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Unlike assistive technology for verbal communication, the brain-machine or brain-computer
interface (BMI/BCI) has not been established as a non-verbal communication tool for
amyotrophic lateral sclerosis (ALS) patients. Face-to-face communication enables access
to rich emotional information, but individuals suffering from neurological disorders, such as
ALS and autism, may not express their emotions or communicate their negative feelings.
Although emotions may be inferred by looking at facial expressions, emotional prediction
for neutral faces necessitates advanced judgment. The process that underlies brain
neuronal responses to neutral faces and causes emotional changes remains unknown. To
address this problem, therefore, this study attempted to decode conditioned emotional
reactions to neutral face stimuli. This direction was motivated by the assumption
that if electroencephalogram (EEG) signals can be used to detect patients’ emotional
responses to specific inexpressive faces, the results could be incorporated into the
design and development of BMI/BCI-based non-verbal communication tools. To these
ends, this study investigated how a neutral face associated with a negative emotion
modulates rapid central responses in face processing and then identified cortical activities.
The conditioned neutral face-triggered event-related potentials that originated from the
posterior temporal lobe statistically significantly changed during late face processing
(600–700 ms) after stimulus, rather than in early face processing activities, such as P1
and N170 responses. Source localization revealed that the conditioned neutral faces
increased activity in the right fusiform gyrus (FG). This study also developed an efficient
method for detecting implicit negative emotional responses to specific faces by using
EEG signals. A classification method based on a support vector machine enables the easy
classification of neutral faces that trigger specific individual emotions. In accordance with
this classification, a face on a computer morphs into a sad or displeased countenance. The
proposed method could be incorporated as a part of non-verbal communication tools to
enable emotional expression.
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INTRODUCTION
Unlike assistive technology for verbal communication, the brain-
machine or brain-computer interface (BMI/BCI) has not been
sufficiently established as a non-verbal communication tool for
amyotrophic lateral sclerosis (ALS) patients (Nijboer et al., 2009;
Tomik and Guiloff, 2010). Although face-to-face communication
provides rich emotional information, late-stage ALS patients may
experience difficulties in expressing their emotions because the
disorder causes severe muscular paralysis (Iversen et al., 2008;
Nijboer et al., 2009). Similarly, autistic individuals cannot ade-
quately communicate negative feelings during non-verbal com-
munication (Dalton et al., 2005). Emotions in these individuals
will be easily predicted by looking at emotional facial expres-
sions of visitors (e.g., positive feelings triggered by smiling faces
and negative feelings stimulated by angry faces). However, people

feel certain emotions even when observing an inexpressive face
that is associated with an experience or socially relevant mem-
ory. Emotional prediction induced by inexpressive faces of visitors
will necessitate advanced judgment underlain by various brain
activities.

A crucial component of smooth communication is the abil-
ity to discern emotional states from facial expressions. Previous
neuroimaging studies have implicated the fusiform gyrus (FG)
and superior temporal sulcus (STS) as specifically involved in face
processing activities (George et al., 1999; Leppänen and Nelson,
2009). This finding is supported by evidence that FG lesions in
patients with prosopagnosia impair the ability to perceive facial
configurations (Sergent and Signoret, 1992; Barton et al., 2002).
The neural system for face perception is divided into a core sys-
tem (the inferior occipital gyrus, lateral FG, and STS) for visual
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analysis and an extended system [intraparietal sulcus, amygdala
(AMG), insula, etc.] for cognitive functioning in attention, mouth
movement, facial expression or identity, and emotion (Haxby
et al., 2000).

Healthy people easily respond to facial expressions that com-
municate happiness, sadness, and anger by using similar facial
expressions. Although a patient with severe ALS cannot effec-
tively form facial expressions, family members and carers could,
to a certain extent, notice the patient’s emotions from facial
expressions in visitors. That is, the emotions in the patient will
similarly correspond with the facial expressions at which he/she
is looking (Keltner and Ekman, 2000). However, a more diffi-
cult requirement in coping with social situations is the ability to
read an individual’s emotional responses to neutral faces. In par-
ticular, a person may feel certain emotions when encountering
neutral expressions that are associated with previous experiences.
However, ALS or autistic individuals cannot directly express their
emotions—a situation that diminishes their quality of life. For
individuals who are unable to summon appropriate facial expres-
sions during communication, desirable technologies are passive
or affective BCIs (Nijboer et al., 2009; Zander et al., 2010)
that enable the communication of specific emotions. Such tech-
nologies should facilitate real-time reception of and response to
patients’ emotions rather than be restricted to interpreting facial
expressions.

Even a neutral face associated with previous information or
memory (e.g., previously observed behavior and personal char-
acteristics, familiar situations, etc.) can elicit various emotions
(Todorov et al., 2007) and enhance brain activities (Kleinhans
et al., 2007; Taylor et al., 2009). Experimental conditioning studies
indicated that specific cues (e.g., angry or fearful faces) associated
with negative feelings modulate AMG activity (Morris et al., 2001;
Knight et al., 2009). Despite the progress made in research, how-
ever, a comprehensive conditioning study on inexpressive faces
associated with negative emotions has not been conducted, with
specific focus on the rapid neural dynamics (e.g., <1 s) in human
cortex networks.

Although the effects of conditioned neutral faces remain
unknown, previous studies on electromagnetic brain activity
revealed significant electrical responses to faces at 100-ms (P1)
and 170-ms (N170) latencies. P1 amplitudes in occipital regions
are facilitated by visual stimuli, such as fearful faces (Pourtois
et al., 2004). Specific N170 responses are characterized by pos-
terior temporal negative deflection (Bentin et al., 1996; Eimer,
2000) and are slightly but more significantly enhanced in response
to fearful faces than to other facial expressions (Batty and Taylor,
2003; Pegna et al., 2008). These face-specific amplitudes may
therefore vary even when an individual looks at negatively condi-
tioned inexpressive faces because of the modulation of emotional
valances on the basis of individual experience.

Event-related potential (ERP) amplitudes for face stimuli have
not been adequately elucidated. For example, some researchers
showed that both famous and unfamiliar faces elicit identical
amplitudes (Eimer, 2000; Schweinberger et al., 2002); they argue
that late-period processing (e.g., 300–500 ms) is more impor-
tant than early-period processing in the recognition of facial
expressions or movements. By contrast, other studies revealed

that familiar faces can enhance N170 amplitudes (Rossion et al.,
1999; Caharel et al., 2002). In clarifying the reasons for the incon-
gruence in results, a potentially promising approach is apply-
ing source localization to total channel responses to determine
novel ways of explaining neuronal dynamics in the cortex, even
under slightly differing EEG responses between experimental
conditions.

Source localization supports the enhanced activation of the
lateral FG at P1 and N170 latencies, such as the activation
observed in the direct perception of facial expressions (Utama
et al., 2009) and face processing during imaginary situations
(Ganis and Schendan, 2008). Nevertheless, in the brain’s neural
response to inexpressive faces giving rise to negative emotions,
definitive conclusions regarding the effects of source localization
remain elusive. The primary purpose of this study, therefore, was
to investigate the effects of aversively conditioned neutral faces on
rapid central responses and evaluate the potential of electroen-
cephalogram (EEG) signals as tools for detecting such responses.
Source localization was performed to identify cortical activities.
The emotions evoked by individual experience with a specific
person may cause changes in physiological characteristics during
rapid face processing.

