, y are the implicitly universally quantified variables of the clause, and q,b, q ′,b′

concrete numeric constants. Figure 5.6 depicts how the l and r variables are changed when

the Turing machine moves to right.

bx y

l r

b′x y

l′ r′

Figure 5.6: Moving the head of Turing machine to right and replacing the previous value

Similarly, a tuple (q,b, q ′,b′,L) ∈ δ is encoded as

0 ≤ x ≤ 1 → step(q, x +2y, b +2z, q ′, y, x +2b′+4z)

To represent termination, we add a clause step(f , x, y, f , x, y), implying that the machine will

stay in the final state f forever.

We then introduce n further clauses to model an execution sequence of length 2n :

step(x, y, z, x ′, y ′, z ′)∧ step(x ′, y ′, z ′, x ′′, y ′′, z ′′) → step1(x, y, z, x ′′, y ′′, z ′′)

step1(x, y, z, x ′, y ′, z ′)∧ step1(x ′, y ′, z ′, x ′′, y ′′, z ′′) → step2(x, y, z, x ′′, y ′′, z ′′)

· · ·
step n−1(x, y, z, x ′, y ′, z ′)∧ step n−1(x ′, y ′, z ′, x ′′, y ′′, z ′′) → stepn(x, y, z, x ′′, y ′′, z ′′)

The final clauses expresses that the Turing machine does not terminate within 2n steps, when

started with the initial tape t : stepn(0,0, t , f , x, y) → false.

Clearly, the expansion exp(H C) of the resulting set H C of Horn clauses is unsatisfiable (i.e.,

H C can be solved) if and only if no execution of the Turing machine, starting with the initial

tape t , terminates within 2n steps.

5.6.1 The Complexity of Different Classes of Horn Clauses

The lower bounds in Theorem 5.6.2 and Theorem 5.6.4 hinge on the fact that sets of Horn

clauses can contain shared relation symbols in bodies. Neither result holds if we restrict

attention to body-disjoint Horn clauses, which correspond to disjunctive interpolation as

introduced in Sect. 5.4. Since the expansion exp(H C) of body-disjoint Horn clauses is linear

66

5.6. The Complexity of Recursion-free Horn Clauses

co
-N

P
co
-N

E
X
P
T
IM

E

Recursion-free Horn clausesCraig interpolation

Linear tree-like

Body-disjoint

General recursion-free

Tree-like

Head-disjoint

Linear

Inductive interpolant sequences

Binary interpolation

Tree interpolation

Disjunctive interpolation

(Restricted) DAG interpolation

Figure 5.7: Relationship between different forms of Craig interpolation, and different frag-
ments of recursion-free Horn clauses. An arrow from A to B expresses that problem A is
(strictly) subsumed by B. The complexity classes “co-NP” and “co-NEXPTIME” refer to the
problem of checking solvability of Horn clauses over quantifier-free Presburger arithmetic.

in the size of the set of Horn clauses, also solvability can be checked efficiently:

Theorem 5.6.5. Semantic solvability of a set of body-disjoint Horn clauses, and equivalently

the existence of a solution for a disjunctive interpolation problem, is in co-NP when working

over the constraint languages of Booleans and quantifier-free Presburger arithmetic.

Proof. A body-disjoint set of clauses H C is solvable if and only if the expansion exp(H C)

is unsatisfiable. Thanks to the body-disjointness property the expansion is polynomial. The

expansion exp(H C) is a disjunction of Presburger arithmetic formulae each of which linear

in the size of the problem and in NP. So the whole disjunction exp(H C) is in NP and the set

H C belongs to co-NP.

Body-disjoint Horn clauses are still expressive: they can directly encode acyclic control-flow

graphs, as well as acyclic unfolding of many simple recursion patterns.

Theorem 5.6.6. Semantic solvability of recursion-free linear Horn clauses over the constraint

language of quantifier-free Presburger arithmetic is in co-NP.

Proof. A set H C of recursion-free linear Horn clauses is solvable if and only if the expan-

sion exp(H C) is unsatisfiable. For linear clauses, exp(H C) is a disjunction of (possibly)

67

Chapter 5. Interpolation and Solving Horn Clauses

exponentially many formulae, each of which is linear in the size of exp(H C). Consequently,

satisfiability of exp(H C) is in NP, and unsatisfiability in co-NP.

Corollary 5.6.7. Semantic solvability of recursion-free head-disjoint Horn clauses over the

constraint language of quantifier-free Presburger arithmetic is co-NEXPTIME-hard.

The proof given in Theorem 5.6.4 for co-NEXPTIME-hardness of recursion-free Horn clauses

over quantifier-free Presburger arithmetic can be adapted to only require head-disjoint clauses.

This is because a single execution step of a non-deterministic Turing machine can be expressed

as quantifier-free Presburger formula.

Figure 5.7 summarizes the complexity results of this section. It depicts the correspondence

between different classes of recursion-free Horn clauses and the interpolation problem.

5.7 From Recursion-free Horn Clauses to Well-founded Clauses

It is natural to ask whether the considerations of the last sections also apply to clauses that are

not Horn clauses (i.e., clauses that can contain multiple positive literals), provided the clauses

are “recursion-free.” Is it possible, like for Horn clauses, to compute solutions of recursion-free

clauses in general by means of computing Craig interpolants?

To investigate the situation for clauses that are not Horn, we first have to generalise the concept

of clauses being recursion-free: the definition provided in Sect. 5.2, formulated with the help

of the dependence relation →H C , only applies to Horn clauses. For non-Horn clauses, we

instead choose to reason about the absence of infinite propositional resolution derivations.

Because the proposed algorithms for solving recursion-free sets of Horn clauses all make use

of exhaustive expansion or inlining, i.e., the construction of all derivations for a given set of

clauses, the requirement that no infinite derivations exist is fundamental.

Somewhat surprisingly, we observe that all sets of clauses without infinite derivations have

the shape of Horn clauses, up to renaming of relation symbols. This means that procedures

handling Horn clauses cover all situations in which we can hope to compute solutions with

the help of Craig interpolation.

Since constraints and relation symbol arguments are irrelevant for this observation, the

following results are entirely formulated on the level of propositional logic:

• a propositional literal is either a Boolean variable p, q,r (positive literals), or the negation

¬p,¬q,¬r of a Boolean variable (negative literals).

• a propositional clause is a disjunction p ∨¬q ∨p of literals. The multiplicity of a literal

is important, i.e., clauses could alternatively be represented as multi-sets of literals.

• a Horn clause is a clause that contains at most one positive literal.

68

5.7. From Recursion-free Horn Clauses to Well-founded Clauses

• given a set H C of Horn clauses, we define the dependence relation →H C on Boolean

variables by setting p →H C q if and only if there is a clause in H C in which p occurs

positively, and q negatively (like in Sect. 5.2). The set H C is called recursion-free if

→H C is acyclic.

We can now generalise the notion of a set of clauses being “recursion-free” to non-Horn

clauses:

Definition 5.7.1. A set C of propositional clauses has the termination property if no infinite

sequence c0,c1,c2,c3, . . . of clauses exists, such that

• c0 ∈C is an input clause, and

• for each i ≥ 1, the clause ci is derived by means of binary resolution from ci−1 and an

input clause, using the rule

C ∨p D ∨¬p

C ∨D
.

Lemma 5.7.1. A finite set H C of Horn clauses has the termination property if and only if it is

recursion-free.

Proof. “⇐” The acyclic dependence relation →H C induces a strict well-founded order < on

Boolean variables: q →H C p implies p < q . The order < induces a well-founded order ¿ on

Horn clauses:

(p ∨C) ¿ (q ∨D) ⇔ p > q or (p = q and C <ms D)

C ¿ (q ∨D) ⇔ true

C ¿ D ⇔ C <ms D

where C ,D only contain negative literals, and <ms is the (well-founded) multi-set extension of

< [DM79].

It is easy to see that a clause C ∨D derived from two Horn clauses C ∨p and D ∨¬p using

the resolution rule is again Horn, and (C ∨D) ¿ (C ∨p) and (C ∨D) ¿ (D ∨¬p). The well-

foundedness of ¿ implies that any sequence of clauses as in Def. 5.7.1 is finite.

“⇒” If the dependence relation →H C has a cycle, we can directly construct a non-terminating

sequence c0,c1,c2, . . . of clauses.

Definition 5.7.2 (Renamable-Horn [Lew78]). If A is a set of Boolean variables, and C is a set of

clauses, then r A(C) is the result of replacing in C every literal whose Boolean variable is in A

with its complement. C is called renamable-Horn if there is some set A of Boolean variables

such that r A(C) is Horn.

69

Chapter 5. Interpolation and Solving Horn Clauses

Example The set C = {(x ∨¬y ∨¬z), (y ∨ z), (¬x)} is renamable-Horn with respect to the

renaming set A = {x, y}. The set C = {(x ∨ y ∨ z), (¬x ∨¬y ∨¬z)} is not renamable-Horn.

Checking the existence of the renaming set A can be done in linear time [Lew78].

Theorem 5.7.2. If a finite set C of clauses has the termination property, then it is renamable-

Horn.

Proof. Suppose C is formulated over the (finite) set p1, p2, . . . , pn of Boolean variables. We

construct a graph (V ,E), with V = {p1, p2, . . . , pn ,¬p1,¬p2, . . . ,¬pn} being the set of all possible

literals, and (l , l ′) ∈ E if and only if there is a clause ¬l ∨ l ′ ∨C ∈ C (that means, a clause

containing the literal l ′, and the literal l with reversed sign).3

The graph (V ,E) is acyclic. To see this, suppose there is a cycle l1, l2, . . . , lm , lm+1 = l1 in (V ,E).

Then there are clauses c1,c2, . . . ,cm ∈C such that each ci contains the literals ¬li and li+1. We

can then construct an infinite sequence d0 = c1,d1,d2, . . . of clauses, where each di (for i > 1)

is obtained by resolving di−1 with c(i modm)+1, contradicting the assumption that C has the

termination property.

Since (V ,E) is acyclic, there is a strict total order < on V that is consistent with E , i.e., (l , l ′) ∈ E

implies l < l ′.

Claim: if p <¬p for every Boolean variable p ∈ {p1, p2, . . . , pn}, then C is Horn.

Proof of the claim: suppose a non-Horn clause pi ∨ p j ∨C ∈ C exists (with i 6= j). Then

(¬pi , p j) ∈ E and (¬p j , pi) ∈ E , and therefore ¬pi < p j and ¬p j < pi . Then also ¬pi < pi or

¬p j < p j , contradicting the assumption that p <¬p for every Boolean variable p.

In general, choose A = {pi | i ∈ {1, . . . ,n},¬pi < pi }, and consider the set r A(C) of clauses.

The set r A(C) is Horn, since changing the sign of a Boolean variable p ∈ A has the effect of

swapping the nodes p,¬p in the graph (V ,E). Therefore, the new graph (V ,E ′) has to be

compatible with a strict total order < such that p <¬p for every Boolean variable p, satisfying

the assumption of the claim above.

Example We consider the following set of clauses:

C = {¬a ∨ s, a ∨¬p, p ∨¬b, b ∨p ∨ r, ¬p ∨q}

By constructing all possible derivations, it can be shown that the set has the termination

property. The graph (V ,E), as constructed in the proof, is:

3This graph could equivalently be defined as the implication graph of the 2-sat problem introduced in [Lew78],
as a way of characterising whether a set of clauses is Horn.

70

5.8. Model Checking with Recursive Horn Clauses

¬p

¬a

¬s

¬q

b ¬b

p

aq

s

r

¬r

A strict total order that is compatible with the graph is:

¬s <¬q <¬r <¬a <¬p < b <¬b < r < p < q < a < s

From the order we can read off that we need to rename the variables A = {s, q,r, a, p} in order

to obtain a set of Horn clauses:

r A(C) = {a ∨¬s, ¬a ∨p, ¬p ∨¬b, b ∨¬p ∨¬r, p ∨¬q}

5.8 Model Checking with Recursive Horn Clauses

Whereas recursion-free Horn clauses generalise the concept of Craig interpolation, solving re-

cursive Horn clauses corresponds to the verification of general programs with loops, recursion,

or concurrency features [GLPR12]. Procedures to solve recursion-free Horn clauses can serve

as a building block within model checking algorithms for recursive Horn clauses [GLPR12],

and are used to construct or refine abstractions by analysing spurious counterexamples. In

particular, our disjunctive interpolation can be used for this purpose, and offers a high degree

of flexibility due to the possibility to analyse counterexamples combining multiple execution

traces. We illustrate the use of disjunctive interpolation within a predicate abstraction-based

algorithm for solving Horn clauses. Our model checking algorithm is similar in spirit to the

procedure in [GLPR12], and is explained in Sect. 5.8.1.

And/or trees of clauses. For sake of presentation, in our algorithm we represent counterex-

amples (i.e., recursion-free sets of Horn clauses) in the form of and/or trees labelled with

clauses. Such trees are defined by the following grammar:

AOTree ::= And(h,AOTree, . . . ,AOTree) | Or(AOTree, . . . ,AOTree)

71

Chapter 5. Interpolation and Solving Horn Clauses

where h ranges over (possibly recursive) Horn clauses. We only consider well-formed trees, in

which the children of every And-node have head symbols that are consistent with the body

literals of the clause stored in the node, and the sub-trees of an Or-node all have the same

head symbol. And/or trees are turned into body-disjoint recursion-free sets of clauses by

renaming relation symbols appropriately.

