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Abstract. In this work, we present a semi-decision procedure for a fragment of
separation logic with user-defined predicates and Presburger arithmetic. To check
the satisfiability of a formula, our procedure iteratively unfolds the formula and
examines the derived disjuncts. In each iteration, it searches for a proof of either
satisfiability or unsatisfiability. Our procedure is further enhanced with automat-
ically inferred invariants as well as detection of cyclic proof. We also identify a
syntactically restricted fragment of the logic for which our procedure is terminat-
ing and thus complete. This decidable fragment is relatively expressive as it can
capture a range of sophisticated data structures with non-trivial pure properties,
such as size, sortedness and near-balanced. We have implemented the proposed
solver and a new system for verifying heap-based programs. We have evaluated
our system on benchmark programs from a software verification competition.

Keywords: Decision Procedures · Satisfiability · Separation Logic · Inductive
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1 Introduction

Satisfiability solvers, particularly those based on Satisfiability Modulo Theory (SMT)
technology [3,19], have made tremendous practical advances in the last decade to the
point where they are now widely used in tools for applications as diverse as bug finding
[27], program analyses [4] to automated verification [2]. However, current SMT solvers
are based primarily on first-order logic, and do not yet cater to the needs of resource-
oriented logics, such as separation logic [26,40]. Separation logic has recently estab-
lished a solid reputation for reasoning about programs that manipulate heap-based data
structures. One of its strengths is the ability to concisely and locally describe program
states that hold in separate regions of heap memory. In particular, a spatial conjunction
(i.e., κ1∗κ2) asserts that a given heap can be decomposed into two disjoint regions and
the formulas, κ1 and κ2, hold respectively and separately in the two memory regions.
In this work, we investigate the problem of verifying heap-manipulating programs in
the framework of SMT. We reduce this problem to solving verification conditions rep-
resenting precise program semantics [44,10,9,22].

Developing an SMT solver supporting separation logic with inductive predicates
and Presburger arithmetic is challenging as the satisfiability problem for this fragment
is undecidable [31,30]. We focus on an expressive fragment which consists of spatial
predicates expressing empty heap assertion (emp), points-to assertion (x7→c(v̄)), and
inductive predicate assertions (P(v̄)). Moreover, it may include pure constraints on data
values and capture desired properties of structural heaps (such as size, height, sorted-
ness and even near-balanced tree properties). We thus face the challenge of handling
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recursive predicates with pure properties, that are inherently infinite. Furthermore, we
would like to support both satisfiability (SAT) and unsatisfiability (UNSAT) checks.

There have been a number of preliminary attempts in this direction. For instance,
early proposals fixed the set of shape predicates that may be used, for example, to
linked lists (in SeLoger [17,23], and SLLB [34]) or trees (GRIT [36]). There are few
approaches supporting user-defined predicates [14,39,25]. Brotherston et. al. recently
made an important contribution by introducing SLSAT, a decision procedure for a frag-
ment of separation logic with arbitrary shape-only inductive predicates [12]. However,
SLSAT is limited to the shape domain, whereas shape predicates extended with pure
properties are often required for automated verification of functional correctness.

In this paper, we start by proposing a new procedure, called S2SAT, which com-
bines under-approximation and over-approximation for simultaneously checking SAT

and UNSAT properties for a sound and complete theory augmented with inductive pred-
icates. S2SAT takes a set of user-defined predicates and a logic formula as inputs. It it-
eratively constructs an unfolding tree by unfolding the formula in a breadth-first, flow-
and context-sensitive manner until either a symbolic model, or a proof of unsatisfiabil-
ity or a fixpoint (e.g., a cyclic proof) is identified. In each iteration, it searches over the
leaves of the tree (the disjunction of which is equivalent to the input formula) to check
whether there is a satisfiable leaf (which proves satisfiability) or whether all leaves are
unsatisfiable. In particular, to prove SAT, it considers base disjuncts which are derived
from base-case branches of the predicates. These disjuncts are under-approximations
of the input formula and critical for satisfiability. Disjuncts which have no inductive
predicates are precisely decided. To prove UNSAT, S2SAT over-approximates the leaves
prior to prove UNSAT. Our procedure systematically enumerates all disjuncts derived
from a given inductive formula, so it is terminating for SAT. However, it may not be ter-
minating for UNSAT with those undecidable augmented logic. To facilitate termination,
we propose an approach for fixpoint computation. This fixpoint computation is useful
for domains with finite model semantics i.e., collecting semantics for a given formula
of such domains is finite. In other words, the input formula is unsatisfiable when the
unfolding goes on forever without uncovering any models. We have implemented one
instantiation of the fixpoint detection for inductive proving based on cyclic proof [13]
s.t. the soundness of the cyclic proof guarantees the well-foundedness of all reasoning.

To explicitly handle heap-manipulating programs, we propose a separation logic
instantiation of S2SAT, called S2SATSL. Our base theory is a combination of the afore-
mentioned separation logic predicates except inductive predicates. We show that our de-
cision procedure for this base theory is sound and complete. S2SATSL over-approximates
formulas with soundly inferred predicate invariants. In addition, we describe some syn-
tax restrictions such that S2SATSL is always able to construct a cyclic proof for a re-
stricted formula so that our procedure is terminating and complete.

To summarize, we make the following technical contributions in this work.

– We introduce cyclic proof into a satisfiability procedure for a base theory aug-
mented with inductive predicates (refer to Sec. 3).

– We propose a satisfiability procedure for separation logic with user-defined predi-
cates and Presburger arithmetic (Sec. 4).



struct node {int val; node next;}
1 int main(int n){
2 if(n<0) return 0;
3 node x=ll(n);
4 int r=test(x);
5 if(!r) ERROR();
6 return 1;
7 }

8 node ll(int i){
9 if(i==0) return null;
10 else return new node(i,ll(i−1)); }

11 int test(node p){
12 if(p==null) return 1;
13 else {if(p->val<0) return 0;
14 else return test(p->next); }}

Fig. 1. Motivating Example.

– We prove that S2SATSL is: (i) sound for SAT and UNSAT; (ii) and terminating (i.e.,
proposing a new decision procedure) for restricted fragments (Sec. 5).

– We present a mechanism to automatically derive sound (over-approximated) invari-
ants for user-defined predicates (Sec. 6).

– We have implemented the satisfiability solver S2SATSL and the new verification sys-
tem, called S2td. We evaluated S2SATSL and S2td with benchmarks from recent com-
petitions. The experimental results show that our system is expressive, robust and
efficient (Sec. 7).

Proofs of Lemmas and Theorems presented in this paper are available in the companion
technical report [30].

