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ABSTRACT

SARAH E. SHELTON: Evaluation of Early Tumor Angiogenesis Using Ultrasound
Acoustic Angiography.

(Under the direction of Paul A. Dayton)

Cancer angiogenesis is a feature of tumor growth that produces disorganized and

dysfunctional vascular networks. Acoustic angiography is a unique implementation of

contrast-enhanced ultrasound that allows us to visualize microvasculature with high

resolution and contrast, including blood vessels as small as 100 to 150 µm. These

angiography images can be analyzed to evaluate the morphology of the blood vessels

for the purpose of detecting and diagnosing tumors.

This thesis describes the implementation, advantages, and disadvantages of acoustic

angiography and evaluates tumor vasculature in a pre-clinical cancer model. Measure-

ments of tortuosity and vascular density in tumor regions were significantly higher than

those of control regions, including in the smallest palpable tumors (2-3 mm). Addi-

tionally, abnormal tortuosity extended beyond the margin of tumors, as distal tissue

separated from the tumor by at least 4 mm exhibited higher tortuosity than healthy

individuals. Vascular tortuosity was negatively correlated to distance from the tumor

margin using linear regression.

Analysis of full images to detect tumors was performed using a reader study ap-

proach to assess visual interpretations, and quantitative analysis combined tortuosity

with spatial relationships between vessels using a density-based clustering approach.

Visual assessment using a reader study design resulted in an area under the receiver
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operating characteristic (ROC) curve of approximately 0.8, and the ROC curve was sig-

nificantly correlated with tumor diameter, indicating that larger tumors were detected

more accurately using this approach. Quantitative analysis of the same images used a

density-based clustering algorithm to combine vessels in an image into clusters based

on their tortuosity (using 2 metrics), radius, and proximity to one another. In tumors,

highly tortuous vessels were closely packed, forming large clusters in the analysis, while

control images lacked such patterns and formed much smaller clusters. Therefore, max-

imum cluster size was used to detect tumors, achieving an area under the ROC curve

of 0.96.

Finally, superharmonic molecular imaging was used to image targeted microbub-

bles with higher contrast to tissue ratios than conventional molecular imaging. These

molecular images were combined with vascular acoustic angiography images to begin

to relate the expression of endothelial markers of angiogenesis with vascular features

such as tortuosity.
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CHAPTER 1

BACKGROUND

1.1 OVERVIEW

This dissertation uses contrast-enhanced superharmonic ultrasound imaging, known

as “acoustic angiography”, to examine vascular patterns in tumor and healthy tissue,

with a focus on breast cancer. Several aims are addressed in this work:

1. Characterization of normal and pathological patterns of vascularization using

acoustic angiography.

2. Determining the performance of acoustic angiography images for tumor detection

using visual and quantitative methods.

3. Extension of the high-resolution, superharmonic imaging technique to molecular

imaging of targeted microbubbles.

The first chapters of this document describe the background and context of the work,

including information about breast cancer, vasculature and angiogenesis, contrast-

enhanced ultrasound, as well as details about the mechanisms that enable acoustic

angiography and how it is implemented. The subsequent chapters describe several ex-

periments performed in order to address the project aims, which are all focused on

improving tumor detection and diagnosis using this unique imaging modality. The

first experiments described explore vascular tortuosity and density in spontaneous tu-

mors developed in a genetically engineered mouse model of breast cancer, and the
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relationship between tumor size and these parameters. Tumor detection, through im-

age classification, is performed using qualitative and quantitative approaches and also

correlated to tumor size. The development of high-resolution superharmonic molecular

imaging is also discussed, and initial experiments were performed to relate molecular

and morphological images in tumors.

1.2 BREAST CANCER

Breast cancer represents a significant disease burden in the United States as well

as across the world. It is the most common form of cancer in females, accounting for

14% of all new cancer cases in the U.S., and the 3rd leading cause of cancer mortality

in females [1]. Approximately 13% of women in the U.S. will be diagnosed with breast

cancer during their lifetime. Overall, almost 90% of women diagnosed with breast

cancer will survive 5 years after diagnosis, but survival depends greatly on the stage of

disease at diagnosis because the relative survival is only 25.9% for metastatic disease,

compared to 98.6% and 84.6% for localized and regional disease, respectively [1]. Thus,

early detection of tumors before they reach the metastatic stage is an important clinical

goal in order to maximize patient survival.

Though treatments for breast cancer have become more effective, in part due to a

greater understanding of differences between tumor subtypes and driving factors con-

tributing to the growth of different tumors, patient outcomes in advanced stage cancers

are still poor [1–4]. Therefore, imaging techniques such as mammography, ultrasound,

and magnetic resonance imaging (MRI) are at the forefront of screening and diagnosis,

but each suffer from limitations in sensitivity and specificity. Widespread screening

mammography has facilitated early detection and resulted in reduced breast cancer-

related morbidity and improved progression-free survival and overall survival [5, 6].

2



However, mammography is imperfect and results in frequent false positives that pro-

duce psychological distress in patients and a high number of biopsies [7–10]. While

mammograms are effective at identifying suspicious lesions, they perform poorly at dis-

tinguishing between benign and malignant conditions. It is estimated that the cumu-

lative risk of a false positive finding after 10 screening mammograms is approximately

50%, which results in several follow-up visits, diagnostic imaging examinations, and

sometimes invasive biopsy procedures [11].

While it is unlikely that any imaging modality will soon replace mammography as a

widespread screening tool for breast cancer, other imaging modalities are frequently uti-

lized for diagnosis of lesions identified by mammography. Due to the high cost and time

required for MRI, ultrasound is commonly used for follow-up imaging, but the speci-

ficity of both mammography and diagnostic ultrasound is low (approximately 70%), so

biopsies are used to confirm diagnosis. This results in a many biopsies performed every

year, with a small proportion of them (≈20%) confirming the presence of cancer.

Acoustic angiography is a recently developed method for contrast-enhanced ultra-

sound imaging that provides information about blood vessels rather than the shape and

size of a lesion, as can be seen on mammograms or traditional B-mode ultrasound. By

taking advantage of unique, nonlinear characteristics of microbubble contrast agents

and a prototype transducer, we can form an image of the vascular micro-environment

supplying a tumor, rather than trying to visualize the tumor itself. Highly vascular

lesions are more likely to be malignant [12], and acoustic angiography would provide

a very sensitive indication of the degree of vascularity. Beyond that, it also allows

visualization of the vascular tortuosity, which is likely to be an even more specific in-

dicator of disease and has been shown in MRI angiography studies of brain cancer to

be sensitive to disease recurrence before tumors are visible with tissue imaging modal-

ities [13]. If acoustic angiography successfully improves diagnostic specificity, it would
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decrease the false-positive rate and could lead to a significant reduction in the number

of unnecessary biopsies performed each year.

1.3 TUMORS AND HYPOXIA

Healthy tissue is arranged such that organized layers of cells are supplied with

oxygen and nutrients by vasculature in the surrounding stroma. The distribution and

spacing of capillaries is largely determined by the metabolic needs of the specific tissue

type, with larger spacing in supportive tissues such as smooth muscle and connective

tissue and closer spacing in metabolically active tissues such as muscle fibers, and

especially the central nervous system [14]. Though distance between capillaries varies

between species and tissue types, healthy tissue is usually located less 100 µm from a

capillary, and histological examinations by Krough in 1919 observed no tissue beyond

200 µm from an open capillary [15].

Pathological tissue does not display the same regularity seen in healthy tissue, and

may exhibit increased, decreased, or heterogeneous vascular spacing, depending on the

disease processes occurring. Several studies of the micro-architecture of tumor tissue

have shown that while different types of tumors and even adjacent regions of a single

tumor are heterogeneous, their growth produces hypoxia, which promotes neovascular-

ization through the process of angiogenesis [16–19]. Healthy capillary spacing balances

oxygen diffusion with metabolism, because tissue beyond the oxygen diffusion limit

will be subjected to hypoxia and metabolic stress, which is common in tumors and

contributes to their pathophysiology.

Hypoxia can be transient or chronic and is difficult to measure in vivo, so most

measurements have used fixed tissues to look a distance between capillaries and necro-

sis (a sign of chronic hypoxia or anoxia), or in vitro systems. Studies of tumors in the

lung showed that avascular tumor cords with a radius greater than 200 µm exhibited
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necrosis, but those with a radius less than 160 µm did not [16]. Olive et al. measured

the oxygen diffusion distance to be 100-200 µm by removing cubes of tumor tissue,

incubating them in an oxygenated environment, and then tagging hypoxic cells to mea-

sure distance to the oxygen interface [17]. Taken together, these studies suggest that

the maximum oxygen diffusion distance in tumors may vary, but that it is unlikely to

be greater than 200 µm, and likely less than that in many cases. Hypoxia induces a

variety of protective signaling pathways, including anti-apoptotic and pro-angiogenic

signal cascades, largely mediated through hypoxia inducible factors, especially HIF-

1α (hypoxia inducible factor) [18]. Therefore, as tumors grow larger than the oxygen

diffusion limit and become hypoxic, they stimulate angiogenesis to promote vascular-

ization of the tumor tissue for the delivery of oxygen and nutrients. Furthermore, even

pre-malignant lesions with intact basement membranes can develop necrosis due to in-

adequate oxygen supply in an avascular tumor which relies on the diffusion of oxygen

and nutrients from the surrounding stroma [19]. Angiogenesis is frequently the obvi-

ous result of tumor hypoxia, and the key tumor feature to be used for detection and

diagnosis in the imaging experiments described in this work.