Example The clauses in Figure 5.2 on page 43 can be represented by the following and/or

tree (referring to clauses in Fig. 5.1).

And
(
(4), Or

(
And((1)), And((2), And((1))), And((3), And((1)))

))

Solving and/or dags. Counterexamples extracted from model checking problems often

assume the form of and/or dags, rather than and/or trees. Since and/or-dags correspond to

Horn clauses that are not body-disjoint, the complexity-theoretic results of the last section

imply that it is in general impossible to avoid the expansion of and/or-dags to and/or-trees;

there are, however, various effective techniques to speed-up handling of and/or-dags (related

to the techniques in [LQL12]). We highlight two of the techniques used in the interpolation

engine Princess [BKRW11].

1) counterexample-guided expansion expands and/or-dags lazily, until an unsatisfiable frag-

ment of the fully expanded tree has been found; such a fragment is sufficient to compute a

solution. Counterexamples are useful in two ways: they can determine which or-branch of an

and/or-dag is still satisfiable and has to be expanded further, but also whether it is necessary

to create further copies of a shared subtree.

2) and/or dag restructuring factors out common sub-dags underneath an Or-node, making

the and/or-dag more tree-like.

5.8.1 A Predicate Abstraction-based Model Checking Algorithm

Our model checking algorithm is in Fig. 5.8, and similar in spirit as the procedure in [GLPR12];

it has been implemented in the model checker Eldarica.4 Solutions for Horn clauses are

constructed in disjunctive normal form by building an abstract reachability graph over a

set of given predicates. When a counterexample is detected (a clause with consistent body

literals and head false), a theorem prover is used to verify that the counterexample is genuine;

spurious counterexamples are eliminated by generating additional predicates by means of

disjunctive interpolation.

In Fig. 5.8, Π : R → Pfin(Constr) denotes a mapping from relation symbols to the current

(finite) set of predicates used to approximate the relation symbol. Given a (possibly recursive)

4http://lara.epfl.ch/w/eldarica

72

http://lara.epfl.ch/w/eldarica

5.8. Model Checking with Recursive Horn Clauses

set H C of Horn clauses, we define an abstract reachability graph (ARG) as a hyper-graph (S,E).

A hypergraph is a generalization of a graph in which an edge can connect any number of

vertices.

• S ⊆ {(p,Q) | p ∈R,Q ⊆Π(p)} is the set of nodes, each of which is a pair consisting of a

relation symbol and a set of predicates.

• E ⊆ S∗×H C ×S is the hyper-edge relation, with each edge being labelled with a clause.

An edge E(〈s1, . . . , sn〉,h, s), with h = (C ∧B1 ∧·· ·∧Bn → H) ∈H C , implies that

– si = (pi ,Qi) and Bi = pi (t̄i) for all i = 1, . . . ,n, and

– s = (p,Q), H = p(t̄), and Q = {φ ∈Π(p) |C ∧Q1[t̄1]∧·· ·∧Qn[t̄n] |=φ[t̄]}, where we

write Qi [t̄i] for the conjunction of the predicates Qi instantiated for the argument

terms ti .

An ARG (S,E) is called closed if the edge relation represents all Horn clauses in H C . This

means, for every clause h = (C∧p1(t̄1)∧·· ·∧pn(t̄n) → H) ∈H C and every sequence (p1,Q1), . . . ,

(pn ,Qn) ∈ S of nodes one of the following properties holds:

• C ∧Q1[t̄1]∧·· ·∧Qn[t̄n] |= false, or

• there is an edge E(〈(p1,Q1), . . . , (pn ,Qn)〉,C , s) such that s = (p,Q), H = p(t̄), and Q =
{φ ∈Π(p) |C ∧Q1[t̄1]∧·· ·∧Qn[t̄n] |=φ[t̄]}.

Lemma 5.8.1. A set H C of Horn clauses has a closed ARG (S,E) if and only if H C is syntacti-

cally solvable.

Proof. “⇒”: Define each relation symbol p as the disjunction
∨

(p,Q)∈S
∧

Q. Since S is closed

under the edge relation, this yields a solution for the set H C of Horn clauses.

“⇐”: Suppose H C is syntactically solvable, with each relation symbol p being mapped to the

constraint Cp . We define the predicate abstractionΠ(p) = {Cp }, and construct the ARG with

nodes S = {(p,Cp)}, and the maximum edge relation E , which is closed.

The function EXTRACTCEX extracts an and/or-tree representing a set of counterexamples,

which can be turned into a recursion-free body-disjoint set of Horn clauses, and solved as

described in Sect. 5.4.1. In general, the tree contains both conjunctions (from clauses with

multiple body literals) and disjunctions, generated when following multiple hyper-edges (the

case |T | > 1). Disjunctions make it possible to eliminate multiple counterexamples simultane-

ously. The algorithm is parametric in the precise strategy used to compute counterexamples

(represented as non-deterministic choice in the pseudo code). The strategies we evaluated in

the experiments (shown in the next section) are the following.

73

Chapter 5. Interpolation and Solving Horn Clauses

S :=;, E :=;, Π := {p 7→; | p ∈R} . Empty graph, no predicates
function CONSTRUCTARG

while true do
pick clause h = (C ∧p1(t̄1)∧·· ·∧pn(t̄n) → H) ∈H C

and nodes (p1,Q1), . . . , (pn ,Qn) ∈ S
such that ¬∃s. (〈(p1,Q1), . . . , (pn ,Qn)〉,h, s) ∈ E
and C ∧Q1[t̄1]∧·· ·∧Qn[t̄n] 6|= false

if no such clauses and nodes exist then return H C is solvable

if H = false then . Refinement needed
tree := And(h, EXTRACTCEX(p1,Q1), . . . , EXTRACTCEX(pn ,Qn)
if tree is unsatisfiable then

extract disjunctive interpolant from tree, add predicates to Π
delete part of (S,E) used to construct tree

else return H C is unsolvable, with counterexample trace tree

else . Add edge to ARG
then H = p(t̄)
Q := {φ ∈Π(p) | {C }∪Q1 ∪ . . .∪Qn |=φ}
e := (〈(p1,Q1), . . . , (pn ,Qn)〉,h, (p,Q))
S := S ∪ {(p,Q)}, E := E ∪ {e}

function EXTRACTCEX(root : S) . Extract disjunctive interpolation problem
pick ; 6= T ⊆ E with ∀e ∈ T. e = (_,_,root)
return Or

{
And(h, EXTRACTCEX(s1), . . . , EXTRACTCEX(sn)) | (〈s1, . . . , sn〉,h,root) ∈ T

}
Figure 5.8: Algorithm for construction of abstract reachability graphs.

TI extraction of a single counterexamples with minimal depth

(which means that disjunctive interpolation reduces to Tree Interpolation), and

DI simultaneous extraction of all counterexamples with minimal depth

(so that genuine Disjunctive Interpolation is used).

Example We consider the Horn clauses given in Figure 5.1 in

page 43. Starting with an empty predicate map Π, the function

CONSTRUCTARG will construct the reachability graph shown on the

right (edges are labelled with the clauses from Fig. 5.1). Since false

is reachable, function EXTRACTCEX will be called to extract a coun-

terexample; possible results of executing EXTRACTCEX include:

(gcd, ∅)

false

(1)

(4)(2) (3)

tree1 = And
(
(4), And((1))

)
,

tree2 = And
(
(4), Or(And((1)), And((2),And((1))), And((3),And((1))))

)
The counterexample tree2 corresponds to the clauses shown in Fig. 5.2. Elimination of this

counterexample with the help of disjunctive interpolation yields the predicates discussed in

Example 5.4 in page 56, which are sufficient to construct a closed ARG.

74

5.8. Model Checking with Recursive Horn Clauses

5.8.2 Global Model Checking with Disjunctive Interpolation

We have also implemented a simpler “global” algorithm that approximates each relation

symbol globally with a single conjunction of inferred predicates. In the same spirit of the

previous algorithm the global algorithm also uses a Cartesian abstraction by treating the

predicates of each state separately. The two algorithms behave similarly in our experience,

with the global one occasionally slower, but conceptually simpler. The global approach

requires more complex predicates to be discovered through interpolation and therefore relies

more heavily on interpolation. What allowed us to use a simpler algorithm is precisely the

more general form of the interpolation. This shows another advantage of more expressive

interpolation: the simplicity of verification algorithms we can build on top of it.

We use the following notation.

• R = {r0, . . . ,rn}: Names of relation variables

• P = {p0, . . . , pm}: Set of all predicates on program variables

• Π : R → 2P : Mapping from relation variables to the set of predicates that can be used to

approximate it

• α : R → 2P : Mapping from relation variables to the predicates that currently approximate

it

• Φ set of Horn constraints

An Abstract Reachability Graph (ARG) G = 〈S,e, w〉 is an AND/OR graph

• S = I ∪L is a set of nodes partitioned to abstraction and concrete nodes. The abstraction

nodes I ⊆ R × 2P are labeled with a relation variable (a name from R) and a set of

predicates that hold at that particular point. The concrete nodes are labeled with an

interpreted relation and their outdegree is 0.

• e ⊆ (S ×2S) is the transition relation

• w ⊆ S ×S is the subsumption relation

The algorithm CONSTRUCTGLOBALARG in Figure 5.9 picks an unsatisfied constraint from

the given set of constraints. It then tries to satisfy the picked up constraint by removing the

predicates that are assigned to the right hand side of the constraint until it satisfies. The

algorithm adds the constraint to the reachability graph by attaching the conjuncts in the body

of the constraint to the literal in the head.

The refinement procedure REFINEMENT returns a mapping from relation variables to a set of

predicates.

75

Chapter 5. Interpolation and Solving Horn Clauses

d = 〈S =;,e =;, w =;〉 . Empty graph
procedure ADDTOGRAPH(head , bod y) . Adding edges to reachability graph

for c ← con j unct (bod y) do
n ← (if c ∈ R then (c,α(c)) else c) . Make a vertex for the literal
S ← S ∪n
e ← e ∪ (head ,n) . Edge from head to new child

S ← S ∪ {head}

function CONSTRUCTGLOBALARG(Φ, Π) . Construction of the reachability graph
α←Π

while ∃(A → r) ∈Φ. 6|=α[A → r] do . Existence of unsatisfied rule
for p ←α(r). 6|= (α[A] → p) do

α(r) ←α(r) \ {p} . Remove predicate p that does not hold

par ent ← (r,α(r))
if ∃(r,ψ) ∈ S.(ψ |=α(r)) then . Add subsumption edge

w ← w ∪ {
(
(r,ψ), par ent

)
}

ADDTOGRAPH(par ent , A)

if ∃(A → f al se ∈Φ). 6|=α(A) → f al se then . The rule corresponding to error
ADDTOGRAPH((rer r or , tr ue), A)

else
declare SAFE

return d

function SOLVE(Φ)
∀r ∈ R.Π(r) ← f al se . Add the predicate f al se everywhere
T ← CONSTRUCTGLOBALARG(Φ)
pr ed s ← REFINEMENT(T) . Refining the graph
while pr ed s 6= ; do

Π←Π∪pr ed s
T ← CONSTRUCTGLOBALARG(Φ)
pr ed s ← REFINEMENT(T)

declare UNSAFE

Figure 5.9: Pseudo-code for the global algorithm ARG

5.9 Experimental Evaluation

We have evaluated our algorithm on a set of benchmarks in integer linear arithmetic. Fig-

ure 5.10 provides the running time of Eldarica on the benchmarks with respect to an Intel

®Xeon ®2.66GHz machine with 16 GB of RAM. The benchmarks are from different resources.