2 Illustrative Example

We illustrate how our approach works with the example shown in Fig. 1. Our verifi-
cation system proves that this program is memory safe and function ERROR() (line 5)
is never called. Our system uses symbolic execution in [6,14] and large-block encod-
ing [8] to provide a semantic encoding of verification conditions. For safety, one of the
generated verification conditions is: ∆0 ≡ ll(n,x)00∗test(x,r1)10∧n≥0∧r1=0. If ∆0 is
unsatisfiable, function ERROR() is never called. In ∆0, ll and test are Interprocedu-
ral Control Flow Graph (ICFG) of the functions ll and test. Our system eludes these
ICFGs as inductive predicates. For each predicate, a parameter res is appended at the
end to model the return value of the function; for instance, the variables x (in ll) and r1
(in test) of ∆0 are the actual parameters corresponding to res. Each inductive predi-
cate instance is also labeled with a subscript for the unfolding number and a superscript
for the sequence number, which are used to control the unfolding in a breadth-first and
flow-sensitive manner.

To discharge ∆0, S2SATSL iteratively derives a series of unfolding trees Ti. An un-
folding tree is a tree such that each node is labeled with an unfolded disjunct, corre-
sponding to a path condition in the program. We say that a leaf of Ti is closed if it is
unsatisfiable; otherwise it is open. During each iteration, S2SATSL either proves SAT by
identifying a satisfiable leaf of Ti which contains no user-defined predicate instances
or proves UNSAT by showing that an over-approximation of all leaves is unsatisfiable.
Initially, T0 contains only one node ∆0. As ∆0 contains inductive predicates, it is not
considered for proving SAT. S2SATSL then over-approximates ∆0 to a first-order logic



formula by substituting each predicate instance with its corresponding sound invari-
ants in order to prove UNSAT. We assume that ll (resp. test) is annotated with in-
variant i≥0 (resp. 0≤res≤1). Hence, the over-approximation of ∆0 is computed as:
π0≡n≥0∧0≤r1≤1∧n≥0∧r1=0. Formula π0 is then passed to an SMT solver, such as
Z3 [19], for unsatisfiable checking. As expected, π0 is not unsatisfiable.

Next, S2SATSL selects an open leaf for unfolding to derive T1. A leaf is selected in a
breadth-first manner; furthermore a predicate instance of the selected leaf is selected for
unfolding if its sequence number is the smallest. With ∆0, the ll instance is selected.
As so, T1 has two open leaves corresponding to two derived disjuncts:

∆11≡test(x,r1)10∧n≥0∧r1=0∧n=0∧x=null

∆12≡x7→node(n,r2)∗ll(n1,r2)01∗test(x,r1)10∧n≥0∧r1=0∧n6=0∧n1=n−1

Since ∆11 and ∆12 include predicate instances, they are not considered for SAT. To
prove UNSAT, S2SATSL computes their over-approximated invariants:

π11≡0≤r1≤1∧n≥0∧r1=0∧n=0∧x=null

π12≡x6=null∧n1≥0∧0≤r1≤1∧n≥0∧r1=0∧n6=0∧n1=n−1

As neither π11 nor π12 is unsatisfiable, S2SATSL selects test of ∆11 for unfolding
to construct T2. For efficiency, unfolding is performed in a context-sensitive manner.

∆F
0

∆11 ∆12

∆32 ∆F
33

Fig. 2. Unfolding Tree T3.

A branch is infeasible (and pruned in advance) if its
invariant is inconsistent with the (over-approximated)
context. For instance, the invariant of the then branch
at line 12 of test is invtesto≡p=null∧res=1. As
invtesto (after proper renaming) is inconsistent with
π11, this branch is infeasible. Similarly, both else

branches of test are infeasible. For T3, the remaining
leaf ∆12 is selected for unfolding. As the test’s un-
folding number is smaller than ll’s, test is selected.
After the then branch is identified as infeasible and
pruned, T3 is left with two open leaves as shown in
Fig. 2, where infeasible leaves are dotted-lined. ∆32 and ∆33 are as below.

∆32≡x7→node(n,r2)∗ll(n1,r2)01∧n≥0∧r1=0∧n6=0∧n1=n−1∧x6=null∧n<0∧r1=0
∆33≡x7→node(n,r2)∗ll(n1,r2)01∗test(r2,r1)11∧n≥0 ∧ r1=0∧n6=0∧n1=n−1
∧x6=null∧n≥0

As ∆32 and ∆33 include inductive predicate instances, SAT checking is not applicable.
For UNSAT checking, S2SATSL proves that ∆32 is unsatisfiable (its unsatisfiable cores are
underlined as above); and shows that ∆33 can be linked back to ∆0 (i.e., subsumed
by ∆0). The latter is shown based on some weakening and substitution principles (see
Sec. 4.2). In particular: (i) Substituting ∆33 with θ=[n2/n,x1/x,n/n1,x/r2] such that
predicate instances in the substituted formula, i.e., ∆33a , and ∆0 are identical; as such,
∆33a is computed as below.

∆33a≡x1 7→node(n2,x)∗ll(n,x)01∗test(x,r1)11∧n2≥0∧r1=0∧n2 6=0∧n=n2−1
∧x1 6=null∧n2≥0



Algorithm 1: S2SAT Procedure.
input : λind

output: SAT or UNSAT
1 i←0; T0←{λind} ; /* initialize */
2 while true do
3 (is sat,Ti)← UA test(Ti) ; /* check SAT */
4 if is sat then return SAT ; /* SAT */
5 else
6 Ti←OA test(Ti) ; /* prune UNSAT */
7 Ti←link back(Ti) ; /* detect fixpoint */
8 if is closed(Ti) then return UNSAT; /* UNSAT */
9 else

10 λind
i←choose bfs(Ti) ; /* choose an open leaf */

11 i←i+1 ;
12 Ti←unfold(λind

i);
13 end
14 end
15 end

(ii) subtracting identical inductive predicates between∆33a and∆0; (iii) weakening the
remainder of ∆33a (i.e., x1 7→node(n2,x) is eliminated); (iv) checking validity of the
implication between pure of the remainder of ∆33a with the pure part of the remainder
of ∆0, i.e., n2≥0∧r1=0∧n2 6=0∧n=n2−1∧x1 6=null∧n2≥0 =⇒ n≥0∧r1=0. The
back-link between ∆33 and ∆0 establishes a cyclic proof which then proves ∆0 is
unsatisfiable.

3 S2SAT Algorithm

In this section, we present S2SAT, a procedure for checking satisfiability of formula with
inductive predicates. We start by defining our target formulas. Let L be a base theory
(logic) with the following properties: (i) L is closed under propositional combination
and supports boolean variables; (ii) there exists a complete decision procedure for L.
Let Lind be the extension of L with inductive predicate instances defined in a system
with a set of predicates P={P1, ..., Pk}. Each predicate may be annotated with a sound
invariant. We use λ to denote a formula in L and λind to denote a formula in the ex-
tended theory. Semantically, λind≡

∨n
i=0 λi, n≥0.