1.4 ANGIOGENESIS

The human body possess approximately one trillion endothelial cells which line

the blood vessels of every organ [20]. Healthy tissue maintains endothelial cells in a

quiescent state, which is maintained, in part, by contact and signaling with pericytes

and surrounding parenchymal tissue [21]. However, in response to injury or disease, en-

dothelial cells become activated. Activated endothelial cells express adhesion molecules

and growth factor receptors, proliferate, reorganize their junctional molecules to allow

for migration, and can release cytokines that further enhance inflammatory and angio-

genic responses [21]. Endothelial cell activation is required for angiogenesis and can
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be induced by a number of disease processes, including several cytokines which are

released by hypoxic tumor tissue.

Angiogenesis, the process of forming new blood vessels from existing ones, is a nec-

essary step in wound healing and a component of some healthy physiological processes.

However, during tumor formation, the pathways controlling angiogenesis become un-

balanced, and a chaotic, disorganized, and dysfunctional network of tumor neovascu-

lature is formed. These abnormal tumor vessels do not form hierarchical networks of

arterioles, capillaries, and venules, and include locations of transient stasis and flow

reversal. Vessel diameters are irregular, often dilated, and do not correlate to blood

flow rates. The cellular structure of the endothelial cells, junctions, and associated cells

such as pericytes contribute to the vascular dysfunction of tumor neovasculature, which

includes leaky and tortuous vessels. [22–25]

Observations of cancer neovascularization go back to at least 1787 when John

Hunter, a surgeon, coined the word “angiogenesis”, which was followed by increas-

ingly frequent descriptions of abnormal vasculature in tumors during the 19th and

early 20th century [26, 27]. It was not until the middle of the 20th century that can-

cer angiogenesis was first recognized as a vital step for tumor growth when several

researchers proposed and tested the hypothesis that tumor-derived factors served to

stimulate neovascularization for tumor growth [28–31].

In the 1970s, Judah Folkman first posited that solid tumors were unable to exceed

2 mm in diameter without stimulating angiogenesis due to the inability of diffusion to

supply the excessive metabolic needs of proliferating avascular tumors and suggested

targeting angiogenesis as a cancer therapy [32]. Because angiogenesis is an omnipresent

feature of tumor growth, it has become a popular subject of study in biology and on-

cology since Folkman’s early publications. The balance of pro- and anti-angiogenic
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molecular pathways appears to be disturbed by tumor growth, and angiogenesis is fur-

ther stimulated by hypoxia induced by insufficient vascular supply of the dsyfunctional

neovasculature, thus forming a positive feedback cycle [33,34].

Sprouting is often regarded as the primary mechanism of angiogenesis. It involves

the creation of a new vessel through rearrangement and proliferation of endothelial

cells into stalk and tip cells. The tip and stalk cells emerge from an existing vessel into

surrounding stroma and tissue in response to soluble molecular signals and chemical

gradients, and sprouting terminates through anastomosis of two nearby sprouts, result-

ing in lumenization of the nascent vessel [35]. Intussusception is another mechanism

of angiogenesis distinct from sprouting [36]. Intussusceptive angiogenesis involves the

formation of transvascular pillars within the lumen of an existing vessel to split it into

two lumens [37].

One of the molecules strongly related to the process of angiogenesis is vascular

endothelial growth factor, or VEGF. VEGF-A was also called vascular permeability

factor when it was discovered, due to its propensity to produce vascular leakage [38].

VEGF-A promotes angiogenesis by guiding sprouts, inducing proliferation in the stalk

cells and directing filopodia and migration across the concentration gradient in the

tip cells [39]. Signaling of angiogenesis by VEGF is primarily through the vascular

endothelial growth factor receptor 2 (VEGFR2) tyrosine kinase [40].

The VEGF family is not only class of molecules involved in angiogenesis and tor-

tuosity. It interacts with numerous other factors including hypoxia inducible factors

(HIFs), angiopoietins (Ang1 and 2), endothelial nitric oxide synthase (eNOS), platelet-

derived growth factor (PDGF), tumor necrosis factor (TNF-α), transforming growth

factor (TGF-β), and many other molecules and pathways involved in the complex

process of angiogenesis [41–43]. Ang2 facilitates sprouting by loosening the vascular

smooth muscle cells and upregulating matrix metalloproteinases (MMPs) which break
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down basement membrane and extracellular matrix in order to make room for sprout

invasion, while Ang1 promotes vessel maturation [44]. Breakdown of the extracellu-

lar matrix can cleave several growth factors harbored in the matrix, which are then

released into the interstitium, further enhancing angiogenesis. Matrix-bound growth

factors include basic fibroblast growth factor (bFGF), VEGF, and insulin-like growth

factor-1 (IGF-1) [35]. Placental derived growth factor (PlGF) can also contribute to

angiogenesis, possibly through the recruitment of bone marrow derived endothelial pro-

genitor cells, and due to synergistic effects with VEGF as both growth factors bind to

VEGFR1, a decoy receptor for VEGFR2 [45].

Decades of research have led to the production of anti-angiogenic drugs, primarily

through inhibition of vascular endothelial growth factor (VEGF) and one of its recep-

tors, VEGFR2. However these drugs that aim to inhibit angiogenesis have been largely

ineffectual, and the modest improvements in survival in a few types of cancer (such as

metastatic colon cancer) do not extend survival more than a few months [46, 47]. It

is clear from these clinical experiences and the disconnect between patient outcomes

and pre-clinical studies in implanted tumor models that we do not fully understand

the complex process of angiogenesis. Though researchers are unable to successfully

control tumor angiogenesis, its pervasiveness makes it an attractive target for imaging.

Furthermore, we hypothesize that the morphological abnormalities common to tumor

neovasculature can be observed using acoustic angiography, thus painting a picture of

microvascular structure and enabling vascular tortuosity to be quantified and utilized

as an imaging biomarker.

1.5 WHY IS TUMOR VASCULATURE TORTUOUS?

Napoleone Ferrara, the first researcher to purify and clone VEGF, defined tortuosity

as “The characteristic serpiginous appearance of newly formed and tumour-associated
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vessels. In tumour vessels, tortuosity is believed to be a hallmark of defective structural

properties.” [48]. The underlying mechanism of vessel tortuosity has not been traced to

a single cause, but seems instead to be related to a number of molecular and physical

conditions in the tumor micro-environment. As discussed in the previous section, tumor

angiogenesis is abnormal and produces disorganized and dysfunctional vasculature [49].

Structurally, tumor vessels (especially venules and veins) are dilated and tortuous, and

arteriovenous anastomoses are common, resulting in abnormal flow, including transient

stasis and flow reversal [23].

Vascular endothelial growth factor, or VEGF, is most commonly thought of as the

driver of tumor angiogenesis and as a major cause of tortuous vasculature. Many

studies describing vascular tortuosity have been performed in the retina due to the ease

of fudus imaging, a non-invasive technique for visualizing retinal vasculature. Retinal

tortuosity during diabetes was correlated to HbA1C , and the authors attributed it to

VEGF production in ischemic and hypoxic tissue, which is common in diabetes [50].

Other researchers have implanted pellets for extended release of VEGF in the vitreous

humor of rabbits and primates, and observed the induction of tortuous vasculature that

resembles human ischemic retinal pathologies [51,52]. VEGF production and tortuosity

can also triggered indirectly, and Robinson et al. measured elevated levels of VEGF

transcription and retinal tortuosity in mice following TNF-α injection [53]. Neutralizing

VEGF also reduces retinal tortuosity in a rat model of oxygen-induced retinopathy [54].

Studies of tumor angiogenesis have observed a spectrum of vessel abnormalities,

including tortuosity, that have been correlated to high levels of VEGF, and anti-VEGF

treatment can transiently normalize vasculature, thereby decreasing tortuosity [55].

Nagy et al. attribute VEGF-A as the primary cause of tortuosity, driven by hypoxia

and hypoxia-independent oncogenic pathways [56]. They attribute tortuosity to vessel

lengthening combined with restrictions imposed by tissue: “Tortuosity has generally
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been attributed to a restriction on lengthening, which is imposed by vessel anchoring

at fixed points upstream and downstream. As a result, growing tumour vessels cannot

extend linearly and so they coil.” [56]. Hartnett et al. also attribute tortuosity to

lengthening, though not specifically attributable to VEGF-A: “tortuosity is believed to

be a form of angiogenesis through vessel lengthening” [54]. However, VEGF-C was also

found to influence tortuosity because VEGF-C over-expressing tumors demonstrated a

dose-dependent response in venous dilation and tortuosity [57]. Furthermore, metabolic

stress (hypoxia, low pH, hypoglycemia) generated by the tumor and the immune and

inflammatory response (mediated by monocytes, macrophages, platelets, mast cells,

and leukocytes) can trigger angiogenesis, resulting in tortuosity, through many of the

molecular pathways already mentioned [42].

In addition to the molecular factors that influence vessel morphology, the physical

presence of the tumor itself may contribute to vascular tortuosity by displacement of

existing vessels by the expanding tumor mass. Solid stress produced by the prolifer-

ating tumor and the extracellular matrix can produce forces strong enough to cause

transient vessel collapse or stenosis [58]. Stenosis itself has also been observed to pro-

mote distal tortuosity, which is likely be caused by flow disturbances [59]. Also, leaky

tumor vasculature allows plasma extravasation, which coupled with the lack of func-

tional lymphatics, results in elevated interstitial pressure and altered trans-vascular

flow patterns [60].

Tumor vasculature may also experience conditions of flow that further reinforce the

development of tortuosity. Endothelial cells can sense flow, and increased shear flow is

related to angiogenesis, especially the process of collateralization, and the presence or

lack of flow influences vessel maturation in nascent blood vessels [41]. Studies examining

flow patterns in tortuous tubes also suggest that tortuosity could be self-reinforcing.

Stehbens et al. used dye injection in glass tubes of varying tortuosity to examine flow
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disturbances proximal and distal to the locations of curvature and observed that flow

disturbances were related to curved, tortuous segments [61].