If EEG signals can detect actual emotional responses to spe-
cific inexpressive faces, the results could be incorporated into the
design and development of BMI/BCI-based non-verbal commu-
nication tools. Brain signals, such as EEG, magnetoencephalogra-
phy (MEG), near-infrared spectroscopy, and electrocorticogram
(ECoG) data, can be integrated with BMI/BCI functionality,
thereby enabling the development of technologies that offer
advantages to paralyzed patients (Lebedev and Nicolelis, 2006).
In particular, ECoG or intracortical single-unit recordings show
high spatial resolution and good signal-to-noise (S/N) ratio.
Despite the advantage of this method, however, the invasive
nature of the measurement may present technical difficulties and
pose clinical risks (Leuthardt et al., 2004). By contrast, EEG or
MEG signals can be non-invasively measured regardless of low
spatial resolution and the presence of artificial noise (Gramfort
et al., 2010). To improve poor S/N ratios, researchers have applied
a wavelet transform with reasonable noise reduction to the single-
trial classification of EEG signals (Tallon-Baudry et al., 1996;
Hsu and Sun, 2009). EEG signals are also convenient for every-
day measurement because EEG equipment is inexpensive and
portable.

Because substantial changes in the EEG signals measured by
scalp electrodes can be easily detected, extensive brain activ-
ity in the cortex (e.g., P300 responses) has been successfully
employed in active BMI/BCI studies (Piccione et al., 2006; Mak
et al., 2012). For non-verbal communication, the FG and STS
regions are specifically involved in face processing (George et al.,
1999; Hoffman and Haxby, 2000). For example, electrodes placed
around posterior temporal regions can detect strong electrical
responses to human faces, with the responses exhibiting 100-ms
(P1) and 170-ms (N170) latencies (Bentin et al., 1996; Eimer,
2000). Especially for ALS patients who cannot freely move or
speak, an important component of smooth communication is
the ability to convey the emotions triggered by facial recog-
nition to support persons. In this regard, therefore, real-time
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BMI/BCI-based face recognition is a desirable next-generation
application of EEG signals for the facilitation of non-verbal
communication.

Support vector machines (SVMs) are useful and efficient
methods for classifying biological signals (Lotte et al., 2007).
However, a few problems are presented by parameter settings for
SVMs that are directly linked to accuracy. To consider approaches
to the use of BMI/BCIs with EEG signals, an essential requirement
may be the abstraction of brain activity at functional frequen-
cies under reduced artificial noise (Tallon-Baudry et al., 1996).
Such issues are effectively addressed by time–frequency analyses
(Kashihara et al., 2009), which could also elucidate the neural
activities that are crucial for face processing. The time–frequency
data for an SVM classifier enable the efficient extraction of mean-
ingful changes in ERP responses. Accordingly, the second purpose
of this study was to develop and evaluate an analytical method in
which an SVM classifier evaluates negative emotional responses
to inexpressive faces. The method was developed on the basis
of time–course and time–frequency EEG data. A face morph-
ing application triggered by the SVM classifier was also tested to
determine its utility in non-verbal communication.

STUDY 1: EEG MEASUREMENT
Using EEG signals, this study investigated the effects of aversively
conditioned neutral faces on rapid central responses. The emo-
tions induced by individual experience with a specific person
may modify the physiological characteristics that arise during face
processing.

MATERIALS AND METHODS
Participants
A total of 22 right-handed healthy volunteers from Nagoya
University were recruited for the study. The physiological
responses of the 12 participants (6 males and 6 females; age:
27.0 ± 0.9 years) to conditioned neutral faces were examined.
The remaining 10 participants (see Section Basic Study of Neutral
Face Stimuli) were asked to take part in a basic experiment
to evaluate the equality of the face stimuli used in this work.
All the participants had normal or corrected-to-normal vision
and had no history of serious medical problems. This study
was approved by the ethics committee of our institute. Written
informed consent was obtained from all the participants after they
were provided an adequate description of the experiment.

Stimuli
Five inexpressive faces, as visual stimuli, were selected from the
Japanese Female Facial Expression (JAFFE) database1. Thirty
scenery images without artificial objects (e.g., skies, mountains,
seas, etc.) were collected from free web sources. All the images
were converted into grayscale bitmap images. The visual stimuli
were presented on a 21-inch CRT monitor (640 × 640 pixels, with
a resolution of 1024 × 768 pixels) that was positioned at the same
height as the participants’ eyes. The distance from the stimuli was

1Lyons, M. J., Kamachi, M., and Gyoba, J. (1997). Japanese Female
Facial Expressions (JAFFE), Database of digital images. Available online at:
http://www.kasrl.org/jaffe_info.html

set at 140 cm, indicating a visual angle within almost 5◦. During
the experiments, a loudspeaker was placed behind a participant
and a 100-dB white noise burst was used as the auditory stimulus
(Morris et al., 1998).

Procedure
After the sensors for the EEG measurement were attached onto
the participants, they were asked to view a short series of images
(10 trials) during the acclimation period. They were first asked to
rate three face images, after which the two-phase experiment was
initiated. The two phases were (1) aversive conditioning to a neu-
tral face (conditioning phase) and (2) physiological measurement
using the conditioned stimuli (data acquisition phase).

Conditioning phase. Figure 1A shows the experimental proce-
dure adopted in the conditioning phase. A 500-ms “start” stim-
ulus was followed by an interstimulus interval (ISI) between 800
and 1200 ms, after which one of the two faces selected from the
dataset was presented onscreen for 1 s. A single neutral face (con-
ditioned stimulus: CS+) was always followed by a 500-ms noise
burst; the other face (CS−) was not paired with the noise burst.
Fifty percent of all the face stimuli were of CS+ type (or CS−),
and the image types were presented in random order. To eval-
uate the difference between the two faces, the participants were
asked to press the left and right keys for the first and second faces,
respectively. Intertrial interval (ITI) was varied between 5 and 6 s.
This phase comprised 40 trials (20 trials under each stimulus con-
dition). After all the trials were completed and the participants
finished their 5-min rest period, the next phase was initiated.

Data acquisition phase. Figure 1B shows the experimental pro-
cedure used in the data acquisition phase. A 500-ms “start”
stimulus was followed by an ISI jittered between 800 and 1200 ms.

FIGURE 1 | Experimental procedures in the (A) conditioning and (B)

data acquisition phases. One of the multiple images was presented at
every trial. CS+, aversively conditioned face stimuli; CS−, unconditioned
stimuli. All the faces were neutral; CS+ was followed by a noise burst in
(A) (all) and (B) (50%).
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One of the two faces (CS+ and CS−) used in the conditioning
phase or a scenery image (randomly selected from the dataset)
was presented for 1 s. The images in the three types (uncondi-
tioned and conditioned neutral faces and scenery) were presented
in random order. Half of the CS+ images were followed by a
500-ms noise burst (paired CS+), whereas the rest were presented
without sound (unpaired CS+). This method was intended to
efficiently maintain the effect of aversive or fear conditioning and
was based on a procedure discussed in previous studies (Büchel
et al., 1998; Morris et al., 2001). The CS− faces were always
followed by silence, and the ITI was between 7 and 8 s.

This phase was initiated in three blocks, with each block
involving 72 trials (24 trials for each image type). The rest period
between the blocks was 5 min. To enable the participants to con-
centrate on the tasks, they were asked to press a key as quickly as
possible when the cue stimulus of a railroad image was presented
twice in a block. The participants were asked to refrain from body
movements during the physiological measurement and to refrain
from blinking during the image presentations. The face images
(CS+, CS−, and a dummy) were also rated at the final period of
the experiment.