S2SAT is presented in Algorithm 1. S2SAT takes a formula λind as input, systemati-
cally enumerates disjuncts λi and can produce two possible outcomes if it terminates:
SAT with a satisfiable formula λi or UNSAT with a proof. We remark that non-termination
is classified as UNKNOWN.

S2SAT maintains a set of open leaves of the unfolding tree Ti that is derived from
λind. In each iteration, S2SAT selects and unfolds an open leaf so as either to include
more reachable base formulas (with the hope to produce a SAT answer), or to refine
inductive formulas (with the hope to produce an UNSAT answer). Specially, in each



iteration, S2SAT checks whether the formula is SAT at line 3; whether it is UNSAT at
line 6; whether a fixpoint can be established at line 7. Function UA test searches for
a satisfiable base disjunct (i.e., is sat is set to true). Simultaneously, it marks all
unsatisfiable base disjuncts closed. Next, function OA test uses predicate invariants
to over-approximate open leaves of Ti, and marks those with an unsatisfiable over-
approximation closed. After that, function link back attempts to link remaining open
leaves back to interior nodes so as to form a fixpoint (i.e., a (partial) pre-proof for in-
duction proving). The leaves which have been linked back are also marked as closed.
Whenever all leaves are closed, S2SAT decides λind as UNSAT (line 8). Otherwise, the
choose bfs (line 10) chooses an open leave in breadth-first manner for unfolding.

Procedure link back takes the unfolding tree Ti as input and checks whether each
open leaf λindbud∈Ti matches with one interior node λindcomp in Ti via a matching
function ffix. ffix is based on weakening and substitution principles [13]. Intuitively,
ffix detects the case of (i) the unfolding goes forever if we keep unfolding λindbud; and
(ii) λindbud has no model when λindcomp has no model. If ffix(λind

bud
, ∆comp)=true ,

∆bud is marked closed.
Our procedure systematically enumerates all disjuncts derived from a given induc-

tive formula, so it is terminating for SAT. However, it may not be terminating for UNSAT
with those undecidable augmented logic. In the next paragraph, we discuss the sound-
ness of the algorithm.

Soundness When S2SAT terminates, there are the following three cases.

– (case A) S2SAT produces SAT with a base satisfiable λindi;
– (case B) S2SAT produces UNSAT with a proof that all leaves of Ti are unsatisfiable;
– (case C) S2SAT produces UNSAT with a fixpoint: a proof that some leaves of Ti are

unsatisfiable and the remaining leaves are linked back.

Under the assumption that L is both sound and complete, case A can be shown to be
sound straightforwardly. Soundness of case B immediately follows the soundness of
OA test. In the following, we describe the cyclic proof instantiation of link back for
fixpoint detection and prove the soundness of case C.

We use CYCLIC to denote the cyclic proof for entailment procedure adapted from [13].
The following definitions are adapted from their analogues of CYCLIC.

Definition 1 (Pre-proof) A pre-proof derived for a formula λind is a pair (Ti,L) where
Ti is an unfolding tree whose root labelled by λind and L is a back-link function as-
signing every open leaf λindl of Ti to an interior node λindc =L(λindl) such that there
exists some substitution θ i.e., λindc = λindl[θ]. λindl is referred as a bud and λindc is
referred as its companion.

A path in a pre-proof is a sequence of nodes (λindi)i≥0.

Definition 2 (Trace) Let (λindi)i≥0 be a path in a pre-proof PP . A trace following
(λindi)i≥0 is a sequence (αi)i≥0 such that, for all i≥0, αi is a predicate instance P(t̄)
in the formula λindi, and either:

1. αi+1 is the subformula according to P(t̄) occurrence in λindi+1, or



2. λindi[t̄/v̄] where λindi is branches of inductive predicate P(v̄). i is a progressing
point of the trace.

To ensure that pre-proofs correspond to sound proofs, a global soundness condition
must be imposed on such pre-proofs as follows.

Definition 3 (Cyclic proof) A pre-proof is a cyclic proof if, for every infinite path
(λindi)i≥0, there is a tail of the path p=(λindi)i≥n such that there is an infinitely pro-
gressing trace following p.

Theorem 1 (Soundness). If there is a cyclic proof of λind0, λind0 is UNSAT.
Proof We reduce our cyclic proof problem for satisfiability to the cyclic proof
problem for entailment check, i.e., λind0 ` false of CYCLIC. Assume there is a
cyclic proof PP of λind0. From PP we construct the pre-proof PP` for the sequent
λind0 ` false as follows. For each node (λindi)i≥0 in PP , we replace the formula
λindi by the sequent λindi ` false . SincePP is a cyclic proof, it follows that for every
infinite path (λindi)i≥0, there is a tail of the path, p=(λindi)i≥n, such that there is an
infinitely progressing trace following p (Definition 3). Since formulas in [13] are only
traced through the LHS of the sequent and not its RHS, it is implied that for every in-
finite path (λindi`false )i≥0, there is a tail of the path, p=(λindi ` false )i≥n, such
that there is an infinitely progressing trace following p. Thus, PP` is a cyclic proof
(Definition 3 of [13]). As such λind0 |=false (Theorem 6 of [13]). In other words,
λind0 is UNSAT. �.

To sum up, to implement a sound cyclic proof system besides the matching func-
tion, a global soundness condition must be established on pre-proofs to guarantee well-
foundedness of all reasoning.

4 Separation Logic Instantiation of S2SAT

In this section, to explicitly handle heap-manipulating programs, we propose a separa-
tion logic instantiation of S2SAT, called S2SATSL. We start by presenting SLPA, a fragment
of separation logic with inductive predicates and arithmetic.

4.1 A Fragment of Separation Logic

Syntax The syntax of SLPA formulas is presented in Fig. 3. We use x̄ to denote a se-
quence (e.g., v̄ for sequence of variables), and xi to denote the ith element. Whenever
possible, we discard fi of the points-to predicate and use its short form as x7→c(vi).
Note that v1 6=v2 and v 6=null are short forms for ¬(v1=v2) and ¬(v=null), respec-
tively. All free variables are implicitly universally quantified at the outermost level. To
express different scenarios for shape predicates, the fragment supports disjunction Φ
over formulas. Each predicate instance is of the form P(v̄)ou where o and u are labels
used for context- and flow- sensitive unfolding. In particular, o captures the sequence
number and u is the number of unfolding. For simplicity, we occasionally omit these
two numbers if there is no ambiguity. A formula ∆ is a base formula if it does not have
any user-defined predicate instances. Otherwise, ∆ is an inductive formula.