In fluid dynamics, the Reynolds number (Re) is a dimensionless parameter that

describes the ratio of inertial to viscous forces of fluid flow. Flow is considered laminar

for Reynolds numbers below 2000 for steady flow in a straight tube, but Stehbens et

al. observed flow disturbances at much lower Re in tortuous tubes [61]. The most

highly tortuous tubes produced flow disturbances including secondary (helical) flow,

backflow, and vortex shedding at the lowest Re. In animal studies with tortuous U-

shaped vessels created by microvascular surgery, tears in the intima were observed

[62] and endothelial damage was seen in areas of high curvature, whereas proliferative

lesions were seen in locations of lower curvature [63]. Thus, tortuosity itself could

produce a positive feedback loop by producing flow disturbances that alter endothelial

growth and death differentially in adjacent segments of a vessel. Additionally, stenosis

produced by increased mechanical stress from the tumor and ECM could also create

flow disturbances and trigger a non-uniform endothelial response that could result in

tortuous vessel growth. Finally, thrombosis has also been observed in tortuous vessel

segments and in shear flow conditions, and thrombosis can induce capillary growth

through molecular angiogenic signaling pathways [41].

Some researchers also attribute tortuosity to hypertension, but conflicting results

have been reached by researchers correlating blood pressure and retinal tortuosity. A

positive association between hypertension and retinal tortuosity has been observed in

neonates [64] and adults [65], and is supported by observations and modeling of uncon-

strained elastic tubes [66]. However, retinal tortuosity was not found to be correlated

with hypertension in a study of 109 monozygotic and dizygotic adult twins, and vari-

ation between individuals was more closely related to heritability [67]. Additionally,

though blood pressure and tortuosity are correlated in infant retinal tortuosity in some
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studies, VEGF RNA is also overespressed in infants with tortuous retinal vascula-

ture [68]. Additionally, neutralizing VEGF has been seen to reduce retinal tortuosity

in a rat model of retinopathy [54], further implicating the strong association between

VEGF and vascular tortuosity in the retina, independently of any correlations found

between tortuosity and increased blood pressure.

Furthermore, the possible association between hypertension and tortuosity is un-

likely to extend to tumors for several reasons. First, the arterial pressure in tumors is

approximately equal to that of normal tissue, whereas the venous pressure is signifi-

cantly lower [23]. Thus the average blood pressure in tumors is decreased rather than

increased, which should correlate with reduced tortuosity according to retinal models.

Second, the material properties and microenvironment of a tumor are different from the

latex tubing models [66], numerical models [69] and the retina itself. Tumors and the

associated stromal cells often produce a stiffer lesion, largely due to abnormal growth

and function of the extracellular matrix [70]. These factors would tend to reduce the

vascular displacement (and therefore tortuosity) induced by elevated blood pressure.

1.5.1 OBSERVATIONS OF TORTUOSITY IN DISEASE

Retinal tortuosity is often seen in newborns born prematurely, and retinal hyper-

vascularization can cause retinal detachment and blindness in this process known as

retinopathy of prematurity [71]. Heneghan et al. segmented images of retinal ves-

sels and quantified a tortuosity metric using a ratio of path length to distance be-

tween endpoints, a metric which we will call the “distance metric” in this work [72].

Retinal tortuosity is sometimes used as a surrogate marker for blood pressure [65].

In diabetes, retinal tortuosity was observed, and more prominent in venous vessels

than arterial [50, 73]. However, arterial tortuosity (not venous) was more indicative

of retinopathy and early nephropathy, which are 2 major causes of morbidity in type
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1 diabetes patients [73]. Retinal tortuosity has also been correlated to cardiovascular

disease [51, 74] and anemia [75].

Tortuosity has also been described using other imaging modalities outside of the

retina. Subjective ratings of tortuosity in angiograms of intercostal arteries showed

a trend of increasing tortuosity with age [76]. Subjective tortuosity assessment was

also used to analyze 2-D and 3-D CT angiography, MRI, and X-ray images of head

and neck vasculature in patients with Loeys-Dietz Syndrome Type 1 [77]. MRI an-

giography imaging of connective tissue disorders also revealed tortuosity in thoracic

vertebral arteries [78]. Tortuosity of major cerebral vessels, particularly those in the

neck, was found in 25% of patients with symptoms of cerebrovascular disease [59].

The authors attributed the tortuosity they observed to hypertension and arteriosclero-

sis. 3-D imaging in the aorta and iliac arteries was used to correlate tortuosity (both

subjective ratings and computerized quantifications) to outcomes of aneurysm repair

procedures [79]. Measurements of tortuosity based on calculations of curvature were

derived from 3-D MRI imaging in order to model blood flow patterns in the femoral

artery to predict probable locations of atherosclerosis and to explain differences in the

prevalence of atherosclerosis in the superficial femoral artery in men and women [80].

Bullitt et al. observed that a healthy aging population exhibited few changes in vas-

cular tortuosity, but that fewer resolvable vessels were visible in oder adults [81]. She

and colleagues also compared cerebral tortuosity of aged individuals with varying levels

of physical activity, and found that aerobic activity was correlated to lower tortuosity

and higher numbers of small vessels in the brain [82].

In tumors, Bullitt et al. described patterns of tortuosity in patients with glioblas-

toma multiforme (GBM) [13, 83, 84]. Two of the metrics she described, the distance

metric and the sum of angles metric, are also used to quantify tumor vasculature in this
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work. Ultrasound imaging has also been used to observe tortuous vasculature in tu-

mors, though not as extensively as tortuosity has been studied in the retina using optical

fundus imaging. Tortuosity observed in 3-D power Doppler ultrasound was indicative

of ovarian malignancy [85], and microbubble-enhanced color Doppler ultrasound made

tortuous vasculature more apparent in tumors [86].

1.5.2 MEASURING TORTUOSITY

Tortuosity, a quality describing the degree of bending and twisting exhibited by

a vessel, has been used to describe retinal fundus images, Doppler ultrasound, x-ray

angiography, and in cerebral magnetic resonance angiography (MRA), as described in

the preceding sections [13, 65, 85–90]. Early evaluations of tortuosity were subjective,

visual assessments of the degree of abnormality observed in the images [75, 76, 86, 91].

Eventually, quantitative metrics describing tortuosity based on vessel length, local cur-

vature, and locations of inflection were derived, and with the increasing prevalence of

3-D medical imaging data, 2-D tortuosity metrics were extended to 3-D [78–80,87,92].

However, despite the interpretive value of images displaying vascular morphology and

the increasing variety of metrics describing tortuosity, few clinical standards exist for

evaluating abnormal tortuosity and making diagnoses. Retinal imaging has often re-

sulted in subjective classifications of tortuosity, or simple metrics such as the ratio of

vessel length to distance between endpoints. However, Sodi et al. incorporated mea-

surements of local curvature of the 2-D vessels including sums or products of curvature

along the vessels and another, the ”triangular index”, based on fitting triangles [87].

Others have used curvature based metrics including sum of squared curvature along

the vessel path [50].

This project will explore multiple metrics of tortuosity to determine those most
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sensitive to morphological changes induced by cancer angiogenesis, as imaged by ultra-

sound acoustic angiography. Additionally, metrics will be combined into a multivariate

model for prediction of malignancy based on the combined tortuosity of an acoustic

angiography image. Cancer detection using the abnormal vascular “fingerprint” of a

tumor is a novel imaging biomarker and may enable the detection of smaller lesions

than currently possible. This project aims to develop estimates of the sensitivity and

specificity for the detection of tumors smaller than 1 mm3 in diameter as a step forward

in the goal of early detection and improving the specificity of diagnosis

1.5.3 METRICS DEFINED

The two tortuosity metrics used throughout this work are the distance metric and

the sum of angles metric. Both metrics are computed using the centerline of the vessel

and do not take local vessel diameter into account. While both metrics are length

invariant, consistent voxel sizing and sampling should be maintained to ensure accurate

comparisons between images.

DISTANCE METRIC

The distance metric is the most commonly cited measure of general “tortuosity” in

both 2-D and 3-D imaging, and simple to calculate at any scale. The distance metric

is the ratio of the total path length of the vessel to the Euclidean distance between the

vessel endpoints. Thus, a straight vessel has a distance metric value of 1 and increases

for curved vessels as total path length increases relative to distance between endpoints.

For a point, P , along the centerline of a vessel, the distance metric is defined as follows:

DM =

n−1∑
x=1

‖Px − Px+1‖

‖Px − Pn‖
(1.1)
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The distance metric is a unitless quantity since it is the ratio of two distances.

SUM OF ANGLES METRIC

The sum of angles metric, on the other hand, is computed by calculating the an-

gle between successive trios of points along the vessel and summing them, followed by

normalizing the sum of the angles by the path length of the vessel to ensure length

invariance. Length invariance is preferred so that tortuosity values are not dependent

on the number of points per vessel, and vessel length can be included as an additional

metric in multivariate analysis if it provides useful information for discrimination be-

tween tumor and control vasculature. The angles along the centerline are computed

by taking the inverse cosine of the dot product between the two unit-length vectors

formed by 3 points, as follows:

SOAM =

n−3∑
x=1

arccos
(

V1

‖V1‖ ·
V2

‖V2‖

)
n−1∑
x=1

‖Px − Px+1‖
(1.2)

Vectors V1 and V2 are the vectors between subsequent points along the centerline.

Thus, (V1 = Px+1 − Px) and (V2 = Px+2 − Px+1) for n points (P ) along each vessel.

The sum of angles metric has units in radians per unit length.