The benchmarks (a), (b), (c), (d), (f) and (I) are from the NTS library [HKG+12] translated into

Horn clauses 5. These are recursive algorithms, benchmarks extracted from programs with

singly-linked lists, benchmarks from the NECLA static analysis suite, verification conditions

for programs with arrays, C programs with asynchronous procedure calls translated using

5https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/

76

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/

5.9. Experimental Evaluation

Model
Time [s]

TI DI HSF Z3
(a) Recursive Models
addition (C) 0.52 0.22 0.27 0.04
binarysearch (C)0.38 0.26 0.22 0.02
identity (C) 0.39 0.46 0.23 0.03
mccarthy91 (C) 1.68 1.25 0.24 0.03
mccarthy92 (C) 0.27 0.25 - 0.05
merge (C) 0.32 0.83 0.33 0.04
palindrome (C) 0.07 0.08 0.24 0.04
parity (C) 0.09 0.11 - -
remainder (C) 0.05 0.06 - -
triple (C) 0.24 0.21 - 0.03
(b) Examples from L2CA [BBH+06]
bubblesort (E) 2.64 1.76 0.85 0.26
insdel (E) 0.04 0.05 0.29 0.02
insertsort (E) 0.4 0.4 0.41 0.08
listcounter (E) 0.07 0.07 0.29 0.02
listreversal (C) 0.5 0.5 0.46 0.14
listreversal (E) 0.18 0.17 0.34 0.05
mergesort (E) 0.92 0.92 0.68 0.16
selectionsort (E) 1.15 1.15 0.68 0.15
(c) NECLA benchmarks
inf1 (E) 0.17 0.12 0.38 0.02
inf4 (E) 0.37 0.46 0.34 0.05
inf6 (C) 0.31 0.32 0.31 0.04
inf8 (C) 0.52 0.57 0.61 0.06
(d) Verification conditions for
array programs [BHI+09]
rotation_vc.1 (C)0.37 0.36 0.39 0.13
rotation_vc.2 (C)0.53 0.49 0.59 0.18
rotation_vc.3 (C)0.32 0.33 0.33 0.02
rotation_vc.1 (E)0.21 0.22 0.37 0.07
split_vc.1 (C) 1.15 1.09 1 0.36
split_vc.2 (C) - - 0.68 0.18
split_vc.3 (C) 0.61 0.59 0.46 0.03
split_vc.1 (E) 1.08 1.08 0.99 0.2
(e) Benchmarks from HSF [GLPR12]
amebsa (C) 59.41 59.67 - 3.98
amotsa (C) 0.53 0.51 - 0.23
choldc (C) - - 33.72 5.78
crank (C) - - - 0.75
cyclic (C) 7.5 7.68 11.26 6.76
lop (C) 5.24 2.61 - 9.68
pzextr (C) 2.2 2.17 - 0.28
qrdcmp (C) 18.21 18.93 - 0.31
qrsolv (C) 0.88 0.86 15.64 -
rsolv (C) 82.02 80.46 2.08 0.82
tridag (C) 3.56 5.32 - 0.16

Model
Time [s]

TI DI HSF Z3
(f) Examples from [GM12]
f_rec (E) 5.03 8.38 2.24 1.09
h1 (E) 0.19 0.15 0.35 0.09
h1h2 (E) 0.35 0.46 0.45 0.1
nch (C) 1.71 4.63 12.36 -
plb_simple (C) 0.33 0.33 0.42 0.06
plb_simple (E) 0.66 1.09 0.53 0.26
server.manual 0.02 0.02 0.22 0.02
simple (E) 0.19 0.15 0.33 0.07
test0 (C) 0.46 0.5 0.42 0.14
test0 (E) 0.19 0.16 0.35 0.08
test1 (C) 0.82 1.24 0.53 0.14
test1 (E) 1.11 0.81 0.57 0.19
test2_1 (E) 0.85 0.94 0.48 0.28
test2_2 (E) 0.5 0.55 0.5 0.16
test2 (C) 0.92 0.57 0.55 0.28
test4 (C) 0.76 0.7 0.61 0.16
test4 (E) 0.38 0.38 0.47 0.13
test_recursion (E) 229.5 266.16 20.06 7.55
wrpc 0.05 0.04 0.44 0.02
wrpc.manual 0.68 0.51 0.23 0.15
(g) Control Flow and Integer Variables [Bey13]
test_locks_10.c (C) 130.11 53.82 1171.02 0.98
test_locks_11.c (C) 475.84 149.96 - 1.24
test_locks_12.c (C) - 518.32 - 1.54
test_locks_5.c (C) 5.32 2.93 5.73 0.22
test_locks_6.c (C) 4.05 5.82 17.15 0.31
test_locks_7.c (C) 6.33 8.22 50.08 0.43
test_locks_8.c (C) 14.28 16.58 145.09 0.58
test_locks_9.c (C) 40.3 26.8 406.17 0.76
(h) Benchmarks from [Kin]
ch-triangle-location-nr.1 (E) 0.54 2.6 0.43 0.1
delauny-edge-flipping.7 (E) 0.09 0.09 0.26 0.01
fortune-full.10 (C) 27.57 26.45 - 19.63
fortune-full-nonrobust.17 (E)0.57 0.75 6.69 0.37
giftwrapping.25 (E) 0.2 0.2 0.69 0.28
graham.27 (C) 15.29 15.25 816.52 15.91
graham-scan-full.31 (C) 18.01 50.14 788 7.39
incremental-2lists.37 (E) 25.6 3.59 132.9 4.52
incremental.35 (C) 51.68 36.22 - 13.35
point-location-nr.49 (E) 0.15 0.16 0.36 0.13
slow-hull.55 (E) 0.18 0.19 0.41 0.21
(i) VHDL models from [SV07]
asfifoFE (C) 488.26 991.32 - 77.46
asfifoStatus (C) 10.6 10.41 2.78 2.7
counter (C) 0.1 0.13 0.25 0.04
register (C) 0.05 0.05 0.23 0.03

Figure 5.10: Benchmarks for model checking Horn clauses. The letter after the model name
distinguishes Correct from models with a reachable Error state. “-” indicates timeout (limit is
half an hour) or error in the tool. Disclaimer: The table is the author’s assessment with the
most recent versions of the tools provided by the developers. The intention is by no means to
assert the superiority of any particular tool over another. The main purpose here is to give an
insight to the emerging trend of Horn clause verification.

77

Chapter 5. Interpolation and Solving Horn Clauses

1

10

100

1000

1 10 100 1000

D
is

ju
n

ct
iv

e
 In

te
rp

o
la

ti
o

n

Tree Interpolation

Number of Refinement Steps

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000 10000

D
is

ju
n

ct
iv

e
 In

te
rp

o
la

ti
o

n

Tree Interpolation

Verification Time

Figure 5.11: Comparison of the number of required refinement steps, and the runtime (in
seconds), for the case of single counterexamples (TI) and simultaneous extraction of all
minimal-depth counterexamples (DI). The diagrams use a logarithmic scale to better visualize
the results.

the approach of [GM12] and VHDL models of circuits. The benchmarks (e) are taken from

the HSF library of benchmarks [GLPR12]. The benchmarks (g) are extracted from the control

flow and integer variables program of the International Competition on Software Verifica-

78

5.10. Towards a Library of Interpolation Benchmarks

tion [Bey13]. The tool FLATA-C 6 extracted the benchmarks of (g) from the original programs.

The benchmarks (h) are Horn clauses from the same resource [Bey13].

The experiments show comparable verification times and performance for tree interpolation

and disjunctive interpolation runs, tending towards better times for the latter. The total time

spent in verification for all the benchmarks of Figure 5.10 putting all together was around 60

minutes for TI and around 40 minutes for DI. Studying the results more closely, we observed

that DI consistently led to a smaller number of abstraction refinement steps (the scatter plot

in Fig. 5.11); this indicates that DI is indeed able to eliminate multiple counterexamples simul-

taneously, and to rapidly generate predicates that are useful for abstraction. The experiments

also showed that there is a trade-off between the time spent generating predicates, and the

quality of the predicates. In TI, on average 4% of the verification is used for predicate genera-

tion (interpolation), while with DI 24% is used; in some of the benchmarks from [GM12], this

led to the phenomenon that DI was slower than TI, despite fewer refinement steps. This may

also become better as we make further improvements to our prototype implementation of

disjunctive interpolation.

We also compared our results to the performance of HSF 7 and Z3 8, two of the state-of-the-art

verification engines capable of solving Horn clauses. Z3 was faster on average.

5.10 Towards a Library of Interpolation Benchmarks

In order to support the development of interpolation engines, Horn solvers, and verification

systems, we have started to collect relevant benchmarks of recursion-free Horn clauses, cate-

gorised according to the classes determined in the previous sections.9 The benchmarks have

been extracted from runs of the model checker Eldarica which processes systems of (usually

recursive) Horn clauses by iteratively solving recursion-free unwindings. In this way a set

of recursion-free systems of Horn clauses can be syntesized for each recursive verification

problem. For each recursive verification problem, in this way a set of recursion-free systems

of Horn clauses (of varying size) can be synthesised. The benchmarks can be used to evaluate

both Horn solvers and interpolation engines, according to the correspondence in Fig. 5.7.

At the moment, our benchmarks are extracted from the verification problems in [RHK13], and

formulated over the constraint language of linear integer arithmetic. In the future, it is planned

to also include other constraint languages, including rational arithmetic and the theory of

arrays. The benchmarks are stored in SMT-LIB 2 format [BST10]. All of the benchmarks can be

solved by Eldarica, and by the Horn solving engine in Z3 [HB12].

The current number of available benchmarks is provided in the table below. In order to

6http://www-verimag.imag.fr/FLATA-C.html
7http://www7.in.tum.de/tools/hsf/
8http://z3.codeplex.com/
9http://lara.epfl.ch/w/horn-nonrec-benchmarks

79

http://www-verimag.imag.fr/FLATA-C.html
http://www7.in.tum.de/tools/hsf/
http://z3.codeplex.com/
http://lara.epfl.ch/w/horn-nonrec-benchmarks

Chapter 5. Interpolation and Solving Horn Clauses

evaluate the effectiveness of ordinary SMT quantifier handling on the Horn benchmarks,

we also ran Z3 [dMB08] (without the Horn engine) on the benchmarks. The results show

that two engines that have knowledge of Horn clauses, Eldarica and Z3-Horn, solve all of the

benchmarks (with Z3’s well-engineered engine faster than Eldarica). In contrast, when Z3

is used without Horn extension, as a prover for quantified formulas, the default quantifier

instantiation strategy proves to be too weak to solve all benchmarks.

Class #Benchmarks
Average Time %Solved Z3

Eldarica Z3 (without Horn)

General recursion-free 541 0.6 0.1 80%

Head-disjoint 991 0.1 0.1 85%

Linear 971 0.7 0.1 32%

Linear tree-like 1993 0.4 0.1 55%

Figure 5.12: Average time in seconds of solving each category by Eldarica and Z3. The last
column shows the percentage handled by Z3 without the Horn engine. Time-out was set to 60
seconds.

80

6 Compositional Verification of Timed
Systems Using Horn Clauses

I have made this letter longer than usual,

only because I have not had the time to

make it shorter.

Blaise Pascal

In formal verification of real-time systems not only the computation matters but the clock

time and the exact moment of computing a result is crucial. Taking the timing characteristic

of systems into account makes complications in proving the correctness of real-time systems.

With the emerging and the growth in the complexity of embedded systems the verification

of time properties of embedded software is becoming more vital. In many domains time

automata [AD94] are the predominant way in describing timed system. The theory of timed

automata is a well established theory for modeling and verifying real-time systems, with many

applications both in an industrial and academic context. In the model of timed automata

there are a set of automata running in parallel with each other. Two automata can synchronize

at certain rendezvous points. Modeling systems using timed automata enables us to analyze a

variety of relevant properties including schedulability, worst-case execution time of concurrent

systems, interference, as well as functional properties. Although model checking of timed

automata has been studied extensively during the last two decades, the scalability of these

tools remains a concern, in particular when applied to problems of industrial size. When

verifying networks of timed automata, the size of the combined state space can be a limiting

factor. Many tools and model checking techniques for timed automata have been studied

extensively during the last two decades. The UPPAAL [LPY97] tool is one of the most successful

tools in both academy and research.

In this chapter we present an interpolation-based predicate abstraction framework which

encodes timed automata as sets of Horn clauses, with the help of Owicki-Gries and Rely-

Guarantee encoding schemes. For modeling a network of timed automata we used the well-

known classical approaches of Owicki-Gries [OG76] along with Rely-Guarantee [Jon83]. The

latter approach has the advantage to be compositional. Modeling parallel systems using

81

Chapter 6. Compositional Verification of Timed Systems Using Horn Clauses

these two approaches were first described in [GLPR12]. The difference of the model in this

chapter with the method of [GLPR12] lies in the presence of time and synchronization between

threads.

We have extended the front-end of our verification engine Eldarica [HKG+12] to translate a

system of timed automata in UPPAAL format into a set of Horn clauses. This is particularly

interesting to study the difference of Owicki-Gries and Rely-Guarantee for timed systems in

terms of performance and the size of the generated constraints. We show the feasibility of

our approach through benchmarks and case studies and present a comparison between the

different concurrency encodings.

6.1 The Theory of Timed Automata

Timed Automata. Let C be a set of (real-valued) clock variables, let X be a finite set of data

variables, and let Σ be a finite set of actions. A timed automaton is a tuple A = 〈N , l 0,E , Inv〉,
where Ni is a finite set of locations, l 0 ∈ N is the initial location, E ⊆ N ×G (C)×Σ× 2C ×
Constr ×N is a finite set of transition edges, and Inv : N → G (C) maps every location to an

invariant. An edge 〈l , g , a,r,φ(X , X ′), l ′〉 ∈ E represents discrete transitions of the automaton

from location l to location l ′. A transition is enabled if guard g is satisfied, performs the

action a and the data transition φ(X , X ′), and resets the clocks in the set r to zero. Σ is defined

as the set {local}∪ {a!, a? | a ∈ C }, for a set C of communication channels (the label local

is usually left out in diagrams). The set G (C) of clock guards consists of conjunctions of

atomic guards, defined by g ::= (x ./ n) | (x ./ y +n) | true | g ∧ g , where x, y ∈C , n ∈N, and

./c∈ {<,≤,=,≥,>}.

A timed automaton is well-formed if the invariant Inv(l0) of the initial location is satisfied by

mapping all clocks c ∈C to 0. (Note that the invariant Inv(l) of every location l is automatically

convex.)

Networks of Timed Automata. A network of timed automata is the parallel composition

A1||A2|| · · · ||An of n timed automata, where each Ai = 〈Ni , l 0
i ,Ei , Invi 〉. A network of automata

can either execute local transitions of any of the automata, or synchronising transitions of two

(different) automata performing complementary actions a! and a?.

