7,840 research outputs found

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Currency security and forensics: a survey

    Get PDF
    By its definition, the word currency refers to an agreed medium for exchange, a nation’s currency is the formal medium enforced by the elected governing entity. Throughout history, issuers have faced one common threat: counterfeiting. Despite technological advancements, overcoming counterfeit production remains a distant future. Scientific determination of authenticity requires a deep understanding of the raw materials and manufacturing processes involved. This survey serves as a synthesis of the current literature to understand the technology and the mechanics involved in currency manufacture and security, whilst identifying gaps in the current literature. Ultimately, a robust currency is desire

    Measurements of the Solid-body Rotation of Anisotropic Particles in 3D Turbulence

    Full text link
    We introduce a new method to measure Lagrangian vorticity and the rotational dynamics of anisotropic particles in a turbulent fluid flow. We use 3D printing technology to fabricate crosses (two perpendicular rods) and jacks (three mutually perpendicular rods). Time-resolved measurements of their orientation and solid-body rotation rate are obtained from stereoscopic video images of their motion in a turbulent flow between oscillating grids with RλR_\lambda=9191. The advected particles have a largest dimension of 6 times the Kolmogorov length, making them a good approximation to anisotropic tracer particles. Crosses rotate like disks and jacks rotate like spheres, so these measurements, combined with previous measurements of tracer rods, allow experimental study of ellipsoids across the full range of aspect ratios. The measured mean square tumbling rate, p˙ip˙i\langle \dot{p}_i \dot{p}_i \rangle, confirms previous direct numerical simulations that indicate that disks tumble much more rapidly than rods. Measurements of the alignment of crosses with the direction of the solid-body rotation rate vector provide the first direct observation of the alignment of anisotropic particles by the velocity gradients of the flow.Comment: 15 pages, 7 figure

    Electron spin resonance of nitrogen-vacancy centers in optically trapped nanodiamonds

    Full text link
    Using an optical tweezers apparatus, we demonstrate three-dimensional control of nanodiamonds in solution with simultaneous readout of ground-state electron-spin resonance (ESR) transitions in an ensemble of diamond nitrogen-vacancy (NV) color centers. Despite the motion and random orientation of NV centers suspended in the optical trap, we observe distinct peaks in the measured ESR spectra qualitatively similar to the same measurement in bulk. Accounting for the random dynamics, we model the ESR spectra observed in an externally applied magnetic field to enable d.c. magnetometry in solution. We estimate the d.c. magnetic field sensitivity based on variations in ESR line shapes to be ~50 microTesla/Hz^1/2. This technique may provide a pathway for spin-based magnetic, electric, and thermal sensing in fluidic environments and biophysical systems inaccessible to existing scanning probe techniques.Comment: 29 pages, 13 figures for manuscript and supporting informatio

    Steganography and Steganalysis in Digital Multimedia: Hype or Hallelujah?

    Get PDF
    In this tutorial, we introduce the basic theory behind Steganography and Steganalysis, and present some recent algorithms and developments of these fields. We show how the existing techniques used nowadays are related to Image Processing and Computer Vision, point out several trendy applications of Steganography and Steganalysis, and list a few great research opportunities just waiting to be addressed.In this tutorial, we introduce the basic theory behind Steganography and Steganalysis, and present some recent algorithms and developments of these fields. We show how the existing techniques used nowadays are related to Image Processing and Computer Vision, point out several trendy applications of Steganography and Steganalysis, and list a few great research opportunities just waiting to be addressed

    Copyright protection for the electronic distribution of text documents

    Get PDF
    Each copy of a text document can be made different in a nearly invisible way by repositioning or modifying the appearance of different elements of text, i.e., lines, words, or characters. A unique copy can be registered with its recipient, so that subsequent unauthorized copies that are retrieved can be traced back to the original owner. In this paper we describe and compare several mechanisms for marking documents and several other mechanisms for decoding the marks after documents have been subjected to common types of distortion. The marks are intended to protect documents of limited value that are owned by individuals who would rather possess a legal than an illegal copy if they can be distinguished. We will describe attacks that remove the marks and countermeasures to those attacks. An architecture is described for distributing a large number of copies without burdening the publisher with creating and transmitting the unique documents. The architecture also allows the publisher to determine the identity of a recipient who has illegally redistributed the document, without compromising the privacy of individuals who are not operating illegally. Two experimental systems are described. One was used to distribute an issue of the IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, and the second was used to mark copies of company private memoranda