The following chapters describe analysis of tumor vascular morphology using the

distance metric and the sum of angles metric, as well as other vascular features, such

as vascular density.
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CHAPTER 2

CONTRAST ENHANCED ULTRASOUND IMAGING

2.1 MICROBUBBLE DEVELOPMENT

Contrast enhanced ultrasound imaging began with the development of microbubbles

to enhance signals from the circulatory system in order to overcome the weak scattering

by blood. Dr. Charles Joiner, a cardiologist, noticed brief ultrasound enhancement

while injecting indocyanine through a catheter in the left ventricle, and it was later

discovered that the source of the echoes were bubbles on the catheter tip [93]. Prior to

the formulation of encapsulated microbubbles, indocyanine green and agitated saline

along with other agents were used in echocardiography, often to detect shunts since the

free gas bubbles were removed from circulation very quickly (after a single pass through

the lungs) [94–99].

The discovery that contrast could be improved by mixing blood with the saline prior

to agitation led to the development of Albunex (Molecular Biosystems, San Diego, CA),

a microbubble with an air core stabilized by shell composed of human serum albumin

[100,101]. Echovist (Schering AG, Berlin, Germany) was a first generation microbubble

stabilized with D-galactose, but these bubbles still did not persist in circulation [93].

The agent Levovist was a successor of Echovist, and it incorporated palmitic acid to

act as a surfactant to improve the longevity of the agent [93].

Second generation ultrasound agents focused on stability, and most agents switched
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to cores of high molecular weight gases to slow diffusion of the gas through the mi-

crobubble shell. Polyethlyene glycol (PEG) was incorporated to prolong circulation

time, minimize coalescence, and improve solubility [93]. Optison (Molecular Biosys-

tems, San Diego, CA, currently GE Healthcare Bio-sciences, Pittsburgh, PA) contains

a perfluorocarbon (PFC) core with an albumin shell, and reported stronger harmonics

than Albunex, the previous albumin-encapsulated microbubble [98]. Sonovue (Bracco,

Milan, Italy) consists of a phospholipid shell and a sulfur hexafluoride core, while Defin-

ity (Lantheus Medical Imaging, N. Billerica, MA) pairs a phospholipid shell with a PFC

core [93]. Currently, the FDA approves of Optison and Definity for echocardiography,

specifically opacification of the left ventricle. Sonovue, now known as Lumason in the

United States, is approved for liver imaging in adults and children as of 2016.

2.2 MICROBUBBLE PROPERTIES

Microbubbles are blood-pool agents, confined to the circulation due to their size of

approximately 1-7 µm. The shell material is thin in comparison to the microbubble size,

with thickness between 10 and 200 nm [102]. Microbubbles are cleared primarily by

the reticulo-endothelial system, with microbubbles retained in the liver and spleen by

phagocytic cells (macrophages and specialized Kupffer cells) [103]. The core gases that

diffuse into circulation are cleared by the lungs, and human pharmacokinetic studies

showed that the expired half-life of sulfur hexafluoride and PFC gases was very quick,

on the order of few minutes, and there was little to no detectable gas in any patients

after 90-120 minutes [104,105].

Their size also makes them resonant within the frequency range of diagnostic ul-

trasound (2-15 MHz), leading to high reflectivity and nonlinear echoes which enable

contrast-specific imaging techniques [93]. The gas core has a high acoustic impedance
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mismatch with surrounding blood and tissue due to the low density and very high com-

pressibility of the gas core. The physical properties of microbubbles enable them to very

effectively reflect ultrasound, leading to enhancement in B-mode images, but it is their

compressibility that leads to unique non-linear properties that differ greatly from tis-

sue [106]. At very low pressures, the microbubble diameter oscillates with the positive

and negative cycles of the transmitted ultrasound wave. At more moderate pressures,

such as 150-300 kPa (in vivo), microbubble expansion increases relative to the contrac-

tion, and the speed of the contractive cycle is faster than the expansive cycle, leading to

the production of non-linear echoes. Higher pressures result in asymmetric expansion

and microbubble fragmentation, but it is worth noting that the precise thresholds de-

termining microbubble behavior vary with diameter and shell composition, ultrasound

frequency and pulse repetition rate, as well as boundary conditions. However, the

harmonics (integer multiples of the fundamental frequency), subharmonics (half the

fundamental frequency), ultraharmonics (half-integer multiples of the fundamental),

and superharmonics (combined higher harmonics, ultraharmonics, and non-integer fre-

quency response) originating from microbubbles are distinct from the behavior of tissue,

and thus are used to separate microbubble signals from the surrounding tissues.

2.3 CONTRAST IMAGING TECHNIQUES

Though microbubbles are useful for cardiac enhancements, microvascular imag-

ing began once the nonlinear properties of microbubbles were realized. The higher

nonlinearity of microbubbles compared to tissue in response to ultrasound makes spe-

cialized detection methods possible to distinguish contrast signal from tissue back-

ground [107, 108]. Early iterations of contrast detection relied on second harmonic

imaging [109]. However, since nonlinear propagation of ultrasound through tissue can

also produce harmonics which confound the harmonic contrast signal [110], contrast
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specificity and the contrast-to-tissue ration (CTR) was not high. Therefore, contrast

pulse sequences known as pulse inversion and amplitude modulation were developed to

take advantage of microbubble nonlinearity that was not restricted to the second har-

monic signal [111–115]. Subharmonic imaging (at half the frequency of the transmitted

pulse) is also more specific to microbubble contrast, but tends to lack the resolution of

some of the multi-pulse techniques due to the low frequencies used [116, 117]. Several

encoded imaging methods have also been tailored for contrast imaging, including chirp

and Golay encoding [118–121]. In recent years, ultra-fast plane wave imaging has also

been extended to contrast imaging using both contrast-specific pulse schemes as well

as contrast-enhanced Doppler [122,123].

More recently, ultrasound localization microscopy, otherwise known as super res-

olution, has been developed to provide very high resolution vascular images. These

techniques were inspired by microscopy methods which rely on the stochastic blinking

of fluorophores to separate their signals and improve resolution beyond the diffraction

limit [124, 125]. The first description of a similar implementation in ultrasound was

by Viessmann et al. using low concentrations of contrast to detect and localize single

bubbles in tubes, accumulating a sufficient number of frames to combine into an im-

age over a long period of time [126]. This was closely followed by another group who

imaged single bubbles in phantoms encased a human skull [127]. Desailly et al. then

used microfluidic channels to measure resolution, and incorporated ultrafast imaging

to avoid diluting contrast and acquire data more quickly, but their work was limited

to in vitro experiments [128]. Later, Christensen-Jeffries et al. used the dilute, “single

bubble” imaging technique to perform the first ultrasound super resolution imaging in

vivo, acquiring images in a mouse ear, allowing optical verification of vessel structure

and demonstrating the first in vivo super-resolved ultrasound images [129]. Less than
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a year later, Errico et al. demonstrated the first super-resolution images using ultra-

fast acquisition in vivo, imaging the brains of rats [130]. This year, Lin et al. applied

the ultra-fast super resolution technique to image tumor vasculature, also in rats, and

combining several 2D slices into a 3D projection [131].

The main disadvantages of ultrasound localization microscopy or super-resolution

imaging are the long acquistions times, even with ultra-fast imaging, and computa-

tionally intense image reconstruction. Errico et al. were able to acquire almost 75,000

frames to reconstruct an image of the cortex of a rat (3.5 mm in dept depth) in 2.5

minutes, while a larger image to 11.6 mm required 10 minutes. The long imaging times

make physiologic motion a problem and therefore the French group focuses their imag-

ing on the brain because the tissue is extremely stationary when the skull is held in

place with a sterotactic device [130]. Lin et al. was able to acquire a sufficient number

of images for a 2D image in 26 seconds, but the total acquistion time of 3D images

with 200 µm slice spacing was over 30 minutes [131].

2.4 SUPERHARMONIC IMAGING

2.4.1 IMPLEMENTATION

Superharmonic imaging of microbubbles takes advantage of the ability of microbub-

bles to generate broadband echoes extending several harmonics beyond the transmit

frequency. This phenomenon was first exploited for imaging by de Jong, Bouakaz,

and Frinking. In a conference proceedings, they published results of simulations of

microbubble oscillations, varying bubble encapsulation, thermal and viscous damp-

ing, and bubble diameter [132]. With the goal of improving contrast to tissue ratios

(CTR), they reported the contributions of higher harmonics, including superharmonics.

They also reported the design of a phased-array transducer with interleaved elements

of different center frequencies. The 96-element array consisted of 0.9 MHz (40-50%
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bandwidth) elements alternating with 2.8 MHz (80% bandwidth) elements. The very

low frequency transmit (below 1 MHz) was selected to minimize nonlinear propagation

through tissue, a frequency dependent phenomenon [133, 134], and because their de-

sired application is detection of myocardial perfusion. They transmitted an 800 kHz

pulse with the low frequency elements and received with the high frequency elements,

and results included an in vitro image of microbubbles in a tube and a figure reporting

CTR in dB for the received RF data at different frequencies which showed a peak CTR

receiving the superharmonic signals at 3 MHz. They then followed this conference pro-

ceeding with 2 full length manuscripts describing the transducer and superharmonic

imaging experiments [135,136]. In these works, they compared transmitting at 0.8 and

at 1.7 MHz. They found that the maximum CTR was approximately 30 dB at the 4th

and 5th harmonic levels when transmitting at 1.7 MHz, and as high as 80 dB (also

at the 4th and 5th harmonics) when transmitting at 0.8 MHz. They attributed the

gain in CTR to reduced frequency-dependent nonlinear propagation at lower transmit

frequency. They also demonstrated the in vivo feasibility by imaging the heart of a pig,

transmitting at 0.8 MHZ with a MI of 0.4 and receiving with the 2.8 MHz transducer

and using a bandpass filter of 2.7-4.7 MHz. Further work described their interleaved

transducer design in more detail and demonstrated imaging of myocardial perfusion in

a pig model [137,138].

Dr. Ferrara’s group also investigated contrast superharmonic imaging, describing

the transient wideband acoustic signal attributed to microbubble destruction [139].