Operational Semantics. The state of a network A1||A2|| · · · ||An of n automata is defined as

a pair s = (l ,u, v) where l = 〈l1, . . . , ln〉 is a vector of locations for each automaton, u : C → R

is an assignment of reals to clock variables, and v : X →U is an assignment of individuals

to data variables. We use the notation u +d , for some d ∈ R+, to express the updated clock

assignment (u +d)(x) = u(x)+d . Further, for a set of clocks r ⊆ C , the expression [r 7→ 0]u

denotes the assignment that maps each clock in r to 0, and all other clocks to their previous

value. We write u |= g to express that a clock guard g holds for a clock assignment u, and

82

6.2. Reasoning about Concurrent Programs

v, v ′ |=φ to express that a data transition φ=φ(X , X ′) is satisfied by the valuations v, v ′. The

formula Inv(l) = Inv1(l1)∧·· ·∧ Invn(ln) denotes the conjunction of the active invariants of all

automata.

The initial state of the network of automata is defined as si ni t
def= (l 0,u0, v0), where l 0 is a vector

of initial locations, u0 is a function mapping all clocks to 0, and v0 is a function mapping all

data variables to some default value. State transitions for networks of timed automata can be

categorized as follows:

• Delay transitions: (l ,u, v) → (l ,u +d , v),

provided that (u +d) |= Inv(l).

• Local transitions: (l ,u, v) → (l [l ′i /i], [r 7→ 0]u, v ′),

if there is a transition 〈li , g , local,r,φ, l ′i 〉 ∈ Ei such that

u |= g , v, v ′ |=φ, and ([r 7→ 0]u) |= Inv(l [l ′i /i]).

• Synchronising transitions: (l ,u, v) → (l [l ′i /i , l ′j / j], [r ∪ r ′ 7→ 0]u, v ′′),

if i 6= j , and there are transitions

〈li , g , a!,r,φ, l ′i 〉 ∈ Ei and 〈l j , g ′, a?,r ′,φ′, l ′j 〉 ∈ E j such that

u |= g , ([r 7→ 0]u) |= g ′, ([r ∪ r ′ 7→ 0]u) |= Inv(l [l ′i /i , l ′j / j]), and

there is v ′ such that v, v ′ |=φ and v ′, v ′′ |=φ′.

Safety. We are concerned with the verification of safety properties, which assert that some

undesired behaviour of a system never occurs. For sake of brevity, we assume that safety

properties have been translated upfront to unreachability, i.e., to the claim that certain error

states in a system are not reachable. A safety specification for a network A1||A2|| · · · ||An of

automata is therefore a pair 〈i , lerr〉, and states that location lerr ∈ Ni of automaton Ai is

unreachable.

6.2 Reasoning about Concurrent Programs

A Hoare triple has the form {P }S{Q} denoting that whenever the precondition P holds before

the initiation of the program S, if the program executes and terminates the postcondition Q

will be true. Owicki and Gries [OG76] generalised the Hoare triples to reason about concurrent

programs. In this approach a standard Hoare proof is carried out for each thread. The parallel

execution rule requires that the proof of each thread does not interfere with the proof of the

others.

{P1}S1{Q1} {P2}S2{Q2}
S1 does not interfere with the proof of S2

S2 does not interfere with the proof of S1
OWICKI-GRIES

{P1 ∧P2}S1||S2{Q1 ∧Q2}

83

Chapter 6. Compositional Verification of Timed Systems Using Horn Clauses

Assume that the thread S1 has the proof outline {P1 = α1}c1{α2}c2 · · · {αn}cn{αn+1 = Q1} and

the thread S2 has the proof outline {P2 =β1}c ′1{β2}c ′2 · · · {βm}c ′m{βm+1 =Q2} in which the state-

ments ci (1 ≤ i ≤ n) and c ′j (1 ≤ j ≤ m) are all atomic commands. Proving the interference

freedom of S1 from the execution of S2 requires proving the following n ×m formulae.

∀αi ∈ {α1, · · · ,αn}∀c ′j ∈ {c ′1, · · · ,c ′m}
{
αi ∧β j

}
c ′j

{
αi

}
(6.1)

The approach of Owicki-Gries is not scalable and does not have compositionality. Jones [Jon83]

introduced the rely-guarantee method, a compositional version of the Owicki-Gries system.

The program specification in the Rely-Guarantee approach is of the form {P,R}S{G ,Q} where P

is the precondition, R is the rely relation which includes any environment transition, G is the

guarantee relation which includes any transition of S and Q is the postcondition. The parallel

rule of Rely-Guarantee does not impose the heavy computation of the Owicki-Gries approach.

{P1,R1}S1{G1,Q1} {P2,R2}S2{G2,Q2}
RELY-GUARANTEE

{P1∧P2,R1 ∨R2}S1||S2{G1 ∧G2,Q1 ∧Q2}

In the proof approach using Rely-Guarantee we give a proof of the post-condition and guaran-

tee conditions of each program assuming that the rely condition holds. Then we prove that

the guarantee condition of every other thread implies the rely condition of a program.

6.3 Motivating Example

The first automaton in Figure 6.1 models a crosswalk light, the second one models a pedestrian.

The light automaton is initially Red and is waiting for the button to be pressed. After the

pedestrian presses the button the light sets the local clock x to 0 and goes to the Pressed state.

It takes the light 5 time units to change from Pressed to Green. The light resets the local clock

to 0 and assigns the global variable g to 1 when moving to Green. When the total time of being

Green is greater than or equal to 5 the light goes to Blink and during the transition it sets the

local clock x to 0 and g to 2. Blinking lasts for 3 time units and then the light loops back to its

initial state.

The pedestrian initially presses the button, or, if the light is already green (g = 1) he goes to

Walk. After pressing the button the pedestrian waits in Wait until either the light goes green

(moving to Walk when g = 1) or he gives up (moving back to Stand when g = 0). The walking

takes less than or equal to 2 time units and the pedestrian returns back to the initial state or

enters the error state if the light is not green anymore after the two 2 time units.

Figure 6.1 shows the local clauses for the automata. We assign a relation symbol to each

automaton in the system, L for light and P for pedestrian. The first parameter of the relation

symbols is a global clock c that we use to put all the clocks in the system in sync. All the global

and local clocks of the automata are measured with respect to c. If the automaton L resets

its clock x to 0 we represent it with c − x = 0. After the first parameter c we place the clocks

84

6.3. Motivating Example

(0)
//�� ���� ��Red

x := 0

press?

x ≤ 5

(1)
//�� ���� ��Pressed

g := 1, x := 0

(2)
//�� ���� ��Green

g := 2, x := 0

x ≥ 5

x ≤ 3

(3)
//�� ���� ��Blink

x = 3

g := 0

vv

�� ���� ��Wait

g = 0ttiiiiiiiiiiiiiiiii g = 1
y := 0, w := 1

(2)**TTTTTTTTTTTTTTT

(0)
//�� ���� ��Stand

press!
g = 0

(1),,

y := 0, w := 1

g = 1

y ≤ 2

//�� ���� ��Walk

y := 0, w := 0

hh

L(c, y, x, w, g , t0, t1) ← y = c, x = c, w = 0, g = 0, t0 = 0, t1 = 0
L(c, y, x, w, g2,0, t1) ← L(c, y, x, w, g1,3, t1),c −x = 3, g2 = 0
L(c, y, x2, w, g2,2, t1) ← L(c, y, x1, w, g1,1, t1),c −x2 = 0, g2 = 1
L(c, y, x2, w, g2,3, t1) ← L(c, y, x2, w, g1,2, t1),c −x1 ≥ 5,c −x2 ≤ 3,c −x2 = 0, g2 = 2
P (c, y, x, w, g , t0, t1) ← y = c, x = c, w = 0, g = 0, t0 = 0, t1 = 0
P (c, y2, x, w2, g , t0,0) ← P (c, y1, x, w1, g , t0,2),c − y2 = 0, w2 = 0
P (c, y, x, w, g , t0,0) ← P (c, y, x, w, g , t0,1), g = 0
P (c, y2, x, w2, g , t0,2) ← P (c, y1, x, w1, g , t0,1), g = 1,c − y2 < 2,c − y2 = 0, w2 = 1
P (c, y2, x, w2, g , t0,2) ← P (c, y1, x, w1, g , t0,0), g = 1,c − y2 < 2,c − y2 = 0, w2 = 1
P (c, y2, x, w2, g , t0,1) ← P (c, y1, x, w1, g , t0,0), g = 0

f al se ← L(c, y, x, w, g , t0, t1),P (c, y, x, w, g , t0, t1), g = 0, w = 1

Figure 6.1: Pedestrian Crossing Light and the local clauses of each automaton

and variables as parameters. In order to ensure completeness we share the local states of

the automata globally, so the parameters of the relation symbols are all the same. The last

parameters t0 and t1 are place holders showing the current state of automata. Initially all

the clocks are assigned to c, the variables to 0, the place holders to the initial states. The

local clauses track the changes of the variables and clocks throughout the non-synchronizing

transitions. Figure 6.2 represent the encoding of timed transitions into Horn clauses.

In order to prove safety we have to verify it is impossible to have g = 0 and w = 1 at the same

time. For this purpose we add the clause with false in head and the erroneous state in body to

the system to ensure the incorrect behavior is excluded from the solution. By augmenting the

L(c2, y, x, w, g ,1, t1) ← L(c1, y, x, w, g ,1, t1),c2 ≥ c1,c2 −x ≤ 5
L(c2, y, x, w, g ,3, t1) ← L(c1, y, x, w, g ,3, t1),c2 ≥ c1,c2 −x ≤ 3
L(c2, y, x, w, g , t0, t1) ← L(c1, y, x, w, g , t0, t1),c2 ≥ c1, t0 6= 1, t0 6= 3
P (c2, y, x, w, g , t0,2) ← P (c1, y, x, w, g , t0,2),c2 ≥ c1,c2 − y ≤ 2
P (c2, y, x, w, g , t0, t1) ← P (c1, y, x, w, g , t0, t1),c2 ≥ c1, t1 6= 2

Figure 6.2: Encoding of timed transitions in Figure 6.1

85

Chapter 6. Compositional Verification of Timed Systems Using Horn Clauses

clauses of any of the Owicki-Gries or Rely-Guarantee approaches we obtain the solution to the

system.

P (c, y, x, w, g , t0, t1) ←¬(w = 1, g 6= 1)

The assertion here does not depend on the behavior of Light.

L(c, y, x, w, g , t0, t1) ← tr ue.

6.4 Modeling Local Transitions

In the next sections, we assume that a network A1||A2|| · · · ||An of automata has been given,

together with a safety specification 〈i , lerr〉. We will introduce two methods to verify the

specification 〈i , lerr〉 by means of encoding into a system of Horn clauses. The two approaches

differ in the way concurrency is encoded: Sect. 6.5.1 gives an encoding on the basis of the

Owicki-Gries methodology, while Sect. 6.5.2 leverages the Rely-Guarantee approach. Both

methods share the way in which local transitions of automata are handled, which is introduced

in the next paragraphs.

The Horn clauses are formulated over a constraint language that combines three domains: (i)

the theory of (rational/real) difference-bound constraints, which is used to encode clocks C ,

transition guards, and invariants, (ii) the finite sets Ni of control locations of the individual

automata, and (iii) the language used for data variables X and transition constraints. We defer

details how these theories are handled to Sect. 6.6, and for the time being assume a constraint

language that is rich enough to capture (i)–(iii); in particular, we assume that every control

location l ∈ Ni constitutes a term in the language.

As a further simplifying assumption, we do not consider clocks shared between multiple

automata. That means, we assume that the set C of clocks is partitioned into n disjoint sets,

C =C1]C2]·· ·]Cn , in such a way that each automaton Ai only refers to clocks in the set Ci .1

Relation symbols. We associate a relation symbol Pi (c, ū, x̄, l̄) with each automaton Ai in a

network; the argument vectors of the relation symbol represent:

• the global clock c, representing absolute time during system execution;

• the clock variables ū, with |ū| = |C |;

• the data variables v̄, with |v̄| = |X |;

• the location variables l̄, with |̄l| = n.

1Our encodings can be extended to the general case, at the cost of an increase in notational complexity.