    Ultra high frequency (UHF) radio-frequency identification (RFID) for robot perception and mobile manipulation

    Get PDF
    Personal robots with autonomy, mobility, and manipulation capabilities have the potential to dramatically improve quality of life for various user populations, such as older adults and individuals with motor impairments. Unfortunately, unstructured environments present many challenges that hinder robot deployment in ordinary homes. This thesis seeks to address some of these challenges through a new robotic sensing modality that leverages a small amount of environmental augmentation in the form of Ultra High Frequency (UHF) Radio-Frequency Identification (RFID) tags. Previous research has demonstrated the utility of infrastructure tags (affixed to walls) for robot localization; in this thesis, we specifically focus on tagging objects. Owing to their low-cost and passive (battery-free) operation, users can apply UHF RFID tags to hundreds of objects throughout their homes. The tags provide two valuable properties for robots: a unique identifier and receive signal strength indicator (RSSI, the strength of a tag's response). This thesis explores robot behaviors and radio frequency perception techniques using robot-mounted UHF RFID readers that enable a robot to efficiently discover, locate, and interact with UHF RFID tags applied to objects and people of interest. The behaviors and algorithms explicitly rely on the robot's mobility and manipulation capabilities to provide multiple opportunistic views of the complex electromagnetic landscape inside a home environment. The electromagnetic properties of RFID tags change when applied to common household objects. Objects can have varied material properties, can be placed in diverse orientations, and be relocated to completely new environments. We present a new class of optimization-based techniques for RFID sensing that are robust to the variation in tag performance caused by these complexities. We discuss a hybrid global-local search algorithm where a robot employing long-range directional antennas searches for tagged objects by maximizing expected RSSI measurements; that is, the robot attempts to position itself (1) near a desired tagged object and (2) oriented towards it. The robot first performs a sparse, global RFID search to locate a pose in the neighborhood of the tagged object, followed by a series of local search behaviors (bearing estimation and RFID servoing) to refine the robot's state within the local basin of attraction. We report on RFID search experiments performed in Georgia Tech's Aware Home (a real home). Our optimization-based approach yields superior performance compared to state of the art tag localization algorithms, does not require RF sensor models, is easy to implement, and generalizes to other short-range RFID sensor systems embedded in a robot's end effector. We demonstrate proof of concept applications, such as medication delivery and multi-sensor fusion, using these techniques. Through our experimental results, we show that UHF RFID is a complementary sensing modality that can assist robots in unstructured human environments.PhDCommittee Chair: Kemp, Charles C.; Committee Member: Abowd, Gregory; Committee Member: Howard, Ayanna; Committee Member: Ingram, Mary Ann; Committee Member: Reynolds, Matt; Committee Member: Tentzeris, Emmanoui

    Autoencoding sensory substitution

    Get PDF
    Tens of millions of people live blind, and their number is ever increasing. Visual-to-auditory sensory substitution (SS) encompasses a family of cheap, generic solutions to assist the visually impaired by conveying visual information through sound. The required SS training is lengthy: months of effort is necessary to reach a practical level of adaptation. There are two reasons for the tedious training process: the elongated substituting audio signal, and the disregard for the compressive characteristics of the human hearing system. To overcome these obstacles, we developed a novel class of SS methods, by training deep recurrent autoencoders for image-to-sound conversion. We successfully trained deep learning models on different datasets to execute visual-to-auditory stimulus conversion. By constraining the visual space, we demonstrated the viability of shortened substituting audio signals, while proposing mechanisms, such as the integration of computational hearing models, to optimally convey visual features in the substituting stimulus as perceptually discernible auditory components. We tested our approach in two separate cases. In the first experiment, the author went blindfolded for 5 days, while performing SS training on hand posture discrimination. The second experiment assessed the accuracy of reaching movements towards objects on a table. In both test cases, above-chance-level accuracy was attained after a few hours of training. Our novel SS architecture broadens the horizon of rehabilitation methods engineered for the visually impaired. Further improvements on the proposed model shall yield hastened rehabilitation of the blind and a wider adaptation of SS devices as a consequence
    corecore