Data acquisition
EEG recording. EEGs were recorded using EGI Inc.’s HydroCel
Geodesic Sensor Net (65 channels) in accordance with the inter-
national 10-10 electrode system. The signals from an EEG ampli-
fier (Net Amps 300) were sampled at 500 Hz with data acquisition
software (Net Station ver. 4.2). The electrode impedances for all
channels were kept below 50 k�, as recommended by EGI Inc.
The EEG amplifier used in this study can record input with high
electrode impedance, without the attachments causing scalp abra-
sions and without the need for a recording paste and gel. The
recording net with electrodes uses a saline solution for the elec-
trical conductor, thereby resulting in high electrode impedances.
The high impedances are regulated by the amplifiers to guarantee
recording accuracy (Ferree et al., 2001). The features of the EEG
amplifier are also highly useful in EEG recordings for patients
who cannot withstand lengthy setup procedures or painful scalp
abrasions.

Rating of face stimuli. The participants were asked to rate neu-
tral faces (0 = not at all, 1 = mild, 2 = moderate, 3 = strong,
and 4 = extreme) to evaluate the changes in the emotions that
arose [fear, anxiety, aversion, discomfort, anger, relief, favor, and
pleasure in relation to social situations (Nesse, 2005)] before and
after the experiment. Three images of neutral faces were ran-
domly chosen from the database and presented onscreen; these
images were the same as the CS+ and CS− faces and a dummy
image that had not been presented in the previous experiments.
The participants reported the emotions that they instantaneously
experienced when they looked at the presented faces. In the final
rating, the degree to which they experienced unpleasant feelings
upon exposure to the noise burst (a five-point scale of 0–4) was
confirmed by oral declaration.

Data analysis and statistics
All data are expressed as mean ± standard error. p-values less than
0.05 were considered statistically significant.

Event-related potentials. The average reference montage and a
digital bandpass filter of 1–30 Hz were applied offline. For all the
conditions, the EEG signals were segmented into epochs ranging
from 100 ms before stimulus onset to 700 ms after stimulus onset.
Baseline correction was performed by subtracting the mean of the
100-ms pre-stimulus interval from the data after stimulus onset.
Trials in which ocular activity was greater than ±50 µV within
a 50-ms period or movement artifacts with amplitudes exceed-
ing ±200 µV were excluded from analysis. Although noise due
to micromovements may contaminate EEG signals, sufficient sig-
nal averaging can eliminate as much of this noise as possible.
After the trials were averaged in each condition, the grand aver-
age among the participants was calculated. Data on cue stimuli
with key presses were excluded from the analysis. The regions of
interest were the left (P7, P9, TP9) and right (P8, P10, TP10) pos-
terior temporal regions that are correlated with face processing;
the bilateral occipital electrodes (O1 and O2) that are related to
attention in the primary visual cortex were used in the P1 analysis.

In the ERP responses at the posterior temporal regions, the
maximum values between 60 and 120 ms and the minimum
values between 100 and 200 ms were defined as P1 and N170
responses, respectively. For every amplitude in the early (P1 and
N170) and late (average between 200 and 700 ms under a 100-ms
analysis window) ERP components, repeated Two-Way ANOVA
[two levels (left and right) in the bilateral recording sites; three
levels (CS+, CS−, and scenery) in the presented images] was per-
formed. In significant main effects, the Holm method was used
for multiple comparisons.

Source localization. Standardized low-resolution electromag-
netic tomography (sLORETA, the LORETA-KEY software pack-
age) was used for source localization, which has a possibility to
estimate the local region from which cortical generators originate
in each time window by solving the inverse problem (Pascual-
Marqui, 2002). Because sLORETA analysis depends on noise
levels (Grave de Peralta Menendez et al., 2009), the EEG data
obtained after sufficient signal averaging were applied in the
source localization. The solution space of sLORETA is restricted
to 6239 voxels with a 5-mm3 cortical gray matter.

The average of the post-stimulus period between 50 and
700 ms was compared with that of the baseline (100-ms pre-
stimulus period) in each condition. The sLORETA images for
the average of the ERP data in the P1 (60–120 ms), N170
(120–150 ms), and post-stimulus periods between 200 and
700 ms (100-ms time window without overlap: five windows)
were then calculated to compare the difference between the CS+
and CS− conditions. The P1 and N170 periods that were analyzed
were determined from the results on the ERP responses.

The statistical non-parametric map with smoothing and lin-
ear scaling (Nichols and Holmes, 2002) was used to estimate the
significantly activated parts determined from the source local-
ization between the CS+ and CS− conditions. Voxel-by-voxel
t-tests of the LORETA images were performed. The significance
threshold was based on a permutation test (6000 rounds). The
corrected t-values were plotted onto a magnetic resonance imag-
ing (MRI) template (Colin27 brain, T2-weighted images) with a
color scale bar. As an experimental limitation, the correct location
may have been slightly shifted because a standard brain template
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(Colin27 brain) was used for each subject. All the p-values were
one-tailed. Results are presented in the Montreal Neurological
Institute coordinates with assigned Brodmann’s area labels.

Rating of face stimuli. The first rating scores were subtracted
from the final scores. A positive value indicates increased appeal
and a negative value indicates the opposite. The extent to which
the participants experienced unpleasant feelings upon exposure
to the noise burst was calculated as the average across all the
participants.

For the changes in rating scores before and after the condi-
tioning experiment, repeated Two-Way ANOVA (three levels of
CS+, CS−, and dummy images and eight levels of basic and social
emotions) (Nesse, 2005) was carried out under the assumption
of an equal-interval scale. For significant main effects, the Holm
method was used for multiple comparisons.

RESULTS
ERP responses
Figure 2 shows the grand average of the ERP responses in the
(Figure 2A) bilateral posterior temporal regions and (Figure 2B)
two-dimensional topography at the focused latencies. At around
90 ms from face stimulus onset, the peak positive potential (P1)
appeared, followed by a considerable negative potential (N170) at
around 140 ms. Especially for late latency (600 ms in Figure 2B),
the topographical maps of EEG activity changed across the image
types.

ANOVA revealed the main effects of the image condition
in the P1 [F(2, 44) = 4.15, p < 0.05] and N170 amplitudes
[F(2, 44) = 63.67, p < 0.01] at the posterior temporal lobe. The
N170 values for the face images were significantly (p < 0.01)
greater than that for the scenery image in each hemisphere.
However, these values did not significantly differ between CS+
and CS−. For the P1 amplitude at the occipital electrodes
(O1 and O2), the main effects and interaction were statistically
non-significant.

For the ERP responses between 200 and 700 ms (100-ms time
window), ANOVA indicated that type of image exerted significant
main effects: p < 0.01 in each period. For all the time windows,
the average ERP values for the face images in each hemisphere
were significantly lower than that for the scenery (p < 0.01).
Especially in the period between 600 and 700 ms [F(2, 44) = 28.72,
significant main effect], the CS+ value in the right hemisphere
decreased to a more significant extent than did the CS− value
(p < 0.05).

Source localization
Table 1 shows the statistically significant regions among all the
participants (baseline vs. post-stimulus response) in each experi-
mental condition. In relation to the baseline, the significant areas
localized by sLORETA (p < 0.05) were the bilateral FG, inferior
temporal gyrus, and middle temporal gyrus for both the CS+
and CS− conditions. Especially in the CS+ condition, the right
hemisphere exhibited stronger activity than did the left hemi-
sphere. During the 600–700-ms latency, the right FG was more
significantly activated under CS+ than under CS− (Figure 3;
p < 0.05).