86

6.4. Modeling Local Transitions

a)

Local(A,〈i, lerr〉) def= H C i ni t ∪H C te ∪H C tr ans ∪H C er r

H C i ni t
def= {

Pi (c, ū, v̄, l̄) ← ū= c∧ l0 = l 0
0 ∧·· ·∧ ln = l 0

n

}
1≤i≤n

H C te
def= {

Pi (c′, ū, v̄, l̄) ←Pi (c, ū, v̄, l̄)∧c′ ≥ c∧ li = m ∧ Invi (m)(ū)
}

1≤i≤n, m∈Li

H C tr ans
def= {

Pi (c, ū′, v̄′, l̄′) ←Pi (c, ū, v̄, l̄)∧ τi (e,c, ū, v̄, l̄,c′, ū′, v̄′, l̄′)
}

1≤i≤n,
e=〈l1,g ,a,r,φ,l2〉∈Ei

H C er r
def= {

false ←P1(c, ū, v̄, l̄)∧·· ·∧Pn(c, ū, v̄, l̄)∧ le = lerr
}

b)

OG(A,〈i, lerr〉) def= Local(A,〈i, lerr〉)∪H C i nter−l oc ∪H C s ync ∪H C i nter−s ync

H C i nter−loc
def= {

P j (c, ū′, v̄′, l̄′) ←Pi (c, ū, v̄, l̄),P j (c, ū, v̄, l̄)∧
τi (e,c, ū, v̄, l̄,c′, ū′, v̄′, l̄′)

}
1≤i , j≤n,

e=〈l1,g ,a,r,φ,l2〉∈Ei

H C s ync
def= {

(
⋃

1≤i , j≤n
Synci , j (ei ,e j))∪ (

⋃
1≤i , j≤n

Sync j ,i (e j ,ei))
}

i 6= j ,
ei=〈li1 ,gi ,a!,ri ,φi ,li2 〉∈Ei ,
e j=〈l j1 ,g j ,a?,r j ,φ j ,l j2 〉∈E j

Syncp,q (ep ,eq)
def= Pi (c, ū′, v̄′, l̄′) ←Pi (c, ū, v̄, l̄)∧P j (c, ū, v̄, l̄)∧

τp (ep ,c, ū, v̄, l̄,c′, ū′, v̄′, l̄′)∧τq (eq ,c, ū, v̄, l̄,c′, ū′, v̄′, l̄′)

H C i nter−s ync
def= {

Pk (c, ū′, v̄′, l̄′) ←Pi (c, ū, v̄, l̄)∧ P j (c, ū, v̄, l̄)∧ Pk (c, ū, v̄, l̄)∧
τi (ei ,c, ū, v̄, l̄,c′, ū′, v̄′, l̄′)∧
τ j (e j ,c, ū, v̄, l̄,c′, ū′, v̄′, l̄′)

}
1≤i , j≤n,

ei=〈li1 ,gi ,a!,ri ,φi ,li2 〉∈Ei ,
e j=〈l j1 ,g j ,a?,r j ,φ j ,l j2 〉∈E j

c)

RG(A,〈i, lerr〉) def= Local(A,〈i, lerr〉)∪H C r el y ∪H C g uar antee

H C r el y
def= {

Pi (c′, ū′, v̄′, l̄′) ←Pi (c, ū, v̄, l̄)∧ Ei (c, ū, v̄, l̄,c′, ū′, v̄′, l̄′)∧
τi (e,c, ū, v̄, l̄,c′, ū′, v̄′, l̄′)

}
1≤i≤n,

e=〈l1,g ,a,r,φ,l2〉∈Ei

H C g uar antee
def= {

E j (c′, ū′, v̄′, l̄′) ←Pi (c, ū, v̄, l̄)∧τi (e,c, ū, v̄, l̄,c′, ū′, v̄′, l̄′)
}

1≤i , j≤n,
e=〈l1,g ,a,r,φ,l2〉∈Ei

Figure 6.3: A = A1||A2|| · · · ||An is a network of automata Ai = 〈Ni , l 0
i ,Ei , Invi 〉 with

the safety specification 〈i , lerr〉. For a local transition e = 〈l1, g , a,r,φ, l2〉 we define
τi (e,c, ū, v̄, l̄,c′, ū′, v̄′, l̄′) = g (c − ū) ∧ φ(v̄, v̄′) ∧ li = l1 ∧ l′i = l2 ∧ ∧

j 6=i l
′
j = l j ∧ ∧

a∈r u
′
a = c ∧∧

a 6∈r u
′
a = ua ∧ Invi (l2)(ū). The figure depicts the Horn clauses for (a) local transitions, (b)

Owicki-Gries and (c) Rely-Guarantee approach.

Following the operational semantics we encode different transitions of the network as Horn

clauses. Figure 6.3 summarizes the Horn clause encoding for an automata.

There are three different types of local transition rules for an automaton: initialisation, time

elapse and local transition. The set H C i ni t contains all the Horn clauses that initialise

the system. H C te contains the time elapse Horn clauses and H C tr ans contains the Horn

clauses describing local transitions and H C er r describes the error clause. In the initialisation

encodings for each automaton we set all data variables to 0, clock variables to the global

time c and all location variables to initial locations. The time elapse rule expresses that the

87

Chapter 6. Compositional Verification of Timed Systems Using Horn Clauses

global time increases provided that the invariant for the automaton holds, all other variables

(clock, data and location) stay the same. The local transition rule expresses that an automaton

can transition from one state to another state provided that the transition guard g and the

invariant in the next state hold Invi (l ′). Finally, the error clause checks our property and

asserts that if an automata is in an error state, this then implies false.

6.5 Interleaving and Concurrency Rules

6.5.1 Owicki-Gries Method

In [OG76] Owicki and Gries generalize the method of Hoare logic to reason about concur-

rent programs that communicate and synchronize on shared variables. In addition to local

partial correctness of each automaton, the Owicki-Gries approach requires establishing the

interference-freedom of proofs. To provide completeness the local variables are promoted to

the global scope.

Figure 6.3(b) defines the set of Horn clauses required for interference-freedom and synchro-

nization in a network of timed automata. In particular, H C i nter−l ocal formalizes the encoding

of the Owicki-Gries interference-freedom rule into Horn clauses.

In particular, H C i nter−local formalizes the encoding of the Owicki-Gries interference- free-

dom rule into Horn clauses for local transitions. Intuitively, this rule requires an automaton

Pj(c, ū, v̄, l̄) to be invariant for all other local transitions τi of other automata in the net-

work. In timed automata we have only binary hand shaking and the clauses H C s ync demon-

strate the effect of a synchronization between two automata. The interference-free clauses

H C i nter−s ync are required for the synchronizing transitions. The additional clauses required

by Owicki-Gries for the example in Section 6.3 are given in Figure 6.4.

P (c, y, x, w, g2,3, t1) ← P (c, y, x, w, g1,0, t1),L(c, y, x, w1, g1,0, t1),c −x = 3, g2 = 0
P (c, y, x2, w, g2,2, t1) ← P (c, y, x1, w, g1,1, t1),L(c, y, x1, w1, g1,1, t1),c −x2 = 0, g2 = 1
P (c, y, x2, w, g2,3, t1) ← P (c, y, x1, w, g1,2, t1),L(c, y, x1, w, g1,2, t1),

c −x1 ≥ 5,c −x2 ≤ 3,c −x2 = 0, g2 = 2
L(c, y2, x, w2, g , t0,0) ← L(c, y1, x, w1, g , t0,2),P (c, y1, x, w1, g , t0,2),c − y2 = 0, w2 = 0
L(c, y, x, w, g , t0,0) ← L(c, y, x, w, g , t0,1),P (c, y, x, w, g , t0,1), g = 0
L(c, y2, x, w2, g , t0,2) ← L(c, y1, x, w1, g , t0,1),P (c, y1, x, w1, g , t0,1),

g = 1,c − y2 < 2,c − y2 = 0, w2 = 1
L(c, y2, x, w2, g , t0,2) ← L(c, y1, x, w1, g , t0,0),P (c, y1, x, w1, g , t0,0),

g = 1,c − y2 < 2,c − y2 = 0,(w2 == 1)
P (c, y, x2, w, g ,1,1) ← P (c, y, x1, w, g ,0,0),L(c, y, x1, w, g ,0,0), g = 0,c −x2 = 0
L(c, y, x2, w, g2,1,1) ← P (c, y, x1, w, g1,0,0),L(c, y, x1, w, g1,0,0), g = 0,c −x2 = 0

Figure 6.4: Owicki-Gries interference-freedom and synchronization clauses

88

6.5. Interleaving and Concurrency Rules

6.5.2 Rely-Guarantee Method

L (c, y2, x2, w2, g2, pr ess2, t02, t12) ← L(c, y1, x1, w1, g1, pr ess1, t01, t11),
EL(c, y1, y2, x1, x2, w1, w2, g1, g2, pr ess1, pr ess2, t01, t02, t11, t12), t01 = t02

P (c, y2, x2, w2, g2, pr ess2, t02, t12) ← P (c, y1, x1, w1, g1, pr ess1, t01, t11),
EP (c, y1, y2, x1, x2, w1, w2, g1, g2, pr ess1, pr ess2, t01, t02, t11, t12), t11 = t12

EP (c, y1, y1, x1, x1, w1, w1, g1, g1, pr ess1, pr ess1, t01, t02, t11, t11) ←
L(c, y1, x1, w1, g1, pr ess1, t01, t11), t01 = 3, t02 = 0, g1 = 0,c −x1 = 3

EP (c, y1, y1, x1, x2, w1, w1, g1, g1, pr ess1, pr ess1, t01, t02, t11, t11) ←
L(c, y1, x1, w1, g1, pr ess1, t01, t11), t01 = 1, t02 = 2, g1 = 1,c −x2 = 0

EP (c, y1, y1, x1, x2, w1, w1, g1, g1, pr ess1, pr ess1, t01, t02, t11, t11) ←
L(c, y1, x1, w1, g1, pr ess1, t01, t11), t01 = 2, t02 = 3, g1 = 2,c −x2 = 0,c −x1 ≥ 5,c −x2 ≤ 3

EP (c, y1, y1, x1, x2, w1, w1, g1, g1, pr ess1, pr ess2, t01, t02, t11, t11) ←
L(c, y1, x1, w1, g1, pr ess1, t01, t11), t01 = 0, t02 = 1,c −x2 = 0,c −x2 ≤ 5,
pr ess1 6= 0, pr ess1 6= 1, pr ess2 = 0

EL (c, y1, y2, x1, x1, w1, w2, g1, g1, pr ess1, pr ess1, t01, t01, t11, t12) ←
P (c, y1, x1, w1, g1, pr ess1, t01, t11), t11 = 2, t12 = 0,c − y2 = 0, w2 = 0

EL (c, y1, y1, x1, x1, w1, w1, g1, g1, pr ess1, pr ess1, t01, t01, t11, t12) ←
P (c, y1, x1, w1, g1, pr ess1, t01, t11), t11 = 1, t12 = 0, g1 = 0

EL (c, y1, y1, x1, x1, w1, w1, g1, g1, pr ess1, pr ess2, t01, t01, t11, t12) ←
P (c, y1, x1, w1, g1, pr ess1, t01, t11), pr ess1 = 0, pr ess2 = 2, t11 = 0, t12 = 1, g1 = 0

EL (c, y1, y2, x1, x1, w1, w2, g1, g1, pr ess1, pr ess1, t01, t01, t11, t12) ←
P (c, y1, x1, w1, g1, pr ess1, t01, t11), t11 = 1, t12 = 2,c − y2 = 0, w2 = 1, g1 = 1,c − y2 < 2

EL (c, y1, y2, x1, x1, w1, w2, g1, g1, pr ess1, pr ess1, t01, t01, t11, t12) ←
P (c, y1, x1, w1, g1, pr ess1, t01, t11), t11 = 0, t12 = 2,c − y2 = 0, w2 = 1, g1 = 1,c − y2 < 2

Figure 6.5: Horn clauses for the Rely-Guarantee approach

The Rely-Guarantee method [Jon83] is a compositional way for proving the correctness of

parallel programs with shared variables. This approach constructs two sets of constraints

for each automaton. The “rely” constraints express the assumption of an automaton about

the shared data among the automata. The “guarantee” constraints are the changes that an

automaton makes on the shared data. Rely-Guarentee provides a more modular way of proof

comparing to Owicki-Gries.

Figure 6.3(c) defines the Horn clause encoding for the rely-guarentee encoding RG. In the

clauses we represent the environment of an automaton Ai with the relation symbol Ei (c, ū, v̄, l̄,

c′, ū′, v̄′, l̄′) which shows the relation between the the previous unprimed values of the variables

and clocks with the new primed values.

The rely clause for an automaton Ai asserts that the automaton stays in the same location

with the variable and clock updates from the environment. A guarantee clause captures the

effect of each transition of the an automaton Ai in the environment of all other automata A j .

To model synchronization in this approach we designate a variable to each channel in the

system. Similar to other variables in the system, the channel variables are initialized to

89

Chapter 6. Compositional Verification of Timed Systems Using Horn Clauses

0. The sender party shows the interest of synchronization by assigning the corresponding

channel variable to its identity. The identities are all non-zero. The receiver party accepts

to synchronize by re-assigning the channel variable to 0. This is a pre-processing step and

as such there is no explicit synchronization clause required for the rely-guarentee encoding.

Figure 6.5 represents the rely and guarantee clauses for the running example in Section 6.3.

6.5.3 Modeling Parameterized Systems

A main advantage of our technique over the previous finite-state checkers is the ability to

model parameterized systems in which there can be an arbitrary number of instances for an

automaton. For modeling parameterized systems each automaton takes a unique identifier i

in addition to its normal arguments Pi (i,c, ū, x̄, l̄). To be able to store all the variables in the

arguments of an automaton we sacrifice the completeness of our mapping by putting only

the local and global variables in the relation symbol of each automaton. If the verification

successfully proves the correctness of the approximated model we can assure that original

system was correct. Using this approach we were able to verify a variation of the parameterized

version of the Fischer protocol [Lam87].