Formula Φ ::= ∆ | Φ1 ∨ Φ2 ∆ ::= ∃v̄· (κ∧π)
Spatial formula κ ::= emp | x7→c(fi:vi) | P(v̄)ou | κ1∗κ2

Pure formula π ::= π1∧π2 | b | α | φ
Ptr (Dis)Equality α ::= v1=v2 | v=null | v1 6=v2 | v 6=null | α1∧α2

Presburger arith. φ ::= i | ∃v· φ | ¬φ | φ1∧φ2 | φ1∨φ2

Boolean formula b ::= true | false | v | b1=b2

Linear arithmetic i ::= a1=a2 | a1≤a2
a ::= kint | v | kint×a | a1+a2 | −a | max(a1,a2) | min(a1,a2)

P ∈ P c ∈ Node fi ∈ Fields v,vi,x,y,res,res
′ ∈ Var v̄ ≡ v1, . . ., vn

Fig. 3. Syntax.

User-Defined Predicate A user-defined predicate P is of the following general form

pred P(t̄) ≡
n∨

i=1

(∃w̄i·∆i | πb
i ) inv: π;

where P is predicate name; t̄ is a set of formal parameters; and ∃w̄i · ∆i (i ∈ 1...n) is a
branch. Each branch is optionally annotated with a sound invariant πb

i which is a pure
formula that over-approximates the branch. π is an optionally sound predicate invariant.
It must be a superset of all possible models of the predicate P via a pure constraint on
stack. The default invariant of each inductive predicate is true . For efficiency, we infer
more precise invariants automatically (See Sec.6). Inductive branches may be recursive.
We assume that the recursion is direct, i.e., a recursive branch of predicate P includes
at least one predicate instance P. In each branch, we require that variables which are
not formal parameters must be existentially quantified i.e., ∀i ∈ 1...n·FV(∆i)=t̄ and
w̄i∩t̄=∅ where FV(∆) are all free variables in the formula ∆.

In the following, we apply SLPA to model two data structures: sorted lists (sortll)
without an annotated invariant and AVL trees (avl) with annotated-invariant.

pred sortll(root,n,m) ≡ root7→node(m, null) ∧ n=1

∨ ∃ q,n1,m1·root7→node(m, q) ∗ sortll(q, n1,m1)∧n=n1+1∧m≤m1

struct c2 { c2 left; c2 right; } // data structure declaration
pred avl(root,n,h) ≡ emp ∧ root=null ∧ n=0 ∧ h=0 | root=null ∧ n=0 ∧ h=0

∨ ∃ l, r, n1, n2, h1, h2·root7→c2(l, r) ∗ avl(l, n1, h1) ∗ avl(r, n2, h2)∧
n=n1+n2+1 ∧ h=max(h1,h2)+1 ∧ −1≤h1−h2≤1 | root6=null ∧ n>0 ∧ h>0

inv: n≥0 ∧ h≥0

Semantics In the following, we discuss the semantics of SLPA. Concrete heap models
assume a fixed finite collection Node, a fixed finite collection Fields, a disjoint set Loc
of locations (heap addresses), a set of non-address values Val, such that null ∈ Val and
Val ∩ Loc = ∅. Further, we define:

Heaps def
= Loc⇀fin(Node→ Fields→ Val ∪ Loc)

Stacks def
= Var→ Val ∪ Loc



s, h |= emp iff h=∅
s, h |= v 7→c(fi : vi) iff l=s(v), dom(h)={l→ r} and r(c, fi)=s(vi)
s, h |= p(v̄) iff (s(v̄), h) ∈ [[p(v̄)]]
s, h |= κ1 ∗ κ2 iff ∃h1, h2· h1#h2 and h=h1·h2 and

s, h1 |= κ1 and s, h2 |= κ2

s, h |= true iff always
s, h |= false iff never
s, h |= ∃v1, ..., vn·(κ∧π) iff ∃α1...αn · s(v1 7→α1∗...∗vn 7→αn), h |= κ

and s(v1 7→α1∗...∗vn 7→αn) |= π
s, h |= Φ1 ∨ Φ2 iff s, h |= Φ1 or s, h |= Φ2

Fig. 4. Semantics.

The semantics is given by a forcing relation: s,h |= Φ that forces the stack s and heap
h to satisfy the constraint Φ where h ∈ Heaps, s ∈ Stacks, and Φ is a formula.

The semantics is presented in Fig. 4. dom(f) is the domain of function f ; h1#h2
denotes that heaps h1 and h2 are disjoint, i.e., dom(h1) ∩ dom(h2) = ∅; and h1·h2
denotes the union of two disjoint heaps. Inductive predicates are interpreted using the
least model semantics [42]. Semantics of pure formulas depend on stack valuations; it
is straightforward and omitted in Fig. 4, for simplicity.

4.2 Implementation of Separation Logic Instantiation

In the following, we describe how S2SATSL is realized. In particular, we show how the
functions UA test, OA test, unfold, and link back are implemented.

Deciding Separation Logic Formula Given an SLPA formula, the functions UA test and
OA test in S2SATSL work similarly, by reducing the formula to a first-order formula sys-
tematically and deciding the first-order formula. In the following, we define a function
called eXPure, which transforms a separation logic formula into a first-order formula.
eXPure is defined over the symbolic heap as follows:

eXPure(∃w̄· x1 7→c1(v̄1)∗...∗xn 7→cn(v̄n) ∗ P1(t̄1)∗...∗Pm(t̄m) ∧ π) ≡
∃ w̄·

∧
{xi 6=null | i∈1...n} ∧

∧
{xi 6=xj | i, j∈1...n and i6=j} ∧∧

{inv(P, Pj, t̄j) | j ∈ 1...m} ∧
π

where the reduction at the first line (after ≡) is for points-to predicates, and the sec-
ond line is for user-defined predicates. The auxiliary function inv(P, P, v̄) returns the
invariant of the predicate P with a proper renaming.

Next, the auxiliary procedure satp(∃w̄· π) takes a quantified first-order formula as
input. It preprocesses the formula and then invokes an SMT solver to solve it. The
preprocessing consists of two steps. First, the existential quantifiers w̄ are eliminated
through a projection Π(π, w̄). Second, remaining existential quantifiers are skolemized
and null is substituted by special number (i.e., zero). The preprocessed formulas are



of the form of linear arithmetic with free function symbols. These formulas may con-
tain existential (∃) and universal (∀) quantifiers but no ∃∀ alternation. Hence, they are
naively supported by SMT solvers.

Deriving Unfolding Tree Next, we describe how function unfold works in S2SATSL.
Given a formula, unfold selects one predicate instance for unfolding as follows.