Their early studies were in vitro experiments using separate transducers to transmit

at 2.25 MHz and receive with a 15 MHz transducer. They selected higher frequencies

than the work of Bouakaz and de Jong to improve resolution. Additional work used

the same transmit and receive frequencies to enhance radiation force in a cellulose tube

model of molecular imaging using biotin-avidin targeting, and to image the adherent
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microbubbles [140]. Later, they developed a dual frequency array design with a 5.4 MHz

linear array flanked by two 1.5 MHz arrays, which was used for in vitro [141] and in vivo

experiments [142] showing improved resolution with superharmonic contrast detection

and demonstrating slow-time filtering methods for separating signal from adherent and

flowing microbubbles. The animal model used was FVB mice with Met-1 breast tumors

implanted in the mammary pads, a model chosen for it’s known phenotype of significant

angiogenesis.

The Dayton lab and collaborators have also utilized dual-frequcency transducers

for superharmonic contrast imaging, emphasizing high frequencies and resolution in

order to enable the visualization and quantification of vascular morphology. High con-

trast, high resolution images are acquired in 3D in order to visualize microvasculature

and to subject images to further quantification, such as the characterizations of vas-

cular density and tortuosity described in this work. These transducers, developed in

collaboration with other groups, have higher receive frequencies than previously pub-

lished examples in order to maximize resolution of microvasculature, intended for the

imaging of neovasculature associated with cancer and atherosclerosis (vasa vasorum).

Collaboration with Dr. Stuart Foster resulted in the design of confocal, single element

transducers with transmit frequencies between 2.5 MHz and 4 MHz and high frequency

receive elements of 25-30 MHz [143]. These transducers have been used extensively by

the Dayton lab for in vitro and in vivo studies, including the work described in this

thesis [144–151]. Collaboration with Dr. Xiaoning Jiang led to the creation of several

small dual-frequency transducers designed for intravascular (IVUS) and intra-cavity

ultrasound imaging [152–158].
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2.4.2 MICROBUBBLE PRODUCTION OF SUPERHARMONICS

Though non-linear propagation of ultrasound through tissue occurs to some extent,

the production of superharmonics is microbubble specific phenomenon. While very low

pressure imaging schemes are frequently used in contrast specific pulse sequences (such

as pulse inversion and amplitude modulation) in order to minimize tissue artifacts and

microbubble destruction, the production of superharmonics requires somewhat higher

(moderate) pressures. Kruse and Ferrara attribute the production of wideband super-

harmonics to “high bubble wall velocity and acceleration achieved when a microbubble

collapses”, a theory supported by bubble modeling using the Rayleigh-Plesset equation,

or to the alternate theory that shell rupture releases free gas into the fluid, resulting in

“stronger oscillation of a free gas bubble compared to the damped oscillation of an en-

capsulated bubble” [139]. They reported that for 10 cycle pulses, pressures of 100-200

kPa were necessary to induce the production of wideband, superharmonic, transient

echoes, and that higher harmonic content increased with increasing pressure. Trans-

mitting at 0.8 MHz, Bouakaz imaged myocardial contrast at MI close to 0.4 in in vivo

experiments in pig hearts, and related the contrast-to-tissue number to the harmonic

number [135]. They reported 40 dB higher CTR than second harmonic imaging. Hu

et al. used a 5.4 MHz array flanked by two 1.5 MHz arrays to compare dual-frequency

imaging to fundamental [141]. They found that when transmitting and receiving at

7 MHz, the CTR did not vary with pressure, but increased significantly when trans-

mitting at 1.5 MHz and receiving at 7 MHz. In the transmit-low/receive-high imaging

scheme, the CTR increased from less than to 10 dB at 60 kPa to over 30 dB at 330 kPa.

The combined findings of these studies indicated that CTR of dual-frequency imaging is

dependent upon transmit pressure and that low frequency and higher pressure transmit

increase the higher order harmonic echoes from microbubbles.
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Lindsey et al. performed detailed experiments in order to understand the relation-

ships between frequency (both transmitted and received), pressure, and microbubble

diameter on the resulting images, specifically the CTR and resolution. He found that

the resolution is primarily dictated by the receiving frequency, thus high frequency

receiving transducers should be selected for imaging microvascular morphology. As

reported in previous studies, the transmitted pressure influenced CTR, with CTR in-

creasing with pressure until a threshold was reached, though the specific pressure at

which this occurs varies with other factors such as frequency, microbubble attributes,

and in vitro versus in vivo conditions [159]. In a subsequent publication, they reported

that production of superharmonics does not rely on complete microbubble destruction,

but can also be produced by gradual dissolution of a microbubble over several pulses.

However the magnitude of the superharmonic signals produced by gradual dissolution

(microbubble shrinking) is much weaker than that produced by microbubble destruc-

tion.

The size and composition of the microbubble contrast agents also influence the pro-

duction of superharmonic echoes. Existing superharmonic imaging studies have utilized

lipid shelled microbubbles (SonoVue, Definity, and similar agents), though Kruse and

Ferrara report transient-like echoes from the destruction of other contrast, including

rigid shelled agents [139]. However, shell rigidity should be minimized to optimize

superharmonic imaging, in order to maximize the non-linear behavior of the microbub-

ble. Rigid-shelled microbubbles are less scattering and do not exhibit nonlinear be-

havior, whereas unencapsulated microbubbles, on the other hand, react nonlinearly at

lower pressures than encapsulated bubbles which damp the compression and expan-

sion [132,160].
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CHAPTER 3

MATERIALS AND METHODS

3.1 ANIMAL MODELS

The majority of this project utilized a genetically engineered mouse model of breast

cancer. The tumor-bearing animals were female C3(1)/Tag mice, which develop tumors

spontaneously in the mammary pads. C3(1)/Tag mice are a model of basal breasts

cancer in which oncogenesis is driven by the inactivation of the p53 and retinoblastoma

(Rb) oncogenes by the siminan virus 40 (SV40) large T-antigen [161, 162]. Mammary

carcinomas develop by 16 weeks, with abnormal ductal hyperplasia occuring earlier,

mimicking the progression of breast cancer in humans. Female FVB/NJ littermates not

carrying the transgene served as controls. Mice were bred and obtained from the Mouse

Phase 1 Unit at the University of North Carolina at Chapel Hill, which is supported

in part by the University Cancer Research Fund. For imaging, mice were anesthetized

with 1-2% aerosolized isoflurane in oxygen for imaging, and hair on the ventral side

was removed with clippers followed by chemical depilation to allow visualization of

the caudal mammary pads. With assistance of the Animal Studies Core, a 27 gauge

catheter was placed in a tail vein for injection of the contrast agent. The Animal

Studies Core is supported in part by an NCI Center Core Support Grant to the UNC

Lineberger Comprehensive Cancer Center.

Additional studies used a fibrosarcoma tumor model in rats. Fibrosarcoma tumors

were implanted subcutaneously in the flank of Fischer 344 rats from a 1 mm piece of
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fresh tissue while animals were anesthetized. Tumor material was obtained from the

Dewhirst laboratory at Duke University, Durham, NC, who received their tumor tissue

from the Bull laboratory at the Univeristy of Texas M.D. Anderson Cancer Center,

Houston, TX. They remark that the tumor was “originally isolated from the subcutis

of rats that were given the carcinogen methylcholanthrene and was maintained by serial

transplantation” [163, 164]. Anesthesia was induced with 5% aerosolized isoflurane in

oxygen and reduced to approximately 2% during imaging. The imaging region was

depilated with clippers and chemical depilation, and a 24 gauge catheter in the tail

vein provided vascular access for contrast agent injection.

Animals were supported by a heated stage to maintain body temperature during

all imaging studies, and ultrasound gel was used to couple the transducer to the skin

surface. All studies involving animals were reviewed and approved by the Institutional

Animal Care and Use Committee at the University of North Carolina at Chapel Hill.

3.2 MICROBUBBLE CONTRAST AGENTS

Untargeted, lipid-shelled microbubbles were produced in house using a 9:1 molar

mixture of DSPC (1,2-distearoyl- sn-glycero-3-phosphocholine) and DSPE-PEG2000

(1,2-distearoyl-sn- glycero-3-phosphoethanolamine- polyethylene-glycol-2000) (Avanti

Polar Lipids, Alabaster, AL, USA), with 80% phosphate-buffered saline, 15% propylene

glycol, and 5% glycerol. Aliquots of 1.5 ml of the lipid solution were transferred to 3 ml

glass bottles, which were then sealed and capped. Headspace in the vials was replaced

with decafluorobutane (Fluoromed, Round Rock, TX) and microbubbles were created

via mechanical agitation with a Vialmix (Lantheus Medical Imaging, N. Billerica, MA).

Microbubble size and concentration was measured with an AccuSizer 780 Single Particle

Optical Sizing System (Particle Sizing Systems, Port Richey, FL). For most studies,

microbubbles were diluted with sterile saline to a concentration of 5x109 and infused at
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a rate of 30 µL per minute using a syringe pump (Harvard Apparatus, Holliston, MA)

during contrast-mode in vivo imaging.

3.3 IMAGE ACQUISITION

B-mode and dual-frequency images were acquired with a VisualSonics Vevo 770 sys-

tem (FUJIFILM VisualSonics, Toronto, ON, Canada) using a modified RMV707 (30

MHz center frequency) or RMV710 (25 MHz center frequency) transducer. A 4 MHz an-

nular element was added confocal to the high frequency element, with the focus at 12.7

mm (RMV707) or 15 mm (RMV710), as shown in figure 3.1. For dual-frequency super-

harmonic imaging, the high frequency element was disabled, and the trigger from the

Vevo 770 scanner was synchronized with an arbitrary waveform generator (AFG3101

or AWG2021, Tektronix, Beaverton, OR) used to produce a single-cycle, windowed,

sinusoidal waveform which was then amplified (ENI, Rochester, NY) before exciting

the low frequency element [147]. Transducer output was calibrated using a needle hy-

drophone (HNA400, Onda, Sunnvale, CA), acquisition board (Signtec PDA14, Corona,

CA), and motion stage (Newport XPS, Irvine CA) programmed in LabView (National

Instruments, Austin, TX).