FIGURE 2 | ERP responses to and topography of the presented images.

(A) ERP responses at the left (top) and right (bottom) posterior temporal
regions under the CS+, CS−, and scenery conditions. (B) Two-dimensional
topography of the presented images at P1, N170, and latencies of −100
(pre-stimulus), 200, 400, and 600 ms.

Rating of face stimuli
Figure 4 illustrates the affective changes found under the three
face conditions. Overall, the rating scores for CS+ tended
to reflect increased negative emotions and decreased posi-
tive emotions. ANOVA revealed the main effect of emotion
[F(7, 252) = 6.17, p < 0.01] and significant interaction [type of
image × emotion, F(14, 252) = 4.54, p < 0.01]. In the items show-
ing a significant simple main effect, the CS+ and CS− conditions
significantly differed in the rating scores for aversion (p < 0.05),
discomfort (p < 0.01), relief (p < 0.01), and pleasure (p < 0.05).
The changes in the scores for aversion (p < 0.05) and discom-
fort (p < 0.05) in the face under CS+ were significantly higher
than those derived when the dummy was presented. The extent to
which unpleasant feelings were experienced upon exposure to the
noise burst was 3.0 ± 0.3 (75% of the max. score).

BASIC STUDY OF NEUTRAL FACE STIMULI
The same procedure as that applied in the data acquisition phase
(see Section Procedure) was performed to evaluate the effect of
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Table 1 | Brain areas of significant activity (p < 0.05) under the face image types in relation to the baseline.

Region Side MNI coordinates (mm) t-value max Voxels BA

x y z

CS+ vs. BASELINE

FG Left −55 −40 −30 9.5 5 20, 37

Right 55 −40 −30 13.3 34 19, 20, 36, 37

ITG Left −55 −5 −40 10.2 5 20, 37

Right 60 −35 −25 12.3 36 20, 37

MTG Left − − − − 0 −
Right 60 −45 −20 11.8 21 20, 21, 37, 38

CS− vs. BASELINE

FG Left −55 −40 −30 16.7 44 19, 20, 36, 37

Right 55 −40 −30 15.2 39 19, 20, 36, 37

ITG Left −55 −5 −40 17.2 50 20, 37

Right 60 −35 −25 14.1 38 20, 37

MTG Left −60 −45 −20 15.5 31 20, 21, 37, 38

Right 60 −45 −20 13.6 20 20, 21, 37, 38

CS+, conditioned stimulus; CS−, unconditioned stimulus. BA, Brodmann’s areas; FG, fusiform gyrus; ITG, inferior temporal gyrus; MTG, middle temporal gyrus.

FIGURE 3 | sLORETA comparison of source localizations between the

CS+ and CS− conditions. (A) MRI planes (Colin27 brain) in the axial,
sagittal, and coronal views and (B) cortical maps from the bottom, left, and
right sides of the average among the 600–700-ms latencies (CS+ vs. CS−).

The statistically significant regions acquired from all the subjects were
displayed on a standard brain template in (A). The source estimation
indicates the significant roles (p < 0.05 for all the subjects) of the right lateral
fusiform gyrus.

neutral face stimuli under no condition (7 males and 3 females;
age: 25.0 ± 0.7). The ITI was between 5 and 6 s because no
aversive conditioning was applied. The parameters for the ERP
responses (P1, N170, and latencies between 200 and 700 ms) and
the significant source localization sites were statistically evaluated.
The neutral faces exhibited no significant differences in terms

of ERP response amplitudes and source estimation (p > 0.05),
indicating equality across the image dataset.

DISCUSSION 1
Even for the inexpressive faces, aversive conditioning in which
the noise burst was used induced a posteriori negative feelings.

Frontiers in Neuroscience | Neuroprosthetics August 2014 | Volume 8 | Article 244 | 6

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


Kashihara BCI for non-verbal communication

FIGURE 4 | Changes in the rating scores of emotional responses to

neutral face stimuli before and after the conditioning experiments.
∗p < 0.05 vs. a dummy; ††p < 0.01, †p < 0.05 vs. CS−.

Although greater attention was paid to the faces than to the
scenery, the CS+ and CS− conditions exhibited statistically non-
significant differences in the N170 amplitudes in the posterior
temporal regions and the P1 amplitudes at the O1 and O2 sites.
This result indicates that an extensive and meaningful process
of distinguishing the differences between the inexpressive faces
would have worked, except in the early face processing. By con-
trast, the late ERP response (600–700 ms) evoked by the aversively
conditioned neutral faces resulted in a statistically significant ERP
component at the electrodes attached around the posterior tem-
poral lobe; this result suggests the involvement of higher face
recognition functions (Eimer, 2000) under situations wherein
expressions are associated with a previous negative experience. A
limitation of the experiment was that the meaningful electrode
positions were carefully established to enable the detection of EEG
responses. Nevertheless, other brain functions may be detected or
missed, depending on region of interest. Severe ALS patients may
also cause attenuated brain activity (Guo et al., 2010).

For facial expression or mental imagery, previous studies
involving source estimation indicated that some brain areas,
including the FG, are activated for early face processing at P1
and N170 (Ganis and Schendan, 2008; Utama et al., 2009). Even
for the inexpressive faces with aversive conditioning, the source
estimation in this study indicated continuous FG activation in
both the CS+ and CS− conditions (Table 1). Furthermore, the
right FG was significantly activated, with longer latencies of
600–700 ms under CS+ than under CS− (Figure 3). This result
presumably reflects aversively conditioned responses to incoming
noise burst.

The AMG is activated by short-term fear or aversive condi-
tioning (Büchel et al., 1998; Morris et al., 2001; Knight et al.,
2009), and viewing emotional faces effectively increases the con-
nectivity between the AMG and FG (Leppänen and Nelson,
2009). The mental imaging of a face can also enhance FG activ-
ity (Ganis and Schendan, 2008). These findings suggest that
recalling a conditioned face that reflects negative emotions sim-
ilarly activates the FG and AMG. Because the results of the
present study (Table 1, Figure 3) showed strong activation of
the inferior temporal cortex (FG) rather than the STS, negative

learning may have been performed via the inferior network for
face recognition, through which the AMG and FG were accessed
(Morris et al., 1998; Knight et al., 2009). The STS is generally
activated by the recognition of gaze direction or facial expres-
sions of emotion (Haxby et al., 2000). Because the visual tar-
gets (i.e., inexpressive faces) of the aversive conditioning in this
study did not feature such dynamic movements, the STS activ-
ity may not have influenced conditioned facial perception and/or
recognition.

The central responses were modulated primarily at the right
sides of the FG; this modulation is related to the aversively con-
ditioned neutral face stimuli. The activated area (Table 1) on the
left-side FG (vs. the right side) under CS+ decreased to 1/7 (5 vs.
34 voxels), whereas the ratio under CS− (44 vs. 39 voxels) gen-
erally remained at around 1. This result presumably reflects the
intensive recruitment of right-side neural functions in predicting
impending danger. This finding is supported by previous studies
in which the right-side FG activity in patients with prosopagnosia
was dominant (Barton et al., 2002); this activity also dominated
even during presentations of a fearful face to healthy participants
(Pegna et al., 2008).

The aversion and discomfort reflected by the emotional rat-
ings were significantly increased by the conditioned neutral face
(Figure 4), which could trigger changes in brain activity. By con-
trast, the fearful emotion was non-significantly correlated with
the conditioned neutral faces, which would have failed to induce
the ERP responses (i.e., early face processing responses, such as
P1 and N170) specific to typical fear stimuli (Batty and Taylor,
2003; Pegna et al., 2008). Note, however, that the participants in
this study may have experienced unconscious fear during the EEG
measurement.