6.6 Evaluation

Benchmark Rely-Guarantee] Clauses Owicki-Gries] Clauses
Counter 8.6 25 2.9 22

Light 17.1 31 5.9 34

Pedestrian 32.6 45 9.0 39

Peterson Algorithm 16.4 37 5.2 34

Simple Array 6.8 21 5.2 16

Train Gate 56.9 119 5.5 120

Fischer 29.6 57 11.7 54

Figure 6.6: Execution time for proving the correctness of non-paramatrized benchmarks

We evaluated our tool on the benchmarks from UPPAAL 2 as well as some new benchmarks

available from the webpage of Eldarica 3. Figure 6.6 shows the elapsed time in verification of

the benchmarks (seconds) along with clause sizes per benchmark.

The number of clauses increase quadratically w.r.t the number of states in the rely-guarentee

encoding, while clauses increase cubicly in the owicki-gries encoding.

We find the current results of this approach promising, because they show that even if we

2http://www.uppaal.org/benchmarks/
3http://lara.epfl.ch/w/eldarica

90

http://www.uppaal.org/benchmarks/
http://lara.epfl.ch/w/eldarica

6.6. Evaluation

largely decouple semantic modeling using Horn clauses from the infinite-state verification

algorithm, we obtain a useful tool, with the additional benefit of supporting parametrized

systems with an unknown number of concurrent components. Tools tailored for timed systems

[LPY97, Yov97, Wan04] implement many specialized techniques to make verification more

efficient; in the future we plan to explore to which extent these techniques can be generalized

into general-purpose strategies for solving recursive Horn clauses.

91

7 Related Work

Good programmers know what to write.

Great ones know what to rewrite and

reuse.

Eric S. Raymond

Predicate abstraction has proved to be a rich and fruitful direction in automated verification

of detailed properties of infinite-state systems [GS97, HJMM04]. In this thesis we presented

techniques to improve the applicability of predicate abstraction engines. For convenience

and clarification the related work section is divided into subsections based on the different

achievements and goals of the thesis.

7.1 Counterexample-Guided Accelerated Abstraction

The pioneering work in [BL99] is, to the best of our knowledge, the first to propose a solution

to the divergence problem in predicate abstraction. More recently, sufficient conditions to

enforce convergence of refinement in predicate abstraction are given in [BPR02], but it remains

difficult to enforce them in practice. A promising direction for ensuring completeness with

respect to a language of invariants is parameterizing the syntactic complexity of predicates

discovered by an interpolating split prover [JM06]. Because it has the flavor of invariant

enumeration, the feasibility of this approach in practice remains to be further understood.

To alleviate relatively weak guarantees of refinement in predicate abstraction in practice,

researchers introduced path invariants [BHMR07] that rule out a family of counterexamples at

once using constraint-based analysis. Our CEGAAR approach is similar in the spirit, but uses

acceleration [BIK10, FL02, Boi99] instead of constraint-based analysis, and therefore has com-

plementary strengths. Acceleration naturally generates precise disjunctive invariants, needed

in many practical examples, while constraint-based invariant generation [BHMR07] resorts

to an ad-hoc unfolding of the path program to generate disjunctive invariants. Acceleration

93

Chapter 7. Related Work

can also infer expressive predicates, in particular modulo constraints, which are relevant for

purposes such as proving memory address alignment.

The idea of generalizing spurious error traces was introduced also in [HHP09], by extending

an infeasible trace, labeled with interpolants, into a finite interpolant automaton. The method

of [HHP09] exploits the fact that some interpolants obtained from the infeasibility proof

happen to be inductive w.r.t. loops in the program. In our case, given a spurious trace that

iterates through a program loop, we compute the needed inductive interpolants, combining

interpolation with acceleration.

The CEGAAR algorithm was introduced in [HIK+12]. The method that is probably closest to

CEGAAR is proposed in [CFLZ08]. In this work the authors define inductive interpolants and

prove the existence of effectively computable inductive interpolants for a class of affine loops,

called poly-bounded. The approach is, however, limited to programs with one poly-bounded

affine loop, for which initial and error states are specified. We only consider loops that are

more restricted than the poly-bounded ones, namely loops for which transitive closures are

Presburger definable. On the other hand, our method is more general in that it does not

restrict the number of loops occurring in the path program, and benefits from regarding

both interpolation and transitive closure computation as black boxes. The ability to compute

closed forms of certain loops is also exploited in algebraic approaches [BHHK10]. These

approaches can also naturally be generalized to perform useful over-approximation [AAGP11]

and under-approximation.

The article [KLW13] uses acceleration to find the summary of a loop. It then adds the under-

approximation of the loop behavior as an auxiliary path to the loop structure. The acceleration

is static and it does not dynamically accelerate loops on demand. Whereas our method works

for Presuburger Integer arithmetic their approach supports assignments to arrays and arbitrary

conditional branching by computing quantified conditionals.

7.2 Disjunctive Interpolants

There is a long line of research on Craig interpolation methods, and generalised forms of inter-

polation tailored to verification. For an overview of interpolation in the presence of theories,

we refer the reader to [CGS10, BKRW11]. Binary Craig interpolation for implications A →C

goes back to [Cra57], was used on conjunctions A∧B in [McM03], and generalised to inductive

sequences of interpolants in [HJMM04, McM06]. The concept of tree interpolation, strictly

generalising inductive sequences of interpolants, is presented in the documentation of the

interpolation engine iZ3 and in [MR13]; the computation of tree interpolants by computing a

sequence of binary interpolants is also described in [HHP10]. In this thesis we presented a new

form of interpolation, disjunctive interpolation [RHK13], which is strictly more general than

sequences of interpolants and tree interpolants. Our implementation supports Presburger

arithmetic, including divisibility constraints [BKRW11], which is rarely supported by existing

tools, yet helpful in practice [HIK+12].

94

7.3. Horn Clauses

A further generalisation of inductive sequences of interpolants are restricted DAG inter-

polants [AGC12a], which also include disjunctiveness in the sense that multiple paths through

a program can be handled simultaneously. Disjunctive interpolants are incomparable in power

to restricted DAG interpolants, since the former does not handle interpolation problems in the

form of DAGs, while the latter does not subsume tree interpolation. A combination of the two

kinds of interpolants (“disjunctive DAG interpolation”) is strictly more powerful (and harder)

than disjunctive interpolation, see Sect. 5.6 for a complexity-theoretic analysis.

We discussed techniques and heuristics to practically handle shared sub-trees in disjunctive

interpolation, extending the benefits of DAG interpolation to recursive programs. Inter-

procedural software model checking with interpolants has been an active area of research.

In the context of predicate abstraction, it has been discussed how well-scoped invariants

can be inferred [HJMM04] in the presence of function calls. Based on the concept of Horn

clauses, a predicate abstraction-based algorithm for bottom-up construction of function

summaries was presented in [GLPR12]. Verification of programs with procedures is described

in [HHP10] (using nested word automata) as well as in [AGC12b]. Function summaries gener-

ated using interpolants have also been used in bounded model checking [SFS11]. Researchers

also showed how to lift these techniques to higher-order programs [JMR11, UTK13]. Sev-

eral other tools handle procedures by increasingly inlining and performing under and/or

over-approximation [SKK11, LQL12, TJ07], but without the use of interpolation techniques.

7.3 Horn Clauses

The use of Horn clauses as intermediate representation for verification was proposed in

[GPR11a], with the verification of concurrent programs as main application. Encoding into

Horn clauses is also used in logic programming community [PGS98]. The underlying proce-

dure for solving sets of recursion-free Horn clauses, over the combined theory of linear rational

arithmetic and uninterpreted functions, was presented in [GPR11b]. An algorithm to solve

recursion-free systems of Horn constraints by repeated computation of binary interpolants

was given in [Ter10], for the purpose of type inference. A range of further applications of Horn

clauses, including inter-procedural model checking, was given in [GLPR12]. Horn clauses are

also used as a format for verification problems supported by the SMT solver Z3 [HB12]. This

thesis extends this direction by presenting general results about solvability and computational

complexity, independent of any particular calculus. Our experiments are with linear integer

arithmetic, arguably a more faithful model of discrete computation than rationals [HIK+12].

The use of Craig interpolation for solving Horn clauses is discussed in [MR13], concentrating

on the case of tree interpolation. This thesis extends this work by giving a systematic study of

the relationship between different forms of Craig interpolation and Horn clauses, as well as

general results about solvability and computational complexity, independent of any particular

calculus used to perform interpolation.

95

Chapter 7. Related Work

7.4 Verification of Timed Systems

There has been a vast amount of research in the field of verification of timed systems. Most

notable approaches are timed automata [AD94], timed process algebra [NS91] and real-time

logics [AH90]. The timed automata formalism has gained popularity due to its graphical

nature with the ability of capturing real-time constraints by explicitly setting/resetting clock

variables. A number of tools have been developed for verification of timed automata including

Uppaal [LPY97], Kronos [Yov97], Rabbit [BLN03] and RED [Wan04]. These tools rely mostly

on BDD-based representation of the finite-state model for explicitly searching the space. In

contrast, our approach enables verification of variables with infinite ranges. Besides, one of

the future works of this thesis is to include parameterized systems in the modeling thanks to

the ability of representing the Integers without bounds.

The approach in [JSV04] encodes timed automata into a constraint logic program. The main

focus is to check if the system modeled using timed automata is symmetric or not. The key

advantage of proving such assertion is to use the result in the efficient proof of other assertions.

Unlike our work they do not have a special encoding for concurrency.

The Owicki-Gries and Rely-Guarantee approaches for verifying the safety of concurrent pro-

grams using Horn clauses are described in [GLPR12]. The main difference between [GLPR12]

and our work is the presence of time and synchronization between threads. There is also a line

of research on bounded model checking of timed automata. In [NMA+02] the authors have

encoded timed automata into formulae in difference logic, a propositional logic enriched with

timing constraints. They have used bounded model checking to verify the safety of the system.

The author of [Sor02] has used the bounded model checking approach to verify networks

of timed systems. The given network of timed automata is propositionally encoded into a

satisfiability problem and a SAT solver checks the result. The bounded model checking is

effective for finding real counter-examples up to a maximum depth. Here in this thesis the

focus is to prove the model by predicate abstraction.

The formal specification languages are also extended to capture precisely the timed behavior

of systems. In [Hen91] the author has extended the language of temporal logic for specifying

timed reactive systems. Accordingly the model checking algorithm is updated to take timed

temporal logic formulae. In this thesis we simply model safety properties by making transitions

to an error state whenever a critical requirement of the system is violated. Consideration of

liveness properties in timed systems deserves to be considered as future work.

96

8 Conclusion

When I am working on a problem, I

never think about beauty but when I

have finished, if the solution is not

beautiful, I know it is wrong.

Buckminster Fuller

From a broad perspective the subject of this dissertation was about improvements in one of

the cutting-edge software verification techniques, namely counter-example guided predicate

abstraction. To overcome the identified weaknesses the thesis proposed novel techniques.

We presented CEGAAR, a new automated verification algorithm for integer programs. The

algorithm combines interpolation-based abstraction refinement and acceleration of loops.

The experimental results show that CEGAAR handles robustly a number of examples that

cannot be handled by predicate abstraction or acceleration alone. Because many classes of

systems translate into integer programs, our advance contributes to automated verification of

infinite-state systems in general.

We exploited the language of Horn clauses as an intermediate language for representation

of software programs. As a new form of Craig interpolation we introduced disjunctive inter-

polation tailored to model checkers based on Horn clauses. Disjunctive interpolation can

be identified as solving body-disjoint systems of recursion-free Horn clauses, and subsumes

a number of previous forms of interpolation, including tree interpolation. We believe that

the flexibility of disjunctive interpolation is highly beneficial for building interpolation-based

model checkers.

We classified different interpolation problems with the corresponding recursion-free Horn

constraints. We gave algorithms to solve each class of recursion-free Horn clauses using reduc-

tion to an appropriate interpolation problem. We discussed the computational complexities of

solving classes of recursion-free Horn clauses. In order to allow comparison among different

tools we presented a library of publicly available benchmarks of recursion-free Horn clauses.

97

Chapter 8. Conclusion

In this thesis we presented a compositional approach to verify timed systems. Using the two

classical approaches of Owicki-Gries and Rely-Guarantee we mapped a concurrent timed

automata model to the language of Horn clauses. Then we applied our predicate abstraction

framework to verify the generated models. As a proof of concept of the techniques, this thesis

presented the predicate abstraction framework Eldarica aiming at the domain of Presubrger

arithmetic.

8.1 Future Directions

This thesis finishes by giving some possible ideas to pursue for future work.

Generalized form of Horn Clauses. In Section 5.7 we first raised the question to generalize

the recursion-free Horn clauses to the case of recursion-free arbitrary clauses. We did not

take the notion of subsumption between clauses, or loops in derivations into account there.

This means that a set of clauses might give rise to infinite derivations even if the set of derived

clause is finite. It is conceivable that notions of subsumption, or more generally the application

of terminating saturation strategies [FLHT01], can be used to identify more general fragments

of clauses for which syntactic solutions can effectively be computed. We might ask even for

extensions of recursive Horn clauses. In the recent work of [BPR13] the existentially quantified

Horn clauses are studied to proving the temporal properties of programs. Investigating more

extensions of Horn clauses remain as an important landmark for future work.

