1,919 research outputs found

    Taking Politics at Face Value: How Features Expose Ideology

    Get PDF
    Previous studies using computer vision neural networks to analyze facial images have uncovered patterns in the feature extracted output that are indicative of individual dispositions. For example, Wang and Kosinski (2018) were able to predict the sexual orientation of a target from his or her facial image with surprising accuracy, while Kosinski (2021) was able to do the same in regards to political orientation. These studies suggest that computer vision neural networks can be used to classify people into categories using only their facial images.However, there is some ambiguity in regards to the degree to which these features extracted from facial images incorporate facial morphology when used to make predictions. Critics have suggested that a subject’s transient facial features, such as using makeup, having a tan, donning a beard, or wearing glasses, might be subtly indicative of group belonging (AgĂŒera y Arcas et al., 2018). Further, previous research in this domain has found that accurate image categorization can occur without utilizing facial morphology at all, instead relying upon image brightness, color dominance, or the background of the image to make successful classifications (Leuner, 2019; Wang, 2022). This dissertation seeks to bring some clarity to this domain. Using an application programming interface (API) for the popular social networking site Twitter, a sample of nearly a quarter million images of ideological organization followers was created. These images were followers of organizations supportive of, or oppositional to, the polarizing political issues of gun control and immigration. Through a series of strong comparisons, this research tests for the influence of facial morphology in image categorization. Facial images were converted into point and mesh coordinate representations of the subjects’ faces, thus eliminating the influence of transient facial features. Images were able to be classified using facial morphology alone at rates well above chance (64% accuracy across all models utilizing only facial points, 62% using facial mesh). These results provide the strongest evidence to date that images can be categorized into social categories by their facial morphology alone

    Introduction to Psychology

    Get PDF
    Introduction to Psychology is a modified version of Psychology 2e - OpenStax

    Motivation moderates gender differences in navigation performance.

    Get PDF
    Gender differences in navigation performance are a recurrent and controversial topic. Previous research suggests that men outperform women in navigation tasks and that men and women exhibit different navigation strategies. Here, we investigate whether motivation to complete the task moderates the relationship between navigation performance and gender. Participants learned the locations of landmarks in a novel virtual city. During learning, participants could trigger a top-down map that depicted their current position and the locations of the landmarks. During testing, participants were divided into control and treatment groups and were not allowed to consult the map. All participants were given 16 minutes to navigate to the landmarks, but those in the treatment group were monetarily penalized for every second they spent completing the task. Results revealed a negative relationship between physiological arousal and the time required to locate the landmarks. In addition, gender differences in strategy were found during learning, with women spending more time with the map and taking 40% longer than men to locate the landmarks. Interestingly, an interaction between gender and treatment group revealed that women in the control group required more time than men and women in the treatment group to retrieve the landmarks. During testing, women in the control group also took more circuitous routes compared to men in the control group and women in the treatment group. These results suggest that a concurrent and relevant stressor can motivate women to perform similarly to men, helping to diminish pervasive gender differences found in the navigation literature

    Tradition and Innovation in Construction Project Management

    Get PDF
    This book is a reprint of the Special Issue 'Tradition and Innovation in Construction Project Management' that was published in the journal Buildings

    Cerebral Metamorphopsia: Perceived spatial distortion from lesions of the adult human central visual pathway