For ERP studies that focus on a specific stimulus, sLORETA
software is equipped with a procedure for baseline correction,
which has been applied in numerous studies on source local-
ization (e.g., Utama et al., 2009; Scharmüller et al., 2011).
Nevertheless, baseline correction must be carefully used in source
localization given the occurrence of local changes in each sensor
location (http://www.electrical-neuroimaging.ch/faq.html).

The mathematical constraint in LORETA software is the
smoothness of spatial activation, in which neighbor neurons are
assumed to exhibit similar activations. From direct measurement
on neural tissue, active states are characterized by a reduction in
the synchrony of adjacent neurons (Cruikshank and Connors,
2008; Poulet and Petersen, 2008). Contrary to the LORETA
hypothesis, sluggish states may be identified by the similarity
in activity of neighbor neurons under a defined time window
for source localization (Grave de Peralta Menendez and Andino,
2000).

The conditioned faces further emphasized activity in the
right FG (i.e., face-selective cells) during late facial process-
ing. The EEG equipment detected responses at the posterior
temporal regions; these responses reflect activity in face-
responsive neurons. Neutral stimuli other than faces would
affect various brain areas with different EEG responses. Expert
object recognition may stimulate the same face-selective cells
(Tanaka and Curran, 2001), although such recognition is a rare
response.
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STUDY 2: APPLICATION OF A BRAIN-COMPUTER INTERFACE
Study 1 revealed that the posterior temporal lobe ERP responses
to the aversively conditioned neutral faces significantly changed
during late face processing. As previously stated, this study
developed an efficient method for classifying implicit nega-
tive emotional responses to specific neutral faces by using EEG
signals.

MATERIALS AND METHODS
Classification by SVM
The SVM classifier for determining a hyperplane that opti-
mally separates samples from two classes with the largest margin
(Cortes and Vapnik, 1995; Cristianini and Shawe-Taylor, 2000)
was used in this study. An optimal SVM separating hyperplane is
calculated by solving constrained optimization thus:

min
z,b,ξ

(
1

2
‖z‖2 + C

l∑
i = 1

ξi

)
. (1)

Equation (1) is subject to yi(z · φ(xi) + b) + ξi ≥ 1 and ξi ≥ 0
(i = 1, · · · , l), where l is the number of training vectors,
yi ∈ {−1,+1} denotes the class label of the output, and
‖z‖2 = zTz represents the squared Euclidean norm. Weight
parameter z determines the orientation of the separating hyper-
plane, b is a bias, ξi is the ith positive slack parameter, and φ shows
a non-linear mapping function. Parameter C indicates the penalty
term. With a large C, a high penalty is assigned to training errors.
The two points closest to the hyperplane substantially affect the
orientation, thereby resulting in a hyperplane that is close to other
data points. With a small C, these points move inside the margin
and the orientation of the hyperplane changes, thereby generating
a large margin. To address this issue, a formulation of the SVM
that uses the parameter 0 < ν ≤ 1 can be applied. This parameter
can regulate the fractions of support vectors and margin errors
(ν-SVM).

The vector φ(xi) that corresponds to a non-zero value is a sup-
port vector of the optimal hyperplane. A desirable approach is
to use a small number of support vectors to complete a com-
pact classifier. The optimal separating hyperplane is calculated as
a decision surface of the form sgn:

f (x) = sgn

(
L∑

i = 1

αiyiK(xi, x) + b

)
, (2)

where sgn(.) ∈ {−1, +1}. K is the non-linear kernel function, and
it projects samples to a high-dimension feature space via a non-
linear mapping function. L is the number of support vectors. As
the non-linear kernel, the radial basis function is defined as

K(xi, xj) = exp
(−γ ||xi − xj||2

)
, (3)

where the value of the kernel parameter γ determines the variance
of the function.

Features for SVM
Figure 5A shows the diagram of the BCI based on the SVM
classifier and face morphing application. Time–course and time–
frequency data for the SVM classifier were extracted from the ERP
responses to the face and scenery images.

(a) Time–course data: The time–course data that averaged
between 600 and 700 ms at the right (P8, P10, TP10) pos-
terior temporal regions were abstracted as the SVM features.
These data correspond to the considerable change in the ERP
responses to visual stimuli (Figure 2A).

(b) Time–frequency data: The time–frequency data obtained from
the wavelet transform of raw data were regarded as the SVM
features because raw signals can contaminate external noise.
The EEG signals were convoluted by the complex Morlet
wavelet (Tallon-Baudry et al., 1996; Kashihara et al., 2009) as
follows:

FIGURE 5 | (A) Diagram of the proposed method in which a support vector
machine (SVM) classifier is used. (B) Illustration of the face morphing
software triggered by the classifier’s result.
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w(t, f0) = exp

(−t2

2σ 2
t

)
· exp (2π f0it)/

√
σt

√
π. (4)

The standard deviation of the time domain (σt) is inversely pro-
portional to the standard deviation of the frequency domain
[σf = (2πσt)−1]. The effective number of oscillation cycles in
the wavelet (f0/σ f ) was set at 6, with f0 ranging from 4 to 12 Hz
(i.e., theta and alpha bands) in increments of 0.1 Hz. After the
subtraction of a linear trend, the continuous wavelet transform
of a time series [u(t)] was calculated as the convolution of a
complex wavelet with u(t): ũ(t, f0) = w(t, f0)∗u(t). The squared
norm of the wavelet transform was calculated in a frequency
band at around f0. Figure 6 shows examples of the wavelet trans-
form in the ERP responses to the presented images. The power
spectrum of the wavelet transform in the face stimulus indi-
cated a characterized pattern, compared with that in the scenery
stimulus.

VALIDATION OF THE SVM CLASSIFIER
Data and analysis
A 36-fold cross-validation among the three types of categorized
data (unconditioned and conditioned neutral faces and scenery)
was performed to evaluate the accuracy of the SVM classifier. The
tested EEG data were the same as those used in Study 1 (12 partic-
ipants). An SVM classifier trained by using 35 data was evaluated
by using the remaining data (i.e., test data); this procedure was
repeated, with modifications to the training and test data (a round

FIGURE 6 | Typical examples of time–frequency responses after the

wavelet transform. (A) CS+, (B) CS−, and (C) scenery.

robin for all the data: 36 rounds), to calculate classification accu-
racy. The independent parameter γ in Equation (3) was fixed at
a constant value during this cross-validation (ν = 0.5), thereby
resulting in changes to the other parameters, such as the optimal
objective value of the dual SVM problem and the bias term in the
decision function. Here, the independent kernel parameter γ of
Equation (3) was set as four types: 0.0001, 0.01, 1, and (number
of features)−1, and the accuracy of the cross-validation was com-
puted for each kernel parameter. The tolerance of termination
criterion for the SVM was set at ε−6.

Classification results
Figure 7 shows the results of the 36-fold cross-validation regard-
ing the performance of the SVM classifier in evaluating the
negative emotional responses to inexpressive faces determined
from the ERP responses. In both features, the SVM classifier
exhibited an accuracy higher (80% at the maximum) than the
chance level (i.e., 33% in each). Overall, the classification accu-
racies for the faces and scenery tended to be higher than those
for the CS+ and CS− conditions. However, classification accu-
racy depended on the kernel parameter value. Compared with
the time–course data of the SVM classifier, the wavelet-transform
data showed stable accuracy in each category (e.g., almost 70%
especially in the kernel parameter γ = 0.01 and 1), indicating the
existence of the optimal parameter setting.