πc≡eXPure(κ ∗ P(v̄) ∧ π) Γi=unfoldP(P(v̄)ou, πc)
unfold(∃w̄0· κ∗P(v̄)ou∧π) ; {∃w̄0· κ∗∆i∧π |∆i∈Γi}

Predicate instances in κ are sorted by a pair of unfolding number and ordering number
where the former has higher priority. The instance P(v̄)ou is selected if u is the smallest
number of unfoldings and o is the smallest number among instances which have the
same unfolding number u. The procedure unfold outputs a set of disjuncts which are
combined from branches of the predicate P with the remainder κ∧π. At the middle,
the predicate instance is unfolded by the procedure unfoldP. This auxiliary procedure
unfoldP(P(t̄)ou, πc) unfolds the user-defined predicate P with actual parameter t̄ under
the context πc. It outputs branches of the predicate P that are not inconsistent with the
context. It is formalized as follows.

πP
c ≡ Π(πc, v̄) (

∨m
i=1(∃w̄i· κi∧πi | πb

i ), t̄)=lookup(P, P) w̄′i=fresh(w̄i)

(v̄′, πeq)=freshEQ(v̄) ρp=[v̄′/t̄] ρ∃i =[w̄′i/w̄i] ρi=ρp ◦ ρ∃i
unfoldP(P(v̄)ou, πc) ; {∃w̄′i· [ρi]κi∧[ρi]πi∧πeq | satp(πP

c ∧[ρi]π
b
i∧πeq)6=unsat, i∈1...m}

In the first line, the procedure looks up the definition of P and refreshes the existen-
tial quantifiers (using the function fresh(...)). In the second line, formal parameters are
substituted by the corresponding actual arguments. Finally, the substituted definition is
combined and pruned as shown in the RHS of ;. Function freshEQ(v̄) above refreshes
the sequence of variables v̄ and produces the equality constraints πeq between the old
and new ones, i.e. πeq≡

∧
vi=v

′
i. Let Q(t̄)ol denote a predicate instance of the derived

κi, its unfolding number is set to u+1 if its corresponding branch ∆i is recursive. Oth-
erwise, it is u. Its sequence number is set to ol+o.

The branch invariant is used as a necessary condition to unfold a branch. The for-
malism underlying the pruning process is as follows: given a context ∆c with its over-
approximation πc and a branch∆i with its over-approximation πb

i , if πc∧πb
i is unsatisfi-

able, so is∆c∗∆i. Similar to the specialization calculus [15], our unfolding mechanism
also prunes infeasible disjuncts while unfolding user-defined predicates. However, the
specialization calculus performs exhaustive pruning with multiple unfolding that may
be highly costly and redundant compared with our one-step unfolding.

Detecting Cyclic Proof In the following, we implement the matching function fcyclic, an
instantiation of ffix, to form a cyclic proof for fixpoint detection. fcyclic checks whether
there exists a well-founded ordering relation R between ∆comp and ∆bud so as to form
an infinite path following the path between these two nodes. If ∆bud matches with
∆comp,∆bud is marked as closed. For global infinitary soundness, fcyclic only considers
those ∆bud and ∆comp of the restricted form as: ∆comp≡∆b1∗P1(t̄1)0m∗...∗Pi(t̄i)im,
and∆bud≡∆b2∗P1(t̄′1)0n∗...∗Pk(t̄′k)kn, where k≥i, n>m,∆b1 and∆b2 are base formulas.

Like [13], fcyclic is implemented using the weakening and substitution principles.
In particular, it looks for a substitution θ s.t.∆budθ =⇒ ∆comp. fcyclic(∆bud,∆comp)



[EX−L]
w̄′=fresh w̄ ∆1[w̄′/w̄] `lb ∆2

∃w̄·∆1 `lb ∆2

[EX−R]
w̄′=fresh w̄ ∆1 `lb ∆2[w̄′/w̄]

∆1 `lb ∃w̄·∆2

[PURE]
π1 =⇒ π2

π1 `lb π2

[SUBST]
s∈v̄ t∈w̄ ∃R· · ·R(s,t) t′=fresh t (κ1∗P(v̄)∧π1)[t′/t; t/s] `lb κ2∗P(w̄)∧π2

κ1∗P(v̄)∧π1 `lb κ2∗P(w̄)∧π2

[PRED−MATCH]
(κ1∧π1)[v̄/w̄] `lb κ2∧π2

κ1∗P(v̄)∧π1 `lb κ2∗P(w̄)∧π2

[PRED−WEAKEN]
P(w̄)6∈κ2 v̄∩FV(κ1∧π1)=∅ κ1∧π1 `lb κ2∧π2

κ1∗P(v̄)∧π1 `lb κ2∧π2

[PTO−MATCH]
(κ1∧π1)∧[v̄1/v̄2] `lb κ2∧π2

κ1∗v 7→c(v̄1)∧π1 `lb κ2∗v 7→c(v̄2)∧π2

[PTO−WEAKEN]
v 7→c(w̄)6∈κ1 (κ1∧π1)[v̄1/v̄2] `lb κ2∧π2

κ1∗v 7→c(v1)∧π1 `lb κ2∗v 7→c(v2)∧π2

Fig. 5. Rules for Back-Link.

is formalized as the procedure ∆bud `lb ∆comp whose rules are presented in Fig. 5.
These rules are applied as follows.

– First, existential variables are refreshed ([EX−L], [EX−R] rules).
– Second, inductive variables in ∆bud are substituted ([SUBST] rule). This substitu-

tion is based on well-ordering relations R. Let P(t)km be a predicate instance in
∆comp and its corresponding subformula in ∆bud be R(s,t), then s, t are inductive
variables. Two examples of well-founded relations R are structural induction for
pointer types where R(s,t) iff s is a subterm of t and natural number induction on
integers where R(s,t) iff 0<s<t.

– Third, heaps are exhaustively matched ([PRED−MATCH] and [PTO−MATCH] rules)
and weakened ([PRED−WEAKEN] and [PTO−WEAKEN] rules). Soundness of
these rules directly follows from the frame rule [26,40].

– Last, back-link is decided via the implication between pure formulas ([PURE] rule).

5 Soundness and Termination of S2SATSL

In the following, we establish the correctness of S2SATSL.

5.1 Soundness

We show that (i) S2SATSL is sound and complete for base formulas; and (ii) the func-
tions UA test, OA test and link back in S2SATSL are sound. These two tasks rely on
soundness and completeness of the function eXPure over base formulas, soundness of
eXPure over inductive formulas, and soundness of the function fcyclic.

Lemma 1 (Equiv-Satisfiable Reduction). Let∆≡∃w̄·x1 7→c1(v̄1)∗...∗xn 7→cn(v̄n)∧α∧φ
be a base formula. ∆ is satisfiable iff eXPure(∆) is satisfiable.



The proof is based on structural induction on ∆.