Parameterized Concurrent System. In a parameterized system there is an arbitrary number

of processes. This is in contrast to the methodology that we presented in the Chapter 6. A

promising research direction is to consider the mapping of parameterized systems into Horn

clauses. A relatively straightforward way is to incorporate arrays into the system and represent

the infiniteness of the number of processes using arrays. This is of particular interest since

most of the available verification and analysis tools are explicit state model checkers tailored

for finite state systems with bounded number of automata and variables with limited size.

Better computation of disjunctive interpolants. We expect further performance improve-

ments from better implementation of disjunctive interpolation and better techniques to select

sets of counterexample paths given to interpolation. Enhancement to the Eldarica framework

is one of the future aims of this thesis.

98

Bibliography

[AAGP11] Elvira Albert, Puri Arenas, Samir Genaim, and Germán Puebla. Closed-form upper

bounds in static cost analysis. J. Autom. Reasoning, 46(2):161–203, 2011.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor. Comput. Sci.,

126(2):183–235, 1994.

[AGC12a] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Craig interpretation. In

SAS, pages 300–316, 2012.

[AGC12b] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: An interpolation-

based algorithm for inter-procedural verification. In VMCAI, pages 39–55, 2012.

[AH90] Rajeev Alur and Thomas A. Henzinger. Real-time logics: Complexity and expres-

siveness. In LICS, pages 390–401, 1990.

[ALGC12] Aws Albarghouthi, Yi Li, Arie Gurfinkel, and Marsha Chechik. Ufo: A framework for

abstraction- and interpolation-based software verification. In CAV, pages 672–678,

2012.

[AMP06] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded model

checking of software using SMT solvers instead of sat solvers. In SPIN, pages

146–162, 2006.

[BBH+06] Ahmed Bouajjani, Marius Bozga, Peter Habermehl, Radu Iosif, Pierre Moro, and

Tomás Vojnar. Programs with lists are counter automata. In CAV, pages 517–531,

2006.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic

model checking without bdds. In TACAS, pages 193–207, 1999.

[BCG+09] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M. Erkan Keremoglu, and Roberto

Sebastiani. Software model checking via large-block encoding. In FMCAD, pages

25–32, 2009.

[Bey13] Dirk Beyer. Second competition on software verification - (summary of sv-comp

2013). In TACAS, pages 594–609, 2013.

99

Bibliography

[BHHK10] Régis Blanc, Thomas A. Henzinger, Thibaud Hottelier, and Laura Kovács. ABC:

Algebraic bound computation for loops. In LPAR (Dakar), pages 103–118, 2010.

[BHI+09] Marius Bozga, Peter Habermehl, Radu Iosif, Filip Konecný, and Tomás Vojnar.

Automatic verification of integer array programs. In CAV, pages 157–172, 2009.

[BHJM07] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The software

model checker BLAST. STTT, 9(5-6):505–525, 2007.

[BHMR07] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Rybalchenko.

Path invariants. In PLDI, pages 300–309, 2007.

[BIK10] Marius Bozga, Radu Iosif, and Filip Konecný. Fast acceleration of ultimately

periodic relations. In CAV, pages 227–242, 2010.

[BKRW11] Angelo Brillout, Daniel Kroening, Philipp Rümmer, and Thomas Wahl. An in-

terpolating sequent calculus for quantifier-free Presburger arithmetic. J. Autom.

Reasoning, 47(4):341–367, 2011.

[BL99] Saddek Bensalem and Yassine Lakhnech. Automatic generation of invariants.

Formal Methods in System Design, 15(1):75–92, 1999.

[BLN03] Dirk Beyer, Claus Lewerentz, and Andreas Noack. Rabbit: A tool for bdd-based

verification of real-time systems. In CAV, pages 122–125, 2003.

[BLR11] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. A decade of software model

checking with SLAM. Commun. ACM, 54(7):68–76, 2011.

[BMR12] Nikolaj Bjørner, Ken McMillan, and Andrey Rybalchenko. Program verification as

satisfiability modulo theories. In SMT Workshop at IJCAR, 2012.

[Boi99] Bernard Boigelot. Symbolic Methods for Exploring Infinite State Spaces, volume

PhD Thesis, Vol. 189. Collection des Publications de l’Université de Liège, 1999.

[BPR01] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and cartesian

abstraction for model checking c programs. In TACAS, pages 268–283, 2001.

[BPR02] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Relative completeness of

abstraction refinement for software model checking. In TACAS, pages 158–172,

2002.

[BPR13] Tewodros Beyene, Corneliu Popeea, and Andrey Rybalchenko. Solving existentially

quantified Horn clauses. In CAV, 2013.

[BST10] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard: Version

2.0. Technical report, 2010.

100

Bibliography

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In

POPL, pages 238–252, 1977.

[CE81] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization

skeletons using branching-time temporal logic. In Logic of Programs, pages 52–71,

1981.

[CFLZ08] Nicolas Caniart, Emmanuel Fleury, Jérôme Leroux, and Marc Zeitoun. Accelerat-

ing interpolation-based model-checking. In TACAS, pages 428–442, 2008.

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. Efficiently computing static single assignment form and the control

dependence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement. In CAV, pages 154–169, 2000.

[CGS10] Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Efficient generation

of Craig interpolants in satisfiability modulo theories. ACM Trans. Comput. Log.,

12(1):7, 2010.

[Cha09] Robert N. Charette. This car runs on code. http://spectrum.ieee.org/green-tech/

advanced-cars/this-car-runs-on-code, February 2009.

[CKL04] Edmund M. Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ansi-c

programs. In TACAS, pages 168–176, 2004.

[Cra57] William Craig. Linear reasoning. a new form of the herbrand-gentzen theorem. J.

Symb. Log., 22(3):250–268, 1957.

[Der] Nachum Dershowitz. Software horror stories. http://www.cs.tau.ac.il/~nachumd/

horror.html.

[DM79] Nachum Dershowitz and Zohar Manna. Proving termination with multiset order-

ings. Commun. ACM, 22(8):465–476, 1979.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.

In TACAS, pages 337–340, 2008.

[FL02] Alain Finkel and Jérôme Leroux. How to compose Presburger-accelerations:

Applications to broadcast protocols. In FSTTCS, pages 145–156, 2002.

[FLHT01] Christian G. Fermüller, Alexander Leitsch, Ullrich Hustadt, and Tanel Tammet.

Resolution decision procedures. In Handbook of Automated Reasoning, pages

1791–1849. 2001.

[Gan] Pierre Ganty. Personal Communication.

101

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://www.cs.tau.ac.il/~nachumd/horror.html
http://www.cs.tau.ac.il/~nachumd/horror.html

Bibliography

[GGL+12] Sergey Grebenshchikov, Ashutosh Gupta, Nuno P. Lopes, Corneliu Popeea, and

Andrey Rybalchenko. HSF(C): A software verifier based on Horn clauses - (compe-

tition contribution). In TACAS, pages 549–551, 2012.

[GLPR12] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Rybalchenko.

Synthesizing software verifiers from proof rules. In PLDI, pages 405–416, 2012.

[GM12] Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous

programs. ACM Trans. Program. Lang. Syst., 34(1):6, 2012.

[GPR11a] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstraction

and refinement for verifying multi-threaded programs. In POPL, pages 331–344,

2011.

[GPR11b] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Solving recursion-

free Horn clauses over LI+UIF. In APLAS, pages 188–203, 2011.

[GS64] Seymour Ginsburg and Edwin H. Spanier. Bounded Algol-like languages. Transac-

tions of the American Mathematical Society, 113(2):333–368, 1964.

[GS66] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas and

languages. Pacific Journal of Mathematics, 16(2):285–296, 1966.

[GS97] Susanne Graf and Hassen Saïdi. Construction of abstract state graphs with PVS.

In CAV, pages 72–83, 1997.

[GY13] Patrice Godefroid and Mihalis Yannakakis. Analysis of boolean programs. In

TACAS, pages 214–229, 2013.

[HB12] Krystof Hoder and Nikolaj Bjørner. Generalized property directed reachability. In

SAT, pages 157–171, 2012.

[Hen91] Thomas A. Henzinger. Temporal Specification and Verification of Real-Time Sys-

tems, volume PhD Thesis, No. STAN-CS-91-1380. Stanford University - Computer

Science Department, 1991.

[HHP09] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Refinement of trace

abstraction. In SAS, pages 69–85, 2009.

[HHP10] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Nested interpolants.

In POPL, pages 471–482, 2010.

[HIK+12] Hossein Hojjat, Radu Iosif, Filip Konecný, Viktor Kuncak, and Philipp Rümmer.

Accelerating interpolants. In ATVA, pages 187–202, 2012.

[HIRV07] Peter Habermehl, Radu Iosif, Adam Rogalewicz, and Tomás Vojnar. Proving termi-

nation of tree manipulating programs. In ATVA, pages 145–161, 2007.

102

Bibliography

[HJMM04] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan.

Abstractions from proofs. In POPL, pages 232–244, 2004.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy

abstraction. In POPL, pages 58–70, 2002.

[HKG+12] Hossein Hojjat, Filip Konecný, Florent Garnier, Radu Iosif, Viktor Kuncak, and

Philipp Rümmer. A verification toolkit for numerical transition systems - tool

paper. In FM, pages 247–251, 2012.

[HMU01] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to au-

tomata theory, languages, and computation - (2. ed.). Addison-Wesley series in

computer science. Addison-Wesley-Longman, 2001.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,

12(10):576–580, 1969.

[Hoa03] C. A. R. Hoare. Assertions: A personal perspective. IEEE Annals of the History of

Computing, 25(2):14–25, 2003.

[JM06] Ranjit Jhala and Kenneth L. McMillan. A practical and complete approach to

predicate refinement. In TACAS, pages 459–473, 2006.

[JMR11] Ranjit Jhala, Rupak Majumdar, and Andrey Rybalchenko. HMC: Verifying func-

tional programs using abstract interpreters. In CAV, pages 470–485, 2011.

[Jon83] Cliff B. Jones. Tentative steps toward a development method for interfering pro-

grams. ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[JSV04] Joxan Jaffar, Andrew E. Santosa, and Razvan Voicu. A CLP proof method for timed

automata. In RTSS, pages 175–186, 2004.

[Kin] Zachary Kincaid. LIA horn benchmarks.

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/

Zachary/.

[KLR10] Daniel Kroening, Jérôme Leroux, and Philipp Rümmer. Interpolating quantifier-

free Presburger arithmetic. In LPAR (Yogyakarta), pages 489–503, 2010.

[KLW13] Daniel Kroening, Matt Lewis, and Georg Weissenbacher. Under-approximating

loops in C programs for fast counterexample detection. In CAV, LNCS. Springer,

2013.

[Lam87] Leslie Lamport. A fast mutual exclusion algorithm. ACM Trans. Comput. Syst.,

5(1):1–11, 1987.

[Lew78] Harry R. Lewis. Renaming a set of clauses as a Horn set. J. ACM, 25(1):134–135,

1978.

103

https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Zachary/
https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Zachary/

Bibliography

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. STTT,

1(1-2):134–152, 1997.

[LQL12] Akash Lal, Shaz Qadeer, and Shuvendu K. Lahiri. A solver for reachability modulo

theories. In CAV, pages 427–443, 2012.

[Man74] Zohar Manna. Introduction to Mathematical Theory of Computation. McGraw-Hill,

Inc., New York, NY, USA, 1974.

[MCF+97] Zohar Manna, Michael Colón, Bernd Finkbeiner, Henny Sipma, and Tomás E.

Uribe. Abstraction and modular verification of infinite-state reactive systems. In

Requirements Targeting Software and Systems Engineering, pages 273–292, 1997.

[McM] Kenneth L. McMillan. iZ3 documentation.

http://research.microsoft.com/en-us/um/redmond/projects/z3/

iz3documentation.html.

[McM03] Kenneth L. McMillan. Interpolation and SAT-based model checking. In CAV, pages

1–13, 2003.

[McM05a] Kenneth L. McMillan. Applications of craig interpolants in model checking. In

TACAS, pages 1–12, 2005.

[McM05b] Kenneth L. McMillan. An interpolating theorem prover. Theor. Comput. Sci.,

345(1):101–121, 2005.

[McM06] Kenneth L. McMillan. Lazy abstraction with interpolants. In CAV, pages 123–136,

2006.

[Min67] Marvin L. Minsky. Computation: finite and infinite machines. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1967.

[MLNH07] Mario Méndez-Lojo, Jorge A. Navas, and Manuel V. Hermenegildo. A flexible,

(C)LP-based approach to the analysis of object-oriented programs. In LOPSTR,

pages 154–168, 2007.

[Mon] David Monniaux. Personal Communication.

[MR13] Kenneth L. McMillan and Andrey Rybalchenko. Solving constrained Horn clauses

using interpolation. Technical Report MSR-TR-2013-6, Microsoft Research, Jan-

uary 2013.

[NMA+02] Peter Niebert, Moez Mahfoudh, Eugene Asarin, Marius Bozga, Oded Maler, and

Navendu Jain. Verification of timed automata via satisfiability checking. In

FTRTFT, pages 225–244, 2002.

[NS91] Xavier Nicollin and Joseph Sifakis. An overview and synthesis on timed process

algebras. In CAV, pages 376–398, 1991.