Typical transmit pressure used for in vivo imaging in this work was a peak negative

pressure (PNP) of 1.2 MPa at 4 MHz, resulting in a mechanical index of 0.6. This is

within the 0.8 limit listed for safe clinical use of Definity [165]. Higher harmonic echoes

from microbubbles were received on the Vevo 770 system with the high frequency

element, and a 15 MHz, 7th order Chebyshev high pass filter was added to the receive

line (TTE, Los Angeles, CA) to further eliminate any contamination by tissue signal

in the lower range of the transducer’s bandwidth. The confocal elements are swept to

acquire a 2-D frame, and the transducer is translated with a linear motion stage to

acquire a 3-D volume. B-mode and contrast images were taken with an inter-frame
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step size of 100 m and a frame rate of 4 frames per second, unless otherwise specified.

In dual-frequency contrast mode, frame smoothing was used to average 2 acquisitions

together to form each frame. The field of view was 2.5 by 2.5 cm in the axial and lateral

dimensions, and determined by the user in the elevational direction.

Figure 3.1: This photograph shows the center high frequency element (25 MHz) sur-
rounded by the low frequency annular element (4MHz). Both elements have curved
lenses to focus them to a depth of 15 mm.

3.4 IMAGE PROCESSING

Tumor dimensions and regions of interested were determined using high-frequency

B-mode images. Tumor dimensions were determined by measuring 3 orthogonal axes

of the tumor in B-mode, and using the geometric mean of the axes to approximate the

tumor diameter. Tumors were followed with imaging for several weeks, then removed,

fixed, and embedded for histological confirmation. Therefore, accurate determination

of tumor status was based on tissue imaging with high-frequency B-mode ultrasound,

and tumor margins and dimensions were subjective measurements with no “gold stan-

dard” reference available. Additionally, genotype data for each mouse verified which

animals were carrying the transgene and which were wild type. All transgenic animals
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developed tumors over the course of the study. B-mode measurements were selected

for determining tumor dimensions instead of caliper measurements due to the higher

precision. Caliper measurements tended to vary by as much as a millimeter or more,

possibly due to different amounts of tissue compression. Measurements from B-mode

images depended on image quality and definition of the boundary based on image

echogenicity, but were superior to physical measurements made with calipers.

Raw images were exported from the scanner and converted to metaheader format

(.mhd/.mha) and linearly interpolated in the elevation direction to produce isotropic

voxels, approximately 50 µm, for segmentation using multiscale ridge regression [166].

Using the interface designed by Drs. Bullitt and Aylward, the user is able to interac-

tively select seed points, run the segmentation algorithm, and subsequently visualize

the resulting segmentation. Segmentations were exported as text files containing the

centerline of each vessel, identified by the x, y, z points in space occupied by the vessel

and the radius at each point. Segmented vessel centerlines were used to calculate tor-

tuosity in one of two ways. One way tortuosity was calculated was using Dr. Bullitt’s

algorithms developed for tortuosity analysis of cerebral vessels in clinical MRI angiog-

raphy images [83]. This analysis has been effective at observing differences in normal

vasculature and tumors in acoustic angiography imaging [144], but it includes unspec-

ified smoothing and scaling of the vessel centerlines before calculating tortuosity. The

tortuosity metrics derived from this approach were used for characterization of tumor

regions of interest and spatial analysis of the extent of tortuosity around tumors, which

are described in chapter 4. The second approach computes tortuosity using the same

definitions of the distance metric and sum of angles metric, but by first resampling the

vessel centerlines to match the image sampling (approximately 50 µm) and omitting

any additional smoothing before computing the distance metric and sum of angles met-

ric in Matlab (The Mathworks, Natick, MA), and this approach was used in chapter
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6.

The distance metric is a ratio of the path length of a vessel to the Euclidean distance

between vessel endpoints, and is one of the most common quantifications of “tortuosity”

in the literature. The sum of angles metric is calculated by taking the sum of the angle

(in radians) between 3 points along the centerline of the vessel and normalizing by

path length (in mm). Thus the units of the sum of angles metric are radians per unit

distance. The distance metric, on the other hand, is a dimensionless quantity that is the

ratio of two lengths. For analysis of specific regions of images, such as tumors, regions

of interest were segmented manually by interactively drawing polygons (using roipoly

in Matlab) on individual slices of the grayscale ultrasound images and concatenating

the 2D regions into a 3D segmented volume or ROI. See chapter 1, section 1.5.2 for

more detailed discussion and definition of the tortuosity metrics.

3.5 STATISTICAL ANALYSIS

Data plotting was done in R, Matlab, and Microsoft Excel, but unless otherwise

stated, statistical analyses were performed in R [167], and a level of α = 0.05 was

used for significance testing. Chapter 5 also includes statistical analyses and plots

generated in STATA/SE 14.2 for ROC regression. Both parametric and non-parametric

tests were used for significance testing, with bootstrapping in R used to estimate non-

parametric distribution values when necessary. The most frequently used tests were T-

test, Wilcoxon Rank-Sum, ANOVA, and Tukey Honest Significant Difference tests, and

linear and logistic regression were also completed in R. Receiver operating characteristic

(ROC) curves and analysis of the classification performance were performed with the

pROC, ROCR, and OptimalCutpoints packages [168–170]. Clustering analysis was

performed using the Density Based Statistical Clustering of Applications with Noise

(DBSCAN) algorithm in R [171]. Clusters were plotted using the rgl package [172].
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CHAPTER 4

CHARACTERIZING VASCULATURE IN TUMOR REGIONS

4.1 OVERVIEW

As discussed in chapter 1, tumors are known to produce abnormal vascular struc-

tures. Therefore, an imaging technique which is capable of resolving vasculature with

clarity could provide useful information about tissue for characterization, detection,

and diagnosis of tumors. The current ultrasound acoustic angiography technology is

capable of producing high-contrast images of vasculature as small as 100-150 µm in

diameter, to a depth of approximately 2 cm. This can be accomplished safely, as ul-

trasound does not expose the subject to any ionizing radiation and clinically approved

contrast agents have a strong safety profile. This chapter is devoted to characterizing

differences between tumor and normal vascular patterns that are detectable in acoustic

angiography images. We will explore how tortuosity and vascular density compare in

regions of tumor and healthy vasculature, as well as analyzing how the vasculature in

tissue surrounding a tumor is affected by the presence of the tumor.

Previous work in the Dayton lab compared tortuosity in large fibrosarcoma tumors

implanted subcutaneously to healthy vasculature in the hind limb of a rat [144]. While

that work showed significant differences in tortuosity between tumors and normal hind

limb vasculature using acoustic angiography for the first time, the subcutaneous fi-

brosarcoma is not the most clinically relevant or translatable model of tumor growth
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since soft tissue sarcomas are heterogeneous and represent less than 1% of malignan-

cies in the United States [173]. Therefore, the majority of the experiments in this work

utilized a spontaneous mouse model of breast cancer, the C3(1)/Tag.

The benefit of a model in which tumors develop spontaneously (in this case driven

by the inactivation of the p53 and Rb tumor suppressor genes) is that any tortuosity

observed can be attributed to the tumor development process and not a wound heal-

ing response due to tumor implantation, which was one of the limitations of earlier

studies. Additionally, the progression of mammary carcinomas that develop in female

C3(1)/Tag mice is very similar to the stages observed in human breast neoplasms [162],

making it an excellent model for the characterization of early-stage lesions. Finally, the

mouse model of basal breast cancer is clinically significant because breast cancer has

widespread incidence and the hormone receptor negative tumor types do not have

targeted therapies and suffer from a worse prognosis. Additionally, breast cancer rep-

resents a tumor type that is somewhat superficial, which may enable the translation

of acoustic angiography imaging to the clinic. Ultrasound already plays an important

role in the diagnosis of breast lesions, making the development of technologies with

improved diagnostic information extremely relevant.

This chapter examines the vascular morphology of tumors by using regions of inter-

est (ROIs) to isolate tumor vasculature for comparison with normal vessels. ROIs are

then expanded to explore the tortuosity of vasculature in tissue immediately surround-

ing a tumor. The hypotheses addressed in this chapter are:

1. Tumor vasculature is significantly more tortuous than that of normal, healthy

tissue.

2. The density of vasculature within tumors is higher than in surrounding tissues.

3. The prevalence and magnitude of tortuous vasculature must decrease outside of
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tumors to approach the values seen in normal tissue.

Figure 4.1 illustrates the difference between conventional B-mode imaging at a single

center frequency, and the dual frequency contrast imaging technique, acoustic angiog-

raphy.

Figure 4.1: Conventional B-mode image (25 MHz) reconstructed in the coronal plane
from images acquired 100 µm apart axially and the co-registered maximum intensity
projection of the dual frequency vascular image acquired during microbubble infusion
by transmitting at 4 MHz and receiving at 25 MHz.

Examination of the images reveals subjectively and intuitively that these hypotheses

must be true, but numerical comparisons are needed in order to quantify the degree

of difference between healthy and diseased vasculature and to assess the performance

of the imaging technology. A few respresentative images of control and tumor images

are shown in figure 4.2. These images use maximum intensity projections of the 3-D

data in order to display the information in 2 dimensions. Figure 4.2 shows 2 control

images and 3 tumor images, reconstructed in the coronal plane, which was orthogonal

to the acquisition plane (axial). Images of the abdominal vasculature were acquired

with the mice in the supine position, and the vertical axis of the images is oriented

in the cranial-caudal direction, while the projected dimension is in the ventral-dorsal

direction. The two control images (top row) show vessel morphology that is mostly
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linear or smoothly curved. The tumor images (bottom row) show tortuosity in the

vessels supplying and penetrating the tumors. The middle tumor has clearly higher

vascular density that the surrounding tissue, evident by the bright contrast signal in

the tumor region coming from both resolvable and sub-resolution vasculature.