Lemma 2 (Over-Approximated Reduction). Given a formula ∆ such that the invari-
ants of user-defined predicates appearing in ∆ are sound, then

∀s, h · s, h|=∆ =⇒ s|=eXPure(∆)

In the following lemma, we consider the case Γ={} at line 8 of Algorithm 1.

Lemma 3. Given a formula ∆0 and the matching function fcyclic as presented in the
previous section, ∆0 is UNSAT if Γ={} (line 8).

To prove this Lemma, in [30] we show that there is a “trace manifold” which implies
the global infinitary soundness (see [11], ch. 7) when a bud is linked back.

Theorem 2 (Soundness). Given a formula ∆ and a set of user-defined predicates P ,
– ∆ is satisfiable if S2SATSL returns SAT.
– if S2SATSL terminates and returns UNSAT, ∆ is unsatisfiable.

While the soundness of SAT queries follows Lemma 1, the soundness of UNSAT queries
follows Lemma 2, and Lemma 3. As satisfiability for SLPA is undecidable [31,30], there
is no guarantee that S2SATSL terminates on all inputs. In the next subsection, we show
that S2SATSL terminates for satisfiable formulas in SLPA and with certain restrictions on
the fragment, S2SATSL always terminates.

5.2 Termination

Termination for SAT In this paragraph, we show that S2SATSL always terminates when
it decides a satisfiable formula. Given a satisfiable formula

∆≡∃w̄· x1 7→c1(v̄1)∗...∗xn 7→cn(v̄n) ∗P0(t̄0)00∗...∗Pn(t̄n)n0 ∧ π

There exists a satisfiable base formula ∆k such as:

∆k≡x1 7→c1(v̄1)∗...∗xn 7→cn(v̄n) ∗∆P0
k0
∗...∗∆Pn

kn
∧ π

where ∆P
k (k≥0) denotes a base formula derived by unfolding the predicate P k times

and then substituting all predicate instances P by P’s base branch. Let km be the maxi-
mal number among k0,..,kn. The breadth-first unfolding manner in the algorithm S2SAT

ensures that S2SATSL identifies ∆k before it encounters the following leaf:

y1 7→c1(t̄1)∗...∗yi 7→ci(t̄i) ∗ P0(t̄0)km+1∗...∗Pj(t̄j)km+1 ∧ π

We remark that the soundness of cyclic proof ensures that our link back function only
considers infinitely many unfolding traces. Thus, it never links finite many unfolding
traces, i.e., traces connecting the root to satisfiable base leaves, like ∆k.



Decidable Fragment In the following, we describe universal SLPAind, a fragment of
SLPA, for which we prove that S2SATSL always terminates. Compared to SLPA, universal
SLPAind restricts the set of inductive predicates P as well as the inputs of S2SATSL.

Definition 4 (SLPAind) An inductive predicate pred P(t̄)≡Φ is well-founded SLPAind
if it has one induction case with N occurrences of P, and it has the shape as follows.

Φ ≡ Φ0 ∨ ∃w̄·x1 7→c1(v̄1)∗...∗xn 7→cn(v̄n)∗P(w̄1)∗...∗P(w̄N )∧π
where Φ0 is disjunction of base formulas and the two following restrictions.

1. ∀n∈1...N w̄n⊆w̄∪{null} and w̄n do not appear in the equalities of π,
2. if ti is a numerical parameter and there exists a well-ordering relation R such that
R(s,ti,w1i ,..,wmi

) (1≤m≤N ) is a subformula of π, the following conditions hold.
– ti is constrained separately (i.e., there does not exist j 6=i and a subformula φ

of π such that {ti, tj}⊆FV (φ) or {ti, wnj
}⊆FV (φ) or {wmi

, wnj
}⊆FV (φ)

∀m,n∈1...N , and
– ∀n∈1...N , π =⇒ ti>wni

or π =⇒ ti<wni
.

– if ti∈FV (Φ0) then Φ0 =⇒ ti=k, for some integer k
ti is denoted as inductive parameters.

Restriction 1 guarantees that fcyclic can soundly weaken the heap by discarding irrele-
vant points-to predicates and N−1 occurrences of P (when N≥2) while it links back.
Restriction 2 implies that ti>wi≥k1 or ti<wi≤k2 for some integer k1, k2. This ensures
that leaf nodes of unfolding trees of an unsatisfiable input must be UNSAT or linked back.

The above SLPAind fragment is expressive enough to describe a range of data struc-
tures, e.g. sorted lists sortll, lists/trees with size properties, or even AVL trees avl.

Definition 5 (Universal SLPAind) Given a separation logic formula

∆0≡x1 7→c1(v̄1)∗...∗xn 7→cn(v̄n)∗P1(t̄1)∗...∗Pn(t̄n)∧φ0
∆0 is universal SLPAind if all predicates P1,..,Pn are well-founded SLPAind, and if all
x̄ of free, arithmetical, inductive variables, with x̄⊆(t̄1∪...∪t̄n), φ0 is a conjunction of
φ0,i where φ0,i is either of the following form: (i) true ; or (ii) xi≥k1 for some integer
k1; or (iii) xi≤k2 for some integer k2.

Theorem 3 (Termination). S2SATSL terminates for universal SLPAind formulas.

6 Sound Invariant Inference

In order to perform fully automatic verification without user-provided invariants, S2SATSL
supports automatic invariant inference. In this section, we describe invariant inference
from user-defined predicates and predicate branches. While the former is used for over-
approximation, the latter is used for context-sensitive predicate unfolding. To infer in-
variants for a set of user-defined predicates, we first build a dependency graph among
the predicates. After that, we process each group of mutual dependent predicates fol-
lowing a bottom-up manner. For simplicity, we present the inference for one directly
recursive predicate. The inference for a group of mutual inductive predicates is similar.



Inferring Predicate Invariant Our invariant inference is based on the principle of second-
order abduction [28,45]. Given the predicate P defined by m branches as P(t̄) ≡

∨m
i=1∆i,

we assume a sound invariant of P as an unknown (second-order ) variable I(t̄). After
that we prove the lemma P(v̄)`I(v̄) via induction; and simultaneously generate a set of
pure relational assumptions using second-order abduction. The steps to prove the above
lemma and generate a set of m relational assumptions over I are as follows.

1. Unfold LHS of the lemma to generate a set of m subgoals i.e. ∆i[v̄/t̄]`I(v̄) where
i ∈ 1...m. The original lemma is taken as the induction hypothesis.

2. For each subgoal i, over-approximate its LHS to a pure formula πi and form an
assumption relation πi =⇒ I(v̄). There are two cases to compute πi.