MORPHING APPLICATION
After the SVM classifier was trained by the above-mentioned
training sample, the face morphing application (Microsoft

FIGURE 7 | Results of cross-validation using the SVM classifier. The
SVM features (A) time–course and (B) time–frequency data.
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Visual C++ 2012, OpenCV ver. 2.4, and LIBSVM ver. 3.17)
was tested under the hypothesis of real-time data acquisi-
tion. When a neutral face associated with a negative emo-
tion is predicted by the SVM classifier, the face morphing
application is automatically triggered. As shown in Figure 5B,
the target neutral face gradually (about 1–2 s) changed into a
negative one (JAFFE database1). Therefore, individuals’ emo-
tions can be easily estimated using the proposed non-verbal
communication tool.

DISCUSSION 2
In Study 2, the SVM classifier for non-verbal communication was
evaluated by identifying the ERP responses to implicit emotional
faces. For the control of mechanical or computer devices, active
BMI/BCI studies have been based on the features of EEG data
on various scalp regions (e.g., P300 responses) (Piccione et al.,
2006; Mak et al., 2012). The present study especially focused on
the activity of the posterior temporal lobe in relation to face pro-
cessing; the SVM feature was used after the application of the
wavelet transform. In the optimal range of the kernel parameter,
the SVM classifier for the time–frequency domain showed stable
accuracy (almost 70% in each category). Developing an auto-
tuning method for appropriate parameter setting of the SVM
classifier is an advantageous approach because of the individ-
ual differences of ERP responses. Thus, wavelet transform data
will be effective for such a case. An accuracy higher than 60%
will be regarded as a tentative indicator of a successful case for
affective BCIs (Nijboer et al., 2009; Mak et al., 2011). A desirable
future direction for BMI/BCI research is the development of small
embedded systems for the everyday use of face morphing software
that can reflect various emotions.

A critical safety problem arises when a patient experiences
a severe accident as a malfunction occurs in active BCIs for
basic motion (e.g., wheelchair, artificial arm, etc.). The proposed
system is a device intended to enhance quality of life through
emotional estimation. When a patient may possibly experience
a negative emotion, the people around the patient (e.g., fami-
lies, friends, and carers) can support him/her by paying particular
attention to emotional estimation. If they recognize or predict the
patient’s negative emotions (e.g., 60 or 70% negative feeling, no
perfect or maximum level for each emotion), the patient could
live a full and humane life. Nevertheless, further studies on more
accurate classifier methods are required. For example, a cascaded
classifier may effectively increase classification accuracy.

Time–frequency analyses can identify the neural activities cru-
cial for emotional face processing, but further modifications are
required to obtain higher accuracy in SVM classification. This
requirement may be satisfied with the direct image analysis (e.g.,
the bag of features scheme; Csurka et al., 2004) of contour maps in
time–frequency data (Kashihara et al., 2011). Speeded-up robust
features (SURF) and scale-invariant feature transform (SIFT) can
effectively search for local information on object boundary (Bay
et al., 2008). In the bag of features scheme, visual words are gen-
erated by the k-means algorithm to cluster the feature vectors of
SIFT or SURF and create a visual vocabulary (Duda et al., 2001).
Each image can be represented by a histogram of visual words.
Therefore, the bag of features scheme may serve as a means of

novel interpretation that determines the effective features of an
SVM classifier and could extract meaningful changes in time–
frequency data.

Several limitations constrain the practical application of the
BCI approach adopted in this study. The specific brain region
considered in the classification was limited to the right FG
area identified by source localization from multiple electrodes
attached onto a participant’s scalp. Crucial issues for consider-
ation are the separation of brain activities into multiple inputs
and movement artifacts, which may influence the results of source
localization. This study assumed application under a static mea-
surement situation for patients and excluded active BCIs, such as
moving artificial arms and wheelchairs. The next step, therefore,
is to develop an accurate identifier that enables the practical appli-
cation of BCIs and reduces noise; noise contamination of muscle
or eye movements must be prevented through improvements in
hardware, software, and algorithms.

To realize feature extraction from the frequency domain reduc-
ing external noise, data after the wavelet transform was used in
machine learning (i.e., SVM); this application was implemented
under the assumption that practical BCI analysis will be a com-
ponent of future works. Experiment 2 was then performed to
show the possibility of passive or affective BCI application for the
detection of and response to high emotions. Therefore, the new
techniques for wearable and hardware devices (robust to body
movements) and efficient algorithms (e.g., signal filtering meth-
ods, including wavelet analysis) to eliminate external noise are
desirable innovations for advancing the practical application of
BCIs. In such application, accurate estimation from single trials
can be factors for consideration.

The conditioned neutral facial stimuli (Experiment 1) were
used to induce negative emotions based on previous experiences
and to identify the specific brain area that is activated during
such responses because dynamic EEG response has not been suf-
ficiently clarified under such situations. As the next step, actual
non-verbal communication should be evaluated by using real
faces (families, friends, etc.) associated with patients’ experiences
and emotions.

Finally, the difficulty encountered in BCI training for autistic
patients must be considered in the design and development of a
practical system. EEG responses to facial stimuli and emotions
may not require extensive training on scenarios such as those
featuring active BCIs. Because posterior temporal regions are
directly correlated with face processing primarily in the right FG,
EEG responses might be measured in a straightforward manner,
regardless of a specific training program.

CONCLUSION
Inexpressive faces associated with negative experiences induce
aversive and unpleasant feelings. The ERP study and source
localization revealed that the aversively conditioned neutral faces
activated late face processing (600–700 ms), rather than early face
processing (e.g., P1 and N170), in the right FG region. Further
evaluations of emotionally conditioned faces would elucidate
the complicated brain activities involved in social cognition. As
a non-verbal communication tool for BMI/BCIs, the proposed
SVM classifier has a possibility to enable the easy detection of
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inexpressive faces that trigger specific individual emotions. In
accordance with this classification, a face on a computer morphs
into an unpleasant look. In future studies, the proposed clas-
sification method, which uses EEG signals, could be integrated
with non-verbal communication tools to enable the expression of
other emotions. More accurate classifiers should also be investi-
gated to realize the practical application of BMI/BCIs.

ACKNOWLEDGMENTS
This study was partially funded by a Grant-in-Aid for Scientific
Research (C) from Japan Society for the Promotion of Science
(KAKENHI, 25330171). The author would like to thank Nagoya
University and JST for providing assistance during the EEG
experiment.

