131 research outputs found

    Detecting Cryptojacking Web Threats: An Approach with Autoencoders and Deep Dense Neural Networks

    Get PDF
    With the growing popularity of cryptocurrencies, which are an important part of day-to-day transactions over the Internet, the interest in being part of the so-called cryptomining service has attracted the attention of investors who wish to quickly earn profits by computing powerful transactional records towards the blockchain network. Since most users cannot afford the cost of specialized or standardized hardware for mining purposes, new techniques have been developed to make the latter easier, minimizing the computational cost required. Developers of large cryptocurrency houses have made available executable binaries and mainly browser-side scripts in order to authoritatively tap into users’ collective resources and effectively complete the calculation of puzzles to complete a proof of work. However, malicious actors have taken advantage of this capability to insert malicious scripts and illegally mine data without the user’s knowledge. This cyber-attack, also known as cryptojacking, is stealthy and difficult to analyze, whereby, solutions based on anti-malware extensions, blocklists, JavaScript disabling, among others, are not sufficient for accurate detection, creating a gap in multi-layer security mechanisms. Although in the state-of-the-art there are alternative solutions, mainly using machine learning techniques, one of the important issues to be solved is still the correct characterization of network and host samples, in the face of the increasing escalation of new tampering or obfuscation techniques. This paper develops a method that performs a fingerprinting technique to detect possible malicious sites, which are then characterized by an autoencoding algorithm that preserves the best information of the infection traces, thus, maximizing the classification power by means of a deep dense neural network

    Protecting the power grid: strategies against distributed controller compromise

    Get PDF
    The electric power grid is a complex, interconnected cyber-physical system comprised of collaborating elements for monitoring and control. Distributed controllers play a prominent role in deploying this cohesive execution and are ubiquitous in the grid. As global information is shared and acted upon, faster response to system changes is achieved. However, failure or malfunction of a few or even one distributed controller in the entire system can cause cascading, detrimental effects. In the worst case, widespread blackouts can result, as exemplified by several historic cases. Furthermore, if controllers are maliciously compromised by an adversary, they can be manipulated to drive the power system to an unsafe state. Due to the shift from proprietary control protocols to popular, accessible network protocols and other modernization factors, the power system is extremely vulnerable to cyber attacks. Cyber attacks against the grid have increased significantly in recent years and can cause severe, physical consequences. Attack vectors for distributed controllers range from execution of malicious commands that can cause sensitive equipment damage to forced system topology changes creating instability. These vulnerabilities and risks need to be fully understood, and greater technical capabilities are necessary to create resilient and dynamic defenses. Proactive strategies must be developed to protect the power grid from distributed controller compromise or failure. This research investigates the role distributed controllers play in the grid and how their loss or compromise impacts the system. Specifically, an analytic method based on controllability analysis is derived using clustering and factorization techniques on controller sensitivities. In this manner, insight into the control support groups and sets of critical, essential, and redundant controllers for distributed controllers in the power system is achieved. Subsequently, we introduce proactive strategies that utilize these roles and grouping results for responding to controller compromise using the remaining set. These actions can be taken immediately to reduce system stress and mitigate compromise consequences as the compromise itself is investigated and eliminated by appropriate security mechanisms. These strategies are demonstrated with several compromise scenarios, and an overall framework is presented. Additionally, the controller role and group insights are applied to aid in developing an analytic corrective control selection for fast and automated remedial action scheme (RAS) design. Techniques to aid the verification of control commands and the detection of abnormal control action behavior are also presented. In particular, an augmented DC power flow algorithm using real-time measurements is developed that obtains both faster speed and higher accuracy than existing linear methods. For detecting abnormal behavior, a generator control action classification framework is presented that leverages known power system behaviors to enhance the use of data mining tools. Finally, the importance of incorporating power system knowledge into machine learning applications is emphasized with a study that improves power system neural network construction using modal analysis. This dissertation details these methodologies and their roles in realizing a more cohesive and resilient power system in the increasingly cyber-physical world