– if ∆i is a base formula, then πi≡eXPure(∆i).
– if ∆i includes k instances P such that ∆i≡∆resti∗P(v̄1)∗...∗P(v̄k), then we

compute πi0≡eXPure(∆resti), πij≡I(v̄j), for all j ∈ 1...k, and πi≡
∧k

j=1 πik .
3. Our system applies a least fixed point analysis to the set of gathered relational

assumptions. We use the analyzer LFP presented in [45] to compute these invariants.

We illustrate this procedure to infer an invariant for sortll. First, our system intro-
duces an unknown relation I(root,n,m). Second, it generates the below relational
constraints.

root6=null∧n=1 =⇒ I(root,n,m)
root6=null∧I(Q,N1,M1)∧n=N1+1∧m≤M1 =⇒ I(root,n,m)

Finally, it analyzes these two constraints and produces the following result:

I(root,n,m)≡root6=null∧n≥1

Lemma 4 (Sound Invariant Inference). Given a predicate P(t̄)≡ Φ, andR be a set of
relational assumptions generated by the steps above. If R has a solution, i.e., I(v̄)≡π,
then we have ∀s, h · s, h |= P(v̄), s |=π.

Proof Sketch : Soundness of Lemma 2 implies that for all i ∈ 1...m, πi is an over-
approximated abstraction of ∆i. As such, the soundness of this lemma immediately
follows from the soundness of second-order abduction [28,45]. �

Inferring Branch Invariant Given a predicate P defined by m branches as P(t̄) ≡∨m
i=1(∃w̄i·∆i) inv: π, we compute invariants for each branch of P asΠ(eXPure(∆i), w̄i)
∀ i=1...m. For example, with the invariant inferred for the predicate sortll as above,
our system computes its branch invariants πb

1 for the base branch and πb
2 for the induc-

tive branch as below.

πb
1 ≡Π(eXPure(root7→node(m, null) ∧ n=1), {})≡ root6=null ∧ n=1

πb
2 ≡Π(eXPure(root7→node(m, q) ∗ sortll(q, n1,m1)∧n=n1+1∧m≤m1),

{q,n1,m1}) ≡ root6=null ∧ n≥1

Soundness of eXPure implies that the branch invariant over-approximates its branch.



Table 1. Exponential Time and Space Satisfiability Checks.

succ-circuit (1-20) succ-rec (1-20)
n SLSAT S2SATSL n SLSAT S2SATSL n SLSAT S2SATSL n SLSAT S2SATSL
1 1 ms 21 ms 11 SO 37.46 s 1 0 ms 25 ms 11 1796.4 s 410.92 s
2 2 ms 23 ms 12 SO 170.53s 2 1 ms 30 ms 12 TO TO
3 27 ms 30 ms 13 SO 988.29s 3 4 ms 33 ms 13 TO TO
4 867ms 34 ms 14 SO TO 4 21 ms 39 ms 14 X TO
5 30 s 0.05 s 15 SO TO 5 134 ms 52 ms 15 X TO
6 30 s 0.09 s 16 SO TO 6 830 ms 76 ms 16 X TO
7 SO 0.20 s 17 SO TO 7 5.0 s 0.21 s 17 X TO
8 SO 0.61 s 18 SO TO 8 29.5 s 0.87 s 18 X TO
9 SO 2.21 s 19 SO TO 9 167.8 s 4.83 s 19 X TO
10 SO 8.49 s 20 SO TO 10 1065 s 45.28 s 20 X TO

7 Implementation and Evaluation

We have implemented the proposed solver S2SATSL and a new interprocedural (top-
down) program verification tool, called S2td, which uses S2SATSL. We make use of
Omega Calculator [38] to eliminate existential quantifiers, Z3 [19] as a back-end SMT
solver, and FixCalc [37] to find closure form in inferring invariants for user-defined
predicates.

In the following, we evaluate S2SATSL and S2td’s robustness and efficiency on a
set of benchmarks from the software verification competition SV-COMP [7]. We also
present an evaluation of S2SATSL in compositional (modular) program verification with
the HIP/S2 system [14,28] for a range of data structures.

7.1 Robustness and Efficiency

In [12], Brotherston et. al. introduced a new and challenging set of satisfiability bench-
marks discussed in Proposition 5.13 of [12]. In this Proposition, Brotherston et. al.
stated that there exists a family of predicates of size O(n) and that SLSAT runs in
Ω(2n) time and space regardless of search strategies. Since SLSAT relies on bottom-
up and context-insensitive fixed point computation, it has to explore all possible mod-
els before answering a query. Their approach is designed for computing invariants of
shape predicates rather than satisfiability checks. In contrast, S2SATSL performs top-
down and context-sensitive searches, as it is dedicated for satisfiability solving. More-
over, it prunes infeasible disjuncts, significantly reduces the search space, and provides
better support for model discovery.

We conducted an experiment on comparing SLSAT’s and S2SATSL’s performance on
this set of benchmarks. The results are shown in Table 1. The size n of succ−circuit∗
(succ−rec∗) benchmarks expresses the breadth (depth, resp.) of dependency. This set
of benchmarks is a part of the User-Defined Predicate Satisfiability (UDB sat) suite
of SL-COMP 2014 [41]. The output is either a definite answer (sat, unsat) with run-
ning time (in milliseconds (ms), or seconds (s)), or an error. In particular, SO denotes
stack overflow; TO denotes timeout (i.e., tools run longer than 1800 seconds); and X



Table 2. Experimental Results on Complex Data Structures.

Data Structure (pure props) #Query #UNSAT #SAT Time
Singly llist (size) 666 75 591 1.25
Even llist (size) 139 125 14 2.40

Sorted llist (size, sorted) 217 21 196 0.91
Doubly llist (size) 452 50 402 2.07

Complete Tree (size, minheight) 387 33 354 143.98
Heap Trees (size, maxelem) 467 67 400 13.87

AVL (height, size, near-balanced) 881 64 817 84.82
BST (height, size, sorted) 341 34 307 2.28
RBT (size, height, color) 1741 217 1524 65.54

rose-tree 55 6 49 0.34
TLL 128 13 115 0.24

Bubble (size, sorted) 300 20 280 1.09
Quick sort (size, sorted) 225 29 196 2.33

denotes a fatal error. The experimental results show that S2SATSL is much more robust
and also more efficient than SLSAT. While S2SATSL successfully solved 24 (out of 40)
benchmarks, SLSAT was capable of handling 17 benchmarks. Furthermore, on 17 bench-
marks that SLSAT discharged successfully, S2SATSL outperforms SLSAT, i.e., about 6.75
(3126seconds/462seconds) times faster. As shown in the table, S2SATSL ran with neither
stack overflow nor fatal errors over all these challenging benchmarks.