    Get PDF
    Metamorphopsia is the perceived visual illusion of spatial distortion. Cerebral causes of metamorphopsia are much less common than retinal or ocular causes. Cerebral metamorphopsia can be caused by lesions along the central visual pathway or as a manifestation of epileptogenic discharges. Geometric visual distortions may result from structural lesions of the central visual pathway after reorganisation of the retinotopic representation in the cortex. Very few experimental investigations have been performed regarding cerebral metamorphopsia as it is often viewed as a clinical curiousity and analysis of the perceived distortion is difficult due to its subjective nature. Investigations have been undertaken to understand cortical plasticity as an explanation for visual filling-in. There has been much interest in cortical reorganisation after injuries to the peripheral and central visual pathway. Behavioural experiments aimed at quantifying the possible visual spatial distortion surrounding homonymous paracentral scotomas may be able to demonstrate cortical reorganisation after brain-damage and provide clues regarding the neural processes of visual perception. The aims of the thesis are: 1. To identify which cases of metamorphopsia, both published and unpublished, might be a consequence of cortical spatial reorganisation of retinotopic projections. 2. To investigate perceptual spatial distortion surrounding homonymous paracentral scotomas in adults with isolated unilateral injuries of the striate cortex. A review of the literature describing cases of cerebral metamorphopsia was performed. Metamorphopsia caused by retinal or ocular pathology, psychiatric conditions, drugs or medications were excluded. A retrospective case series of eight patients with metamorphopsia from a cerebral cause was performed in two clinical neurology practices specialising in vision disorders. Two cases who suffered from paracentral homonymous scotomas due to isolated unilateral primary visual cortex (V1) lesions were identified from a Neuro-ophthalmology practice. Neuropsychophysical experiments to investigate visual spatial perception surrounding their scotomas were developed and tested using MATLAB and Psychtoolbox. The use of the term 'metamorphopsia' was only in reference to cases in which contours or lines were experienced as distorted. In the published literature, few cases of cerebral metamorphopsia have been identified as being potentially due to cortical reorganisation. The main result is a statistically significant visual spatial distortion in the visual field surrounding a paracentral homonymous scotoma when compared to a normal control. There is also significant distortion of perception in the subjects' "unaffected" visual hemifield. After lesions of V1, visual perceptual spatial distortions may occur in the visual field surrounding homonymous paracentral scotomas. The spatial distortion may also occur in the normal hemifield possibly due to long-range cortical connections crossing to the other hemisphere through the corpus callosum. A collaborative approach across disciplines within vision science is required to further investigate the mechanisms responsible for perceptual visual illusions. Behavioural testing in brain-damaged cases remains important in developing theories of normal visual processing. New neuroimaging and neuroscience techniques could then test these theories, furthering our understanding of visual perception. An understanding of normal visual perception could allow future modification of neuronal processes to harness cortical reorganisation and potentially restore functional vision in humans with lesions of the central visual pathway

    Seeing Ordinary Objects: The Minimal Condition, Amodal Completion, and Mental Files

    Full text link
    This thesis seeks to explain the way in which we see ordinary objects like books, tables, and apples. Specifically, it is an attempt to explain the way that we are connected to the ordinary objects that populate our world despite the fact that we usually only receive sensory stimulation from small parts of them: their surfaces. I will suggest some conditions that must obtain for ordinary objects to be seen and present a conceptual schema based on the notion of ‘mental files’ that can be used to explain this phenomenon. Mental files, I argue, can not only be used to explain our perceptual connection to ordinary objects but can also dissolve some of the epistemic worries raised by amodal completion and the problem of incomplete sensory information

    Graphonomics and your Brain on Art, Creativity and Innovation : Proceedings of the 19th International Graphonomics Conference (IGS 2019 – Your Brain on Art)

    Get PDF
    [Italiano]: “Grafonomia e cervello su arte, creatività e innovazione”. Un forum internazionale per discutere sui recenti progressi nell'interazione tra arti creative, neuroscienze, ingegneria, comunicazione, tecnologia, industria, istruzione, design, applicazioni forensi e mediche. I contributi hanno esaminato lo stato dell'arte, identificando sfide e opportunità, e hanno delineato le possibili linee di sviluppo di questo settore di ricerca. I temi affrontati includono: strategie integrate per la comprensione dei sistemi neurali, affettivi e cognitivi in ambienti realistici e complessi; individualità e differenziazione dal punto di vista neurale e comportamentale; neuroaesthetics (uso delle neuroscienze per spiegare e comprendere le esperienze estetiche a livello neurologico); creatività e innovazione; neuro-ingegneria e arte ispirata dal cervello, creatività e uso di dispositivi di mobile brain-body imaging (MoBI) indossabili; terapia basata su arte creativa; apprendimento informale; formazione; applicazioni forensi. / [English]: “Graphonomics and your brain on art, creativity and innovation”. A single track, international forum for discussion on recent advances at the intersection of the creative arts, neuroscience, engineering, media, technology, industry, education, design, forensics, and medicine. The contributions reviewed the state of the art, identified challenges and opportunities and created a roadmap for the field of graphonomics and your brain on art. The topics addressed include: integrative strategies for understanding neural, affective and cognitive systems in realistic, complex environments; neural and behavioral individuality and variation; neuroaesthetics (the use of neuroscience to explain and understand the aesthetic experiences at the neurological level); creativity and innovation; neuroengineering and brain-inspired art, creative concepts and wearable mobile brain-body imaging (MoBI) designs; creative art therapy; informal learning; education; forensics
    • 

    corecore