The following analyses will quantify the differences in tortuosity and vascular density

between controls (normal, healthy) and that of tumors in this spontaneous model of

breast cancer, as well as incorporating preliminary correlations between tumor size and

vascular differences, a topic which will be analyzed and discussed in more depth in

chapters 5 and 6.
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4.2 TORTUOSITY ANALYSIS

The tortuosity metrics used in this chapter are the distance metric and sum of angles

metric, computed using Bullitt’s algorithm, and described in sections 1.5.2 and 3.4. The

distance metric is the ratio of path length to distance between endpoints of a vessel and

the sum of angles metric is the sum of the angles between points along the centerline

and normalized by path length. The distance metric effectively captures the tortuosity

of arching vessels with low spatial frequency and high amplitude oscillations, whereas

the sum of angles is more sensitive to curves that vary at a high spatial frequency, but a

low amplitude. Such curves appear sinusoidal or spiraling, and the local curvature along

the vessel can be high without increasing the overall length of the vessel substantially.

Both types of tortuosity are seen in tumor vasculature, and chapter 6 will discuss them

in combination, but this chapter examines each metric independently by comparing

vessels contained within tumor regions to healthy abdominal vasculature in control

mice.

4.2.1 TUMOR REGIONS OF INTEREST

The vascular tortuosity of 24 tumors ranging 2.02-6.93 mm in diameter was mea-

sured using the distance metric (DM) and sum of angles metric (SOAM). The mean

and standard deviation of tumor diameter was 3.74 ± 1.43 mm. Twenty control images

came from the left and right sides of 10 female control mice (type FVB/NJ) that were

the same age and size as the tumor-bearing mice. No ROIs were selected in the control

images, so all the vasculature within the imaging field of view was segmented. Image

volumes were linearly interpolated to reduce the sampling in the elevation direction

from 100 µm to 50 µm. Individual vessels were segmented using Aylward’s multiscale

intensity ridge traversal algorithm [166], and tortuosity was calculated as described in

chapters 1 and 3, using Bullitt’s algorithm [83].
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Vessels from the tumor ROIs and control images were pooled, and a two-sided t-test

was used to test for a difference in means for each metric. Pooling vessels from every

image together resulted in a total of 1,556 control vessels and 746 tumor vessels. The

lower number of tumor vessels is due to the smaller total volume analyzed because

tumor images were masked to include the tumor ROIs and exclude surrounding tissue

in this analysis. The mean and standard deviation of the DM was 1.255 ± 0.371

for controls versus 1.431 ± 0.596 for the tumor ROIs, with p<0.01 for the difference

between groups. The SOAM exhibited an even larger difference in means with control

images having a mean value of 22.51 ± 9.45 versus 35.92 ± 13.49 for the tumor ROIs

(p<0.01).

As an alternative to pooling the vessels from all images together, we can take the

mean value of a tortuosity metric for each image or ROI, and use this mean values

to represent an volume. With a single value per metric for each image or ROI, we

can visualize the separation between tumors and controls. Figure 4.3 is a scatter plot

of data points representing each tumor ROI or control image, with the 2 tortuosity

metrics (SOAM than the DM) as the axes. This plot represents control data points with

orange squares and tumor data points with blue diamonds in order to visually assess

their separation. We can notice that there is some separation along the horizontal axis,

representing the distance metric, but that there is much more separation between the

two groups along the vertical axis, representing the sum of angles metric. This plot

reveals that the magnitude of difference and class separation between tumor ROIs and

controls is superior for the sum of angles metric than for the distance metric.

The mean and standard deviation of the average metrics for tumors and controls are

1.43 ± 0.11 versus 1.28 ± 0.072 for the DM and 35.68 ± 4.85 versus 21.64 ± 2.75 for the

SOAM, also listed in table 4.1. The average metric is significantly higher in the tumor

class for both metrics using a two-sided t-test, with p = 9.7 × 10−6 for the distance
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Figure 4.3: Mean distance metric and mean sum of angles metric for 24 tumor ROIs
and 20 control images.

Table 4.1: Mean and standard deviation of means for the distance metric and sum of
angles metric.

DM SOAM
Tumors 1.43 ± 0.11 35.68 ± 4.85
Controls 1.28 ± 0.072 21.64 ± 2.75

metric and p = 1.7× 10−14 for the sum of angles metric. In order to compare the value

of the sum of angles metric and distance metric for their power to discriminate between

the tumor and control classes, we can plot receive operator characteristic (ROC) curves

and compare the area under the curve (AUC) in figure 4.4.

While the mean and standard deviation for each metric show a greater difference

between tumors and controls for the sum of angles metric than the distance metric, and

the scatterplot in figure 4.3 also shows greater separation for the SOAM than the DM,

figure 4.4 allows us to quantify the difference between the two metrics for separating

tumor ROIs and controls. The area under the ROC curve indicates how well two
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Figure 4.4: ROC curves for the distance metric (left, in green) and the sum of angles
metric (right, in blue) using the mean value of each image for classification.

groups are separated using a numerical parameter. Perfect separation results in an

area under the curve of 1.0 and unseparated data results in an area under the curve of

0.5, representing random guessing between the two classes. The distance metric results

in an area under the curve of 0.85, indicating moderate separation between tumors

and controls, but the sum of angles metric has an area under the curve of 0.99, which

indicates excellent separation between tumors and controls. Weighing sensitivity and

specificity equally, the optimal threshold for the distance metric is 1.34, which results in

a sensitivity of 0.83 and a specificity of 0.81. For the sum of angles metric, the optimal

threshold is 29.93, which results in a sensitivity of 0.96 and a specificity of 1.0. These

results indicate that the sum of angles metric is a superior metric for distinguishing

tumor vascular tortuosity in acoustic angiography images.
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4.2.2 TORTUOSITY AND TUMOR SIZE

Though images of tumors of different sizes visually reveal that more tortuous ves-

sels are apparent in larger tumors compared to smaller tumors (see figure 4.2), linear

regression resulted in weak correlation with tumor size for both the DM and SOAM,

with only the DM resulting in a statistically significant trend (R2 = 0.26, p = 0.01),

shown in figure 4.5. Linear regression between tumor diameter and the sum of angles

metric resulted in R2 = 0.07 and p = 0.19.

Figure 4.5: Scatterplot of the mean DM and SOAM tortuosity of 24 tumors versus the
maximum tumor diameter in millimeters. The distance metric is indicated with blue
circles, and the sum of angles metric is indicated with green triangles.

We can also analyze the relationship between tumor size and tortuosity by grouping

the tumor data into subsets based on diameter. Tumors were classified into 1 of 3 groups

based on the their largest cross section, and the resulting groups were 2-3 mm, 3-4
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mm, and 4-7mm in diameter. Boxplots of tortuosity for the controls and the 3 tumor

size classes show a trend of tortuosity increasing slightly with tumor size, despite poor

correlation using linear regression in figure 4.5. Figure 4.6 shows the results for diameter

subsets of pooled vessels and figure 4.7 shows the same data using image means instead

of pooled vessels.

Figure 4.6: Boxplots of controls and 3 size classes of tumors showing differences in
pooled vessel statistics for the distance metric (left) and sum of angles metric (right).
Adapted and reprinted from Ultrasound in Medicine & Biology, Volume 41, Issue 7,
Sarah E. Shelton, Yueh Z. Lee, Mike Lee, Emmanuel Cherin, F. Stuart Foster, Stephen
R. Aylward, Paul A. Dayton, Quantification of Microvascular Tortuosity during Tumor
Evolution Using Acoustic Angiography, Pages 1896-1904, c©2015, with permission from
Elsevier.

Though the boxplots of image means in figure 4.7 show larger differences between

tumor diameter sub-classes, these differences are not significant using ANOVA and

Tukey Honest Significant difference tests. However, significant differences are found

when making comparison to the controls. When the subset of the smallest tumors,

ranging in size from 2-3 mm (n=7), were compared to controls (n=20) using t-tests,

the difference between these tumor ROIs and the control images resulted in significant

differences in the SOAM using either the pooled vessel or image mean statistics (p <

0.01). The distance metric only exhibited a significant difference using the pooled vessel
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Figure 4.7: Boxplots of controls and 3 size classes of tumors showing differences in
statistics of image means for the distance metric (left) and sum of angles metric (right).

vessel statistics, and the p value of the image mean statistics was low (p = 0.07) but

not significant.

The mean and standard deviation of the DM and the SOAM for the 2-3 mm classes

of tumor ROIs were 1.404 ± 0.576 and 32.89 ± 14.30, respectively using pooled vessels,

and 1.39 ± 0.13 and 32.82 ± 5.7 using image means. These significantly elevated

tortuosity metrics in the smallest palpable tumors only 2-3 mm in diameter lead to

the question of whether smaller tumors would also be distinguishable from controls.

However, the smaller tumors do not contain very many vessels for statistical analysis,

and it becomes increasingly difficult to define ROIs and extract a sufficient number

of vessels for meaningful statistics in tumors as the diameter decreases. Therefore,

alternate approaches will be used to analyze smaller tumors without defining a ROI,

detailed in chapter 6. The following section will expand the ROIs used for analysis in

this section in order to explore the impact of a tumor on surrounding vasculature.
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4.2.3 TORTUOSITY BEYOND THE TUMOR MARGIN

Acoustic angiography images and the analysis in the previous section have shown

that blood vessels within a tumor are more tortuous than normal vasculature, but

some images also show tortuous vessels outside of tumors, but they tend to be nearby

and often connecting the tumor vasculature to other vascular beds. Figure 4.8 shows

examples of 3 tumors with clearly tortuous vessels outside the tumor margin. This

observation leads to the question of whether vascular tortuosity outside a tumor is

related to proximity to the boundary.