7.2 Modular Verification with S2SATSL

In this subsection, we evaluate S2SATSL in the context of modular program verifica-
tion. S2SATSL solver is integrated into the HIP/S2 [14,29,28] system to prune infeasible
program paths in symbolic execution. Furthermore, S2SATSL is also used by the entail-
ment procedure SLEEK to discharge verification conditions (VC) generated. In particular,
when SLEEK deduces a VC to the following form: ∆ ` emp∧πr, the error calculus in
SLEEK [29] invokes S2SATSL to discharge the following queries:∆ and∆∧¬πr for safety
and∆∧πr for must errors. In experiments, we have extracted those VCs generated while
HIP/S2 verified heap-manipulating programs.

We have evaluated S2SATSL deciding the VCs discussed above. The experimental
results are described in Table 2. Each line shows a test on one program. The first col-
umn lists data structures and their pure properties. rose-trees are trees with nodes that
are allowed to have a variable number of children, stored as doubly-linked lists. TLL
is a binary tree whose nodes point to their parents and all leaf nodes are linked as a
singly-linked list. #Query is the number of satisfiability queries sent to S2SATSL for each
data structure. The next two columns report the outputs from S2SATSL. The last column
shows the time (in seconds) taken by the S2SATSL solver. In this experiment, S2SATSL ter-
minated on all queries. Furthermore it exactly decided all SAT and UNSAT queries. These
experimental results affirm the correctness of our algorithm S2SATSL. They also show
that S2SATSL is expressive, effective, and can be integrated into program verification
systems for discharging satisfiability problems of separation logic formulas.



7.3 Recursive Program Verification with S2SATSL

We have evaluated and compared our verification system S2td with state-of-the-art ver-
ification tools on a set of SV-COMP benchmarks1. The results are presented in Table 3.

Table 3. Experimental Results on Recursive Programs.

Tool #s
√

#e
√

#unk #s7 #e7 points mins
ESBMC [18] 38 40 21 0 3 20 53

UAutomizer [24] 17 23 62 0 0 57 23
SeaHorn [22] 48 45 5 4 0 77 26
CBMC [16] 33 39 29 1 0 89 90

Smack-Corral [1] 33 37 28 0 0 103 105
S2td 41 45 16 0 0 127 25

There are 102 recursive/loop
programs taken from Recur-
sive and HeapReach sub-
categories in the benchmark;
timeout is set to 180 seconds.
In each program, there is at
least one user-supplied as-
sertion to model safety prop-
erties. The first column iden-
tities the subset of verifi-
cation systems which com-
peted in both the above sub-categories. The next three columns count the instances of
correct safe (s

√
), correct error (e

√
) and unknown (e.g., timeout). The next two columns

capture the number of false positives (s7) and false negatives (e7). We rank these tools
based on their points. Following the SV-COMP competition, we gave +2 for one s

√
,

+1 for one e
√

, 0 for unk, -16 for one s7, and -32 for one e7. The last column expresses
the total time in minutes. The results show that the proposed verification approach is
promising; indeed, our system is effective and efficient: it produces the best correctness
with zero false answers within the nearly-shortest time.

8 Related Work

Close to our work is the SeaHorn verification system [22]. While SeaHorn relies on
Z3-PDR to handle inductive predicates on non-heap domains, it is unclear (to us) how
SeaHorn supports induction reasoning for heap-based programs (which is one contri-
bution of our present work).

Our S2SAT satisfiability procedure is based on unfolding which is similar to the
algorithm in the Leon system [43,44]. Leon, a verifier for functional programs, adds an
unfolding mechanism for inductive predicates into complete theories. However, Leon
only supports classic logic and not structural logic (i.e., separation logic). Neither does
Leon support inductive reasoning. Furthermore, our system infers sound invariants for
inductive predicates to facilitate over-approximation.

Our work is related to work on developing satisfiability solvers in separation logic.
In the following, we summarize the development in this area. Smallfoot [5] has the first
implemented decision procedure for a fragment of separation logic. This solver was
originally customized to work with spatial formulas over list segments. Based on a fixed
equality (disequality) constraint branches of the list segment, the proposals presented
by [17] and [32] further enhanced decision procedure for this fragment with equality
reasoning. They provided normalization rules with a graph technique [17] and a su-
perposition calculus [32] to infer (dis)equality constraints on pointers and used these

1 http://sv-comp.sosy-lab.org/2016/

http://sv-comp.sosy-lab.org/2016/


constraints to prune infeasible branches of predicate instances during unfolding. Al-
though these proposals can decide the formula of that fragment in polynomial time, it is
not easy to extend them to a fragment with general inductive predicates (i.e., the frag-
ment SLPA). Decision procedures in [34,36,35] and [33] support decidable fragments
of separation logic with inter-reachable data structures using SMT. Our proposal ex-
tends these procedures to those fragments with general inductively-defined predicates.
Indeed, our decidable fragment can include more complex data structures, such as AVL
trees.

S2SATSL is closely related to the satisfiability solvers [25,12] which are capable of
handling separation logic formulas with general user-defined predicates. Decision pro-
cedures [25] and [12] are able to handle predicates without pure properties. The former
described a decidable fragment of user-defined predicates with bounded tree width. The
problem of deciding separation logic formulas is then reduced to monadic second-order
logic over graphs. The latter, SLSAT, decides formulas with user-defined predicates via
a equi-satisfiable fixed point calculation. The main disadvantage of SLSAT is that it is
currently restricted to the domain of pointer equality and disequality, so that it cannot
be used to support predicates with pure properties from infinite abstract domains.

Using over-approximation in decision procedures is not new. For example, D’Silva
et. al. have recently made use of abstract domains inside satisfiability solvers [20,21].
In separation logic, satisfiability procedures in HIP/SLEEK [14] and Dryad [39] decide
formulas via a sound reduction that over-approximates predicate instances. HIP/SLEEK
and Dryad are capable of proving the validity of a wide range of expressive formulas
with arbitrary predicates. However, expressivity comes with cost; as these procedures
are incomplete, and they do not address the satisfiability problem. We believe that S2SAT
can be integrated into these systems to improve upon these two shortcomings.

9 Conclusion and Future Work

We have presented a satisfiability procedure for an expressive fragment of separation
logic. Given a formula, our procedure examines both under-approximation (so as to
prove SAT) and over-approximation (so as to prove UNSAT). Our procedure was strength-
ened with invariant generation and cyclic proof detection. We have also implemented a
solver and a new verification system for heap-manipulating programs. We have evalu-
ated them on a range of competition problems with either complex heap usage patterns
or exponential complexity of time and space.

For future work, we might investigate S2SAT-based decision procedures for other
complete theories (i.e., Presburger, string, bag/set) augmented with inductive predicates.
We would also study a more general decidable fragment of separation logic by relaxing
the restrictions for termination. Finally, we would like to improve S2td for array, string
and pointer arithmetic reasoning as well as witness generation for erroneous programs.
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