    Machine Learning and Data Mining Applications in Power Systems

    Get PDF
    This Special Issue was intended as a forum to advance research and apply machine-learning and data-mining methods to facilitate the development of modern electric power systems, grids and devices, and smart grids and protection devices, as well as to develop tools for more accurate and efficient power system analysis. Conventional signal processing is no longer adequate to extract all the relevant information from distorted signals through filtering, estimation, and detection to facilitate decision-making and control actions. Machine learning algorithms, optimization techniques and efficient numerical algorithms, distributed signal processing, machine learning, data-mining statistical signal detection, and estimation may help to solve contemporary challenges in modern power systems. The increased use of digital information and control technology can improve the grid’s reliability, security, and efficiency; the dynamic optimization of grid operations; demand response; the incorporation of demand-side resources and integration of energy-efficient resources; distribution automation; and the integration of smart appliances and consumer devices. Signal processing offers the tools needed to convert measurement data to information, and to transform information into actionable intelligence. This Special Issue includes fifteen articles, authored by international research teams from several countries

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    EVALUATION OF EARLY TUMOR ANGIOGENESIS USING ULTRASOUND ACOUSTIC ANGIOGRAPHY

    Get PDF
    Cancer angiogenesis is a feature of tumor growth that produces disorganized and dysfunctional vascular networks. Acoustic angiography is a unique implementation of contrast-enhanced ultrasound that allows us to visualize microvasculature with high resolution and contrast, including blood vessels as small as 100 to 150 micrometers. These angiography images can be analyzed to evaluate the morphology of the blood vessels for the purpose of detecting and diagnosing tumors. This thesis describes the implementation, advantages, and disadvantages of acoustic angiography and evaluates tumor vasculature in a pre-clinical cancer model. Measurements of tortuosity and vascular density in tumor regions were significantly higher than those of control regions, including in the smallest palpable tumors (2-3 mm). Additionally, abnormal tortuosity extended beyond the margin of tumors, as distal tissue separated from the tumor by at least 4 mm exhibited higher tortuosity than healthy individuals. Vascular tortuosity was negatively correlated to distance from the tumor margin using linear regression. Analysis of full images to detect tumors was performed using a reader study approach to assess visual interpretations, and quantitative analysis combined tortuosity with spatial relationships between vessels using a density-based clustering approach. Visual assessment using a reader study design resulted in an area under the receiver operating characteristic (ROC) curve of approximately 0.8, and the ROC curve was significantly correlated with tumor diameter, indicating that larger tumors were detected more accurately using this approach. Quantitative analysis of the same images used a density-based clustering algorithm to combine vessels in an image into clusters based on their tortuosity (using 2 metrics), radius, and proximity to one another. In tumors, highly tortuous vessels were closely packed, forming large clusters in the analysis, while control images lacked such patterns and formed much smaller clusters. Therefore, maximum cluster size was used to detect tumors, achieving an area under the ROC curve of 0.96. Finally, superharmonic molecular imaging was used to image targeted microbubbles with higher contrast to tissue ratios than conventional molecular imaging. These molecular images were combined with vascular acoustic angiography images to begin to relate the expression of endothelial markers of angiogenesis with vascular features such as tortuosity.Doctor of Philosoph

    Cyber Security of Critical Infrastructures

    Get PDF
    Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods

    Mining a Small Medical Data Set by Integrating the Decision Tree and t-test

    Get PDF
    [[abstract]]Although several researchers have used statistical methods to prove that aspiration followed by the injection of 95% ethanol left in situ (retention) is an effective treatment for ovarian endometriomas, very few discuss the different conditions that could generate different recovery rates for the patients. Therefore, this study adopts the statistical method and decision tree techniques together to analyze the postoperative status of ovarian endometriosis patients under different conditions. Since our collected data set is small, containing only 212 records, we use all of these data as the training data. Therefore, instead of using a resultant tree to generate rules directly, we use the value of each node as a cut point to generate all possible rules from the tree first. Then, using t-test, we verify the rules to discover some useful description rules after all possible rules from the tree have been generated. Experimental results show that our approach can find some new interesting knowledge about recurrent ovarian endometriomas under different conditions.[[journaltype]]國外[[incitationindex]]EI[[booktype]]紙本[[countrycodes]]FI

    Combining SOA and BPM Technologies for Cross-System Process Automation

    Get PDF
    This paper summarizes the results of an industry case study that introduced a cross-system business process automation solution based on a combination of SOA and BPM standard technologies (i.e., BPMN, BPEL, WSDL). Besides discussing major weaknesses of the existing, custom-built, solution and comparing them against experiences with the developed prototype, the paper presents a course of action for transforming the current solution into the proposed solution. This includes a general approach, consisting of four distinct steps, as well as specific action items that are to be performed for every step. The discussion also covers language and tool support and challenges arising from the transformation

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems
    • …
    corecore