104

http://research.microsoft.com/en-us/um/redmond/projects/z3/iz3documentation.html
http://research.microsoft.com/en-us/um/redmond/projects/z3/iz3documentation.html

Bibliography

[OG76] Susan S. Owicki and David Gries. An axiomatic proof technique for parallel

programs i. Acta Inf., 6:319–340, 1976.

[PGS98] Julio C. Peralta, John P. Gallagher, and Hüseyin Saglam. Analysis of imperative

programs through analysis of constraint logic programs. In SAS, pages 246–261,

1998.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57, 1977.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent

systems in cesar. In Symposium on Programming, pages 337–351, 1982.

[RHK13] Philipp Rümmer, Hossein Hojjat, and Viktor Kuncak. Disjunctive interpolants for

Horn-clause verification. In CAV, 2013.

[Ric53] H. G. Rice. Classes of recursively enumerable sets and their decision problems

transactions of the american mathematical society. Commun. ACM, 74(2):358–366,

1953.

[RSS07] Andrey Rybalchenko and Viorica Sofronie-Stokkermans. Constraint solving for

interpolation. In VMCAI, pages 346–362, 2007.

[Rub11] Andy Rubin. Google mobile boss andy rubin on apple, microsoft and tablets.

http://allthingsd.com/20111019/andy-rubin-asiad/, October 2011.

[Rüm08] Philipp Rümmer. A constraint sequent calculus for first-order logic with linear

integer arithmetic. In LPAR, pages 274–289, 2008.

[SFS11] Ondrej Sery, Grigory Fedyukovich, and Natasha Sharygina. Interpolation-based

function summaries in bounded model checking. In Haifa Verification Conference,

pages 160–175, 2011.

[SKK11] Philippe Suter, Ali Sinan Köksal, and Viktor Kuncak. Satisfiability modulo recursive

programs. In SAS, pages 298–315, 2011.

[SM73] Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential

time: Preliminary report. In STOC, pages 1–9, 1973.

[Sor02] Maria Sorea. Bounded model checking for timed automata. Electr. Notes Theor.

Comput. Sci., 68(5):116–134, 2002.

[SV07] Ales Smrcka and Tomás Vojnar. Verifying parametrised hardware designs via

counter automata. In Haifa Verification Conference, pages 51–68, 2007.

[Ter10] Tachio Terauchi. Dependent types from counterexamples. In POPL, pages 119–

130, 2010.

[TJ07] Mana Taghdiri and Daniel Jackson. Inferring specifications to detect errors in

code. Autom. Softw. Eng., 14(1):87–121, 2007.

105

http://allthingsd.com/20111019/andy-rubin-asiad/

Bibliography

[Tur49] Alan M. Turing. Checking a large routine. pages 67–69, 1949.

[UTK13] Hiroshi Unno, Tachio Terauchi, and Naoki Kobayashi. Automating relatively

complete verification of higher-order functional programs. In POPL, pages 75–86,

2013.

[Wan04] Farn Wang. Efficient verification of timed automata with bdd-like data structures.

STTT, 6(1):77–97, 2004.

[WDD+12] Virginie Wiels, Rémi Delmas, David Doose, Pierre-Loïc Garoche, Jacques Cazin,

and Guy Durrieu. Formal verification of critical aerospace software. Aerospace

Lab Journal, (4), 2012.

[Yov97] Sergio Yovine. Kronos: A verification tool for real-time systems. STTT, 1(1-2):123–

133, 1997.

106

Curriculum Vitae
Hossein Hojjat
Laboratory for Automated Reasoning and Analysis
School of Computer & Communications Sciences
Swiss Federal Institute of Technology (EPFL) hossein.hojjat@epfl.ch

Education

• EPFL Lausanne, Switzerland
PhD Student Sep. 2008 - Jun. 2013 (expected)

– PhD Candidate under supervision of Prof. Viktor Kuncak

– Member of ProgLab.Net project funded by Microsoft Research

– Relevant courses (grades are out of 6): Advanced algorithms (Amin Shokrollahi-6), Logic and
Automata Theory (Radu Iosif, Barbara Jobstmann-6), Problem solving in computer science
(Tom Henzinger-5), Advanced topics in software analysis and verification (Viktor Kuncak-5.5),
Distributed algorithms (Rachid Guerraoui-5)

• University of Tehran Tehran, Iran
Msc., Software Engineering (Grades: 18.99 / 20) Sep. 2005 - Nov. 2007

– Enrolled as a top student without passing the entrance examinations

– Thesis title: “Formal verification of the object-based systems using process algebra” under
supervision of Marjan Sirjani and MohammadReza Mousavi

– Defended with honors (19.8 / 20)

– Relevant courses: Network Security, Performance Evaluation of Computer Systems, Software
Architecture, Verification of Concurrent Systems

• University of Tehran Tehran, Iran
Bs. Software Engineering (Grades 17.69 / 20) Sep. 2001 - Sep. 2005

– Graduated with Honors, second position

– Relevant courses: Software Engineering, Internet Engineering, Advanced Algorithm
Design,Digital Logic Circuits, Compiler Design, Advanced Software Engineering

Work Experience

• IPM School of Computer Science Tehran, Iran
Researcher Sep. 2005 - Sep. 2008

– Project title: Verification of network protocols

– In the organization committee of summer and winter schools

∗ Process theory - summer 2007

∗ Foundations and Trends in Computer Science - winter 2008

Formal Methods Laboratory Tehran, Iran
Researcher and Programmer Sep. 2005 - Sep. 2008

– Formal verification of SystemC designs

107

Technische Universiteit Eindhoven Eindhoven, The Netherlands
Research Visitor Nov. 2007 - Jan. 2008

– Process algebraic verification of hardware systems

Niroo Research Center Tehran, Iran
IT consultant Jun. 2005 - Sep. 2005

– Application of CRM software in a power distribution company

Reviewer & Organizing

• Member of the organizing committee in the FSEN conferences: FSEN’05 ,FSEN’07, FSEN’11 and
FSEN’13

– International Symposium of Software Engineering

• Reviewer for the conferences

– ACSD’13,VSTTE’12,SAS’11,ESOP’11

Publications

Conference Papers

• Philipp Rümmer, Hossein Hojjat, Viktor Kuncak, Classifying and Solving Horn Clauses for
Verification (VSTTE’13)

• Philipp Rümmer, Hossein Hojjat, Viktor Kuncak, Disjunctive Interpolants for Horn-Clause
Verification (CAV’13)

• Hossein Hojjat, Radu Iosif, Filip Konečný, Viktor Kuncak and Philipp Rümmer: Accelerating
Interpolants, Proceedings of the 10th International Symposium on Automated Technology for
Verification and Analysis (ATVA’12)

• Hossein Hojjat, Filip Konečný, Florent Garnier, Radu Iosif, Viktor Kuncak and Philipp Rümmer:
Verification Toolkit for Numerical Transition Systems (tool paper), Proceedings of the 18th
International Symposium on Formal Methods (FM’12)

• Bahman Pourvatan, Marjan Sirjani, Hossein Hojjat and Farhad Arbab: Analysis of Reo Circuits
using Symbolic Execution, Proceedings of the 8th International Workshop on the Foundations of
Coordination Languages and Software Architectures (FOCLASA’09)

• Hossein Hojjat, Mohammad Reza Mousavi Mousavi, Marjan Sirjani: Process Algebraic Verification
of SystemC Codes, Proceedings of the 8th International Conference on Application of Concurrency
to System Design (ACSD’08)

• Hossein Hojjat, Mohammad Reza Mousavi, Marjan Sirjani: A Framework for Performance
Evaluation and Verification in Stochastic Process Algebras, Proceedings of the 22nd ACM
Symposium on Applied Computing, Software Verification Track (SV’08)

• Hossein Hojjat, Marjan Sirjani, SMR Mousavi and Jan Friso Groote: Sarir: A Rebeca to mCRL2
Translator, Proceedings of the 7th IEEE International Conference on Application of Concurrency to
System Design (ACSD’07)108

• Fahimeh Raja , Hadi Amiri , Samira Tasharofi and Hossein Hojjat and Farhad Oroumchian :
Evaluation of part of speech tagging on Persian text, The Second Workshop on Computational
Approaches to Arabic Script-based Languages (CAASL2’07)

• Hossein Hojjat, Hootan Nakhost, Marjan Sirjani: Formal Verification of the IEEE 802.1D Spanning
Tree Protocol Using Extended Rebeca. Electr. Notes Theor. Comput. Sci. 159: 139-154 (2006)

Journal Papers

• Bahman Pourvatan, Marjan Sirjani, Hossein Hojjat and Farhad Arbab: Symbolic Execution of Reo
Circuits using Constraint Automata. Science of Computer Programming, Elsevier, v. 77, n. 7-8,
pp. 848-869, 2012.

• Hossein Hojjat, Mohammad Reza Mousavi, Marjan Sirjani: Formal Analysis of SystemC Designs in
Process Algebra. Fundam. Inform. v. 107, n. 1, pp. 19-42, 2011.

• Hossein Hojjat, Hootan Nakhost, Marjan Sirjani: Integrating Module Checking and Deduction in a
Formal Proof for the Perlman Spanning Tree Protocol (STP), J.UCS Journal of Universal
Computer Science, v. 13, n. 13, pp. 2076-2104, 2007.

Technical Reports

• Hossein Hojjat, Mohammad Reza Mousavi Mousavi, Marjan Sirjani: Application of process
algebraic verification and reduction techniques to SystemC designs, Computer Science Report No.
08-15, Technische Universiteit Eindhoven.

Software Development

• Main developer of Eldarica, a predicate abstraction engine.

– http://lara.epfl.ch/w/eldarica

• SystemC to mCRL2 Toolkit

– http://www.win.tue.nl/~mousavi/sysc08

• Sarir: Rebeca to mcrl2 translator

– http://ece.ut.ac.ir/FML/sarir.htm

• Stochastic Process Algebras to mcrl2 translator

– http://www.win.tue.nl/~mousavi/spa

Teaching Assistance

Undergraduate

• Introduction to Computer Programming, (Fattane Taghiyareh) : Fall 2002

• Languages and Automata Theory, (Ali Mahjur) : Fall 2003, Spring 2004.

• Artificial Intelligence, (Hesham Faili) : Spring 2004, Fall 2004. 109

• Advanced Computer Programming, (Hossein Sheikh Attar) : Spring 2004

• Programming Languages Design, (Marjan Sirjani) : Fall 2005

• Informatique III (SSV), (Sebastian Gerlach) : Fall 2009

• Compiler Construction , (Viktor Kuncak) : Fall 2010

• Informatique Théorique Avancée, (Gregory Theoduloz) : Spring 2011

Graduate

• Modeling and Verification of Concurrent Systems, (Marjan Sirjani) : Spring 2006, Spring 2007.

• Synthesis, Analysis, and Verification, (Viktor Kuncak) : Spring 2010

110

	Cover page

	Acknowledgements
	Preface
	Abstract (English/Français)
	Contents

	Introduction
	Software verification: From Its Origins to Predicate Abstraction
	Predicate Abstraction
	Challenges and Limitations

	Technical Achievements
	Tools and Applications

	Outline

	Precise Modeling of Software
	Program Model
	The INTS Infrastructure
	Horn Clauses
	Discrete vs. Dense Domains

	Background on Predicate Abstraction
	 Predicate Abstraction
	Interpolation-Based Abstraction Refinement
	Example for Interpolation
	Algorithm for Constructing an ART

	Accelerating Interpolants
	Motivating Example
	Preliminaries
	Acceleration

	Interpolation-Based Abstraction Refinement
	Counterexample-Guided Accelerated Abstraction Refinement
	Computing Accelerated Interpolants
	Precise Acceleration of Bounded Trace Schemes
	Bounded Overapproximations of Trace Schemes
	Bounded Underapproximations of Trace Schemes

	Experimental Results

	Interpolation and Solving Horn Clauses
	Example: Verification of Recursive Predicates
	Formulae and Horn Clauses
	Horn Clauses

	The Relationship between Craig Interpolation and Horn Clauses
	Binary Craig Interpolants
	Inductive Sequences of Interpolants
	Tree Interpolants
	Restricted (and Unrestricted) DAG Interpolants

	Disjunctive Interpolants and Body-Disjoint Horn Clauses
	Solvability of Body-Disjoint Horn Clauses

	Solvability of Recursion-free Horn Clauses
	The Complexity of Recursion-free Horn Clauses
	The Complexity of Different Classes of Horn Clauses

	From Recursion-free Horn Clauses to Well-founded Clauses
	Model Checking with Recursive Horn Clauses
	A Predicate Abstraction-based Model Checking Algorithm
	Global Model Checking with Disjunctive Interpolation

	Experimental Evaluation
	Towards a Library of Interpolation Benchmarks

	Compositional Verification of Timed Systems Using Horn Clauses
	The Theory of Timed Automata
	Reasoning about Concurrent Programs
	Motivating Example
	Modeling Local Transitions
	Interleaving and Concurrency Rules
	Owicki-Gries Method
	Rely-Guarantee Method
	Modeling Parameterized Systems

	Evaluation

	Related Work
	Counterexample-Guided Accelerated Abstraction
	Disjunctive Interpolants
	Horn Clauses
	Verification of Timed Systems

	Conclusion
	Future Directions

	Bibliography
	Curriculum Vitae