REFERENCES
Barton, J. J., Press, D. Z., Keenan, J. P., and O’Connor, M. (2002). Lesions of the

fusiform face area impair perception of facial configuration in prosopagnosia.
Neurology 58, 71–78. doi: 10.1212/WNL.58.1.71

Batty, M., and Taylor, M. J. (2003). Early processing of the six basic facial emotional
expressions. Brain Res. Cogn. Brain Res. 17, 613–620. doi: 10.1016/S0926-
6410(03)00174-5

Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008). Speeded-Up
Robust Features (SURF). Comput. Vis. Image Underst. 110, 346–359. doi:
10.1016/j.cviu.2007.09.014

Bentin, S., Allison, T., Puce, A., Perez, E., and McCarthy, G. (1996).
Electrophysiological studies of face perception in humans. J. Cogn. Neurosci. 8,
551–565. doi: 10.1162/jocn.1996.8.6.551

Büchel, C., Morris, J., Dolan, R. J., and Friston, K. J. (1998). Brain systems medi-
ating aversive conditioning: an event-related fMRI study. Neuron 20, 947–957.
doi: 10.1016/S0896-6273(00)80476-6

Caharel, S., Poiroux, S., Bernard, C., Thibaut, F., Lalonde, R., and Rebai, M.
(2002). ERPs associated with familiarity and degree of familiarity during face
recognition. Int. J. Neurosci. 112, 1499–1512. doi: 10.1080/00207450290158368

Cortes, C., and Vapnik, V. N. (1995). Support vector networks. Mach. Learn. 20,
273–297. doi: 10.1007/BF00994018

Cristianini, N., and Shawe-Taylor, J. (2000). Introduction to Support Vector Machines
and other Kernel-Based Learning Methods. Cambridge: Cambridge University
Press. doi: 10.1017/CBO9780511801389

Cruikshank, S. J., and Connors, B. W. (2008). Neuroscience: state-sanctioned
synchrony. Nature 454, 839–840. doi: 10.1038/454839a

Csurka, G., Dance, C. R., Fan, L., Williamowski, J., and Bray, C. (2004).
“Visual categorization with bags of keypoints,” in Proceedings of the IEEE
Workshop on Statistical Learning in Computer Vision (SLCV’04) (Prague),
1–16.

Dalton, K. M., Nacewicz, B. M., Johnstone, T., Schaefer, H. S., Gernsbacher, M. A.,
Goldsmith, H. H., et al. (2005). Gaze fixation and the neural circuitry of face
processing in autism. Nat. Neurosci. 8, 519–526. doi: 10.1038/nn1421

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification, 2nd Edn.
Singapore: John Wiley & Sons.

Eimer, M. (2000). The face-specific N170 component reflects late stages
in the structural encoding of faces. Neuroreport 11, 2319–2324. doi:
10.1097/00001756-200007140-00050

Ferree, T. C., Luu, P., Russell, G. S., and Tucker, D. M. (2001). Scalp elec-
trode impedance, infection risk, and EEG data quality. Clin. Neurophysiol. 112,
536–544. doi: 10.1016/S1388-2457(00)00533-2

Ganis, G., and Schendan, H. E. (2008). Visual mental imagery and perception
produce opposite adaptation effects on early brain potentials. Neuroimage 42,
1714–1727. doi: 10.1016/j.neuroimage.2008.07.004

George, N., Dolan, R. J., Fink, G. R., Baylis, G. C., Russell, C., and Driver, J.
(1999). Contrast polarity and face recognition in the human fusiform gyrus.
Nat. Neurosci. 2, 574–580. doi: 10.1038/9230

Gramfort, A., Keriven, R., and Clerc, M. (2010). Graph-based variability estima-
tion in single-trial event-related neural responses. IEEE Trans. Biomed. Eng. 57,
1051–1061. doi: 10.1109/TBME.2009.2037139

Grave de Peralta Menendez, R., and Andino, S. L. (2000). Discussing the
capabilities of Laplacian Minimization. Brain Topogr. 13, 97–104. doi:
10.1023/A:1026603017734

Grave de Peralta Menendez, R., Hauk, O., and Gonzalez, S. L. (2009). The neuro-
electromagnetic inverse problem and the zero dipole localization error. Comput.
Intell. Neurosci. 2009:659247. doi: 10.1155/2009/659247

Guo, J., Gao, S., and Hong, B. (2010). An auditory brain-computer interface using
active mental response. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 230–235. doi:
10.1109/TNSRE.2010.2047604

Haxby, J. V., Hoffman, E. A., and Gobbini, M. I. (2000). The distributed
human neural system for face perception. Trends Cogn. Sci. 4, 223–233. doi:
10.1016/S1364-6613(00)01482-0

Hoffman, E., and Haxby, J. (2000). Distinct representations of eye gaze and identity
in the distributed human neural system for face perception. Nat. Neurosci. 3,
80–84. doi: 10.1038/71152

Hsu, W. Y., and Sun, Y. N. (2009). EEG-based motor imagery analysis using
weighted wavelet transform features. J. Neurosci. Methods 176, 310–318. doi:
10.1016/j.jneumeth.2008.09.014

Iversen, I. H., Ghanayim, N., Kübler, A., Neumann, N., Birbaumer, N., and Kaiser,
J. (2008). A brain-computer interface tool to assess cognitive functions in com-
pletely paralyzed patients with amyotrophic lateral sclerosis. Clin. Neurophysiol.
19, 2214–2223. doi: 10.1016/j.clinph.2008.07.001

Kashihara, K., Ito, M., and Fukumi, M. (2011). “An analytical method for face
detection based on image patterns of EEG signals in the time-frequency domain.
Workshop on Brain-Machine Interfaces,” in Proceedings of the 2011 IEEE
International Conference on Systems, Man, and Cybernetics (Anchorage), 25–29.
doi: 10.1109/ICSMC.2011.6083637

Kashihara, K., Kawada, T., Sugimachi, M., and Sunagawa, K. (2009). Wavelet-
based system identification of short-term dynamic characteristics of arte-
rial baroreflex. Ann. Biomed. Eng. 37, 112–128. doi: 10.1007/s10439-008-
9599-4

Keltner, D., and Ekman, P. (2000). “Facial expression of emotion,” in Handbook of
Emotions, 2nd Edn., eds M. Lewis and J. M. Haviland-Jones. (New York, NY:
Guilford Press), 236–249.

Kleinhans, N. M., Johnson, L. C., Mahurin, R., Richards, T., Stegbauer, K. C.,
Greenson, J., et al. (2007). Increased amygdala activation to neutral faces is
associated with better face memory performance. Neuroreport 18, 987–991. doi:
10.1097/WNR.0b013e328165d189

Knight, D. C., Waters, N. S., and Bandettini, P. A. (2009). Neural sub-
strates of explicit and implicit fear memory. Neuroimage 45, 208–214. doi:
10.1016/j.neuroimage.2008.11.015

Lebedev, M. A., and Nicolelis, M. A. (2006). Brain-machine interfaces: past,
present and future. Trends Neurosci. 29, 536–546. doi: 10.1016/j.tins.2006.
07.004

Leppänen, J. M., and Nelson, C. A. (2009). Tuning the developing brain to social
signals of emotions. Nat. Rev. Neurosci. 10, 37–47. doi: 10.1038/nrn2554

Leuthardt, E. C., Schalk, G., Wolpaw, J. R., Ojemann, J. G., and Moran, D.
W. (2004). A brain-computer interface using electrocorticographic signals in
humans. J. Neural Eng. 1, 63–71. doi: 10.1088/1741-2560/1/2/001

Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., and Arnaldi, B. (2007). A review
of classification algorithms for EEG-based brain-computer interfaces. J. Neural
Eng. 4, R1–R13. doi: 10.1088/1741-2560/4/2/R01

Mak, J. N., Arbel, Y., Minett, J. W., McCane, L. M., Yuksel, B., Ryan, D., et al.
(2011). Optimizing the P300-based brain-computer interface: current status,
limitations and future directions. J. Neural Eng. 8:025003. doi: 10.1088/1741-
2560/8/2/025003

Mak, J. N., McFarland, D. J., Vaughan, T. M., McCane, L. M., Tsui, P. Z., Zeitlin,
D. J., et al. (2012). EEG correlates of P300-based brain-computer interface
(BCI) performance in people with amyotrophic lateral sclerosis. J. Neural Eng.
9:026014. doi: 10.1088/1741-2560/9/2/026014

Morris, J. S., Öhman, A., and Dolan, R. J. (1998). Conscious and uncon-
scious emotional learning in the human amygdala. Nature 393, 467–470. doi:
10.1038/30976

Morris, J. S., Büchel, C., and Dolan, R. J. (2001). Parallel neural responses in
amygdala subregions and sensory cortex during implicit fear conditioning.
Neuroimage 13, 1044–1052. doi: 10.1006/nimg.2000.0721

Nesse, R. M. (2005). Twelve crucial points about emotions, evolution and men-
tal disorders. Psychology Review 11, 12–14. Available online at: http://www.
hoddereducation.co.uk/Product?Product=9781471800962

www.frontiersin.org August 2014 | Volume 8 | Article 244 | 11

http://www.hoddereducation.co.uk/Product?Product=9781471800962
http://www.hoddereducation.co.uk/Product?Product=9781471800962
http://www.frontiersin.org
http://www.frontiersin.org/Neuroprosthetics/archive


Kashihara BCI for non-verbal communication

Nichols, T. E., and Holmes, A. P. (2002). Nonparametric permutation tests for func-
tional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25. doi:
10.1002/hbm.1058

Nijboer, F., Carmien, S. P., Leon, E., Morin, F. O., Koene, R. A., and Hoffmann,
U. (2009). “Affective brain-computer interfaces: Psychophysiological markers
of emotion in healthy persons and in persons with amyotrophic lateral sclero-
sis,” in Affective Computing and Intelligent Interaction and Workshops, 2009. ACII
2009. 3rd International Conference on (Amsterdam: IEEE), 1–11. doi: 10.1109/
ACII.2009.5349479

Pascual-Marqui, R. D. (2002). Standardized low-resolution brain electromagnetic
tomography (sLORETA): technical details. Methods Find. Exp. Clin. Pharmacol.
24(Suppl. D), 5–12.

Pegna, A. J., Landis, T., and Khateb, A. (2008). Electrophysiological evidence for
early non-conscious processing of fearful facial expressions. Int. J. Psychophysiol.
70, 127–136. doi: 10.1016/j.ijpsycho.2008.08.007

Piccione, F., Giorgi, F., Tonin, P., Priftis, K., Giove, S., Silvoni, S., et al.
(2006). P300-based brain computer interface: reliability and performance in
healthy and paralysed participants. Clin. Neurophysiol. 117, 531–537. doi:
10.1016/j.clinph.2005.07.024

Poulet, J. F., and Petersen, C. C. (2008). Internal brain state regulates membrane
potential synchrony in barrel cortex of behaving mice. Nature 454, 881–885.
doi: 10.1038/nature07150

Pourtois, G., Grandjean, D., Sander, D., and Vuilleumier, P. (2004).
Electrophysiological correlates of rapid spatial orienting towards fearful
faces. Cereb. Cortex 14, 619–633. doi: 10.1093/cercor/bhh023

Rossion, B., Campanella, S., Gomez, C. M., Delinte, A., Debatisse, D., Liard, L., et al.
(1999). Task modulation of brain activity related to familiar and unfamiliar face
processing: an ERP study. Clin. Neurophysiol. 110, 449–462. doi: 10.1016/S1388-
2457(98)00037-6

Scharmüller, W., Leutgeb, V., Schäfer, A., Köchel, A., and Schienle, A. (2011).
Source localization of late electrocortical positivity during symptom provo-
cation in spider phobia: an sLORETA study. Brain Res. 1397, 10–18. doi:
10.1016/j.brainres.2011.04.018

Schweinberger, S. R., Pickering, E. C., Jentzsch, I., Burton, A. M., and Kaufmann,
J. M. (2002). Event-related brain potential evidence for a response of inferior
temporal cortex to familiar face repetitions. Cogn. Brain Res. 14, 398–409. doi:
10.1016/S0926-6410(02)00142-8

Sergent, J., and Signoret, J. (1992). Varieties of functional deficits in prosopagnosia.
Cereb. Cortex 2, 375–388. doi: 10.1093/cercor/2.5.375

Tallon-Baudry, C., Bertrand, O., Delpuech, C., and Pernier, J. (1996). Stimulus-
specificity of phase-locked and non phase-locked 40-Hz visual responses in
human. J. Neurosci. 16, 4240–4249.

Tanaka, J. W., and Curran, T. (2001). A neural basis for expert object recognition.
Psychol. Sci. 12, 43–47. doi: 10.1111/1467-9280.00308

Taylor, M. J., Arsalidou, M., Bayless, S. J., Morris, D., Evans, J. W., and
Barbeau, E. J. (2009). Neural correlates of personally familiar faces: par-
ents, partner and own faces. Hum. Brain Mapp. 30, 2008–2020. doi: 10.1002/
hbm.20646

Todorov, A., Gobbini, M. I., Evans, K. K., and Haxby, J. V. (2007). Spontaneous
retrieval of affective person knowledge in face perception. Neuropsychologia 45,
163–173. doi: 10.1016/j.neuropsychologia.2006.04.018

Tomik, B., and Guiloff, R. J. (2010). Dysarthria in amyotrophic lateral sclero-
sis: a review. Amyotroph. Lateral Scler. 11, 4–15. doi: 10.3109/17482960802
379004

Utama, N. P., Takemoto, A., Koike, Y., and Nakamura, K. (2009). Phased pro-
cessing of facial emotion: an ERP study. Neurosci. Res. 64, 30–40. doi:
10.1016/j.neures.2009.01.009

Zander, T. O., Kothe, C., Jatzev, S., and Gaertner, M. (2010). “Enhancing human-
computer interaction with input from active and passive brain-computer
interfaces,” in Brain Computer Interfaces (London: Springer), 181–199. doi:
10.1007/978-1-84996-272-8_11

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 29 December 2013; accepted: 22 July 2014; published online: 26 August 2014.
Citation: Kashihara K (2014) A brain-computer interface for potential non-verbal
facial communication based on EEG signals related to specific emotions. Front.
Neurosci. 8:244. doi: 10.3389/fnins.2014.00244
This article was submitted to Neuroprosthetics, a section of the journal Frontiers in
Neuroscience.
Copyright © 2014 Kashihara. This is an open-access article distributed under the
terms of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which
does not comply with these terms.

Frontiers in Neuroscience | Neuroprosthetics August 2014 | Volume 8 | Article 244 | 12

http://dx.doi.org/10.3389/fnins.2014.00244
http://dx.doi.org/10.3389/fnins.2014.00244
http://dx.doi.org/10.3389/fnins.2014.00244
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive

	A brain-computer interface for potential non-verbal facial communication based on EEG signals related to specific emotions
	Introduction
	Study 1: Eeg Measurement
	Materials and Methods
	Participants
	Stimuli
	Procedure
	Conditioning phase
	Data acquisition phase

	Data acquisition
	EEG recording
	Rating of face stimuli

	Data analysis and statistics
	Event-related potentials
	Source localization
	Rating of face stimuli


	Results
	ERP responses
	Source localization
	Rating of face stimuli

	Basic Study of Neutral Face Stimuli
	Discussion 1

	Study 2: Application of a Brain-Computer Interface
	Materials and Methods
	Classification by SVM
	Features for SVM

	Validation of the SVM Classifier
	Data and analysis
	Classification results

	Morphing Application
	Discussion 2

	Conclusion
	Acknowledgments
	References