Figure 4.8: These maximum intensity projections in the coronal plane illustrate three
tumors with tortuous vasculature outside of the tumor margin. The tumor locations
are roughly indicated by the dashed yellow lines and the tortuous vessels that can be
seen supplying these tumors are indicated by the yellow arrows. Scale bars represent 2
mm.

In order to quantify tortuosity in regions surrounding tumors and determine whether

the prevalence and magnitude of tortuous vessels is related to distance from the tumor,

expanding ROIs were used to capture increasing volumes of tissue around each tumor

analyzed. ROIs of 10 tumors were defined by manually delineating the tumor border on

each B-mode image to create a mask which was applied to the dual-frequency contrast

image. In order to relate tortuosity to proximity to a tumor, the tumor ROI masks were

enlarged using morphological dilation 2 mm at a time. Figure 4.9 shows renderings of

vessels from increasingly large ROIs around a small tumor to illustrate the method of
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ROI evolution and vessel segmentation. Each dilation of the ROI increased the radius

by 2 mm, but the ROIs were not required to be spherical, so the “radius” of dilation is

approximate and determined by morphological dilation on the binary ROI mask.

Figure 4.9: Renderings of vasculature within and surrounding a small tumor. The
smallest ROI in the first panel contains the tumor and a margin of 2 mm. Then, from
left to right each panel shows the result as the mask was successively enlarged by 2
mm, incorporating more of the surrounding vasculature with each subsequent dilation.

The smallest ROI in figure 4.9 contains the tumor vasculature and vessels from a

margin of 2 mm around the tumor. The mean tortuosity of each ROI was regressed

against distance from the tumor margin using least-squares linear regression, and the

sum of angles metric was used due to its greater sensitivity to differences between

tumors and controls. The analysis was also repeated for the distance metric, and

the resulting trends were the same, but statistical significance and differences between

groups were lower. The slope of the regression line of tortuosity and distance from the

tumor margin was recorded for each image and a one sample t-test was used to verify

that the mean slope was not equal to zero. Results indicated a negative correlation

between distance from the tumor boundary and tortuosity (using the SOAM) with a

mean slope of -0.59 and a fit of R2 = 0.63 (p = 0.002).

Furthermore, we also compared tumor tortuosity to peri-tumoral tortuosity in ad-

jacent tissue separated from the tumor by margin of several millimeters. The tumor

group included vasculature from the manually-defined ROIs dilated by 2 mm to ensure

that all vasculature on the tumor margin was included. The distal tissue group was

made up of vessels contained in a concentric shell encompassing a region 6-10 mm from
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Figure 4.10: Change in the mean sum of angles tortuosity versus distance from the
tumor margin.
Adapted and reprinted, with permission, from SR Rao*, SE Shelton*, PA Dayton, The
‘fingerprint’ of cancer extends beyond solid tumor boundaries: assessment with a novel
ultrasound imaging approach, IEEE Transactions on Biomedical Engineering, Vol. 63,
No. 5, p. 1082-1086 (2016).

the tumor margin. Thus, the tumor and distal regions were separated by a 4 mm buffer

around the tumor. The DM and SOAM data for each group are summarized in table

4.2 and in figure 4.11.

Table 4.2: Mean and standard deviation of tortuosity in tumor, distal, and control
vasculature.

SOAM DM
Tumor 45.49 ± 3.48 1.345 ± 0.048
Distal 39.07 ± 4.92 1.293 ± 0.042

Control 21.68 ± 2.70 1.259 ± 0.066

As expected, the tumor region possessed higher average tortuosity than the distal

region and the control animals using the sum of angles metric. The mean SOAM

value of the tumor group was 45.49 ± 3.48 versus 30.07 ± 4.92 in distal tissue and
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Figure 4.11: Bar plots show the mean sum of angles metric and distance metric in
tumors, distal tissue surrounding tumors, and in control animals.

21.64 ± 2.75 in the control images. However, analysis using ANOVA and Tukey post-

hoc tests, indicates that there are significant differences between all pairings of the

3 groups using the sum of angles metric, with p<0.05, and no significant differences

between distal tissue and tumors or controls were observed using the distance metric.

These results indicate that not only is tumor tortuosity higher than distal and control

tortuosity, but the tortuosity of vasculature in tissue distal to a tumor, separated by at

least 4 mm from the tumor margin, is significantly elevated relative to the tortuosity

of normal vasculature in control animals. Thus, this data shows that the impact of a

tumor on blood vessel morphology extends well beyond the margin of the tumor, into

the surrounding tissue.

4.3 VASCULAR DENSITY

Apart from tortuosity, dense microvasculature is another prominent tumor feature

that is visible in contrast imaging, including acoustic angiography. The closely-packed
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neovasculature, stimulated by tumor angiogenesis, produces strong enhancement in

contrast-enhanced vascular images, such as figure 4.12. This figure of a tumor almost 2

mm in diameter (visible as a hypoechoic mass indicated by the cyan marker in the B-

mode image) shows closely packed vessels in the corresponding dual-frequency contrast

images. In the enlarged, cropped image on the right, we see that the dense vasculature

includes both resolvable vessel cross sections, as well as sub-resolution vasculature (such

as capillaries) which appears as blurry regions of contrast that do not form resolvable

vessel structures. Figure 4.13 shows another example of a tumor with vascular density

Figure 4.12: B-mode image showing a hypoechoic tumor approximately 1.8 mm in
diameter and the corresponding contrast image image (2D) below with clear vascu-
lar density in the tumor region evident. The panel on the right shows an enlarged
view of the tumor region with densely packed resolvable and sub-resolution vasculature
apparent. All scale bars represent 2 mm.

clearly visible in the frames of acoustic angiography data. This figure shows a single

tumor, indicated by the yellow crosshairs, reconstructed in the axial, saggital, and

coronal planes.

Vascular density was quantified as the percent of pixels containing contrast signal,

using a threshold based approach to binarize the 2D dual-frequency acoustic angiogra-

phy contrast intensity images. First, a standardized threshold of 0.27, on a scale of 0

to 1, was set to eliminate low intensity voxels from noise, and to keep higher intensity
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Figure 4.13: Orthogonal views (single slice) of a representative tumor in acoustic angiog-
raphy: (a) axial view, (b) sagittal view, (c) coronal view (rotated 90 counterclockwise).
Bars = 3 mm.
Reprinted from Ultrasound in Medicine & Biology, Volume 41, Issue 7, Sarah E. Shel-
ton, Yueh Z. Lee, Mike Lee, Emmanuel Cherin, F. Stuart Foster, Stephen R. Aylward,
Paul A. Dayton, Quantification of Microvascular Tortuosity during Tumor Evolution
Using Acoustic Angiography, Pages 1896-1904, c©2015, with permission from Elsevier.

voxels, which were considered to contain contrast signal (and thus containing vascula-

ture as well). Then the contrast images were converted to binary images based on this

threshold, with contrast pixels represented by 1’s and the background represented by

0’s. The vascular density was calculated by taking the ratio of the number of white

pixels in the binarized ROI to the total number of pixels within the ROI, and repeated

for all the 2D images across the image volume. Control regions in adjacent tissue were

selected by translating the tumor ROI laterally by 1.5 times the tumor diameter to a

region of non-tumor tissue. The vascular density of the tumor regions was significantly

higher than that of normal regions, with means of 43.8 ± 21.5 versus 19.5 ± 18.0, re-

spectively (also listed in table 4.3). Significance testing was done using a paired t-test

to compare tumor and normal regions in each animal, resulting in p < 0.01.

Table 4.3: Mean and standard deviations of vascular density of tumor and adjacent
regions.

Vascular Density
Tumor 43.8 ± 21.5

Adjacent 19.5 ± 18.8
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4.4 DISCUSSION

This project rests on the hypothesis that the vasculature in tumors is substantially

different from normal normal tissue, and that this difference can be imaged and quan-

tified using acoustic angiography contrast-enhanced ultrasound imaging. Support for

this hypothesis stems from previous work by UNC neurosurgeon Elizabeth Bullitt and

work done in Dr. Paul Dayton’s laboratory. Dr. Bullitt’s work in MRA used the

same implementation of the distance metric and sum of angles metric that has been

presented in this chapter, and her work showed that glioblastoma multiforme (GBM)

tumors had more tortuous vasculature than healthy the brain vasculature of healthy in-

dividuals [13,84]. The work by Bullitt and Aylward to produce efficient segmentation of

tube-like objects, define 3D tortuosity metrics, and characterize tumor and normal tor-

tuosity in the brain were invaluable for informing the design and implementation of this

project. Additionally, previous work in the Dayton laboratory and collaboration with

Dr. Stuart Foster’s laboratory at the Sunnybrook Health Science Centre (Toronto, ON,

Canada) led to the development of the confocal, dual-element transducers that were

used in this work, and they also showed that superharmonic contrast imaging (acoustic

angiography) could be used to measure higher average tortuosity for large, subcuta-

neous fibrosarcoma tumors in rats using the same metrics [143, 144]. These preceding

studies have enabled the work in this thesis, which is the first demonstration of serial

vascular imaging in a spontaneous tumor model (the C3(1)/Tag) and delves deeper

into understanding and characterizing vascular morphology in small tumors.

Two to three millimeters is generally considered to be the limiting size for a tumor

to remain avascular [32], so it is a encouraging finding that the 2-3 mm tumors imaged

in this study did indeed possess significantly higher than normal tortuosity using both

tortuosity metrics. Angiogenesis begins at the capillary scale, as sprouting is typically

initiated in capillaries and small, post-capillary venules [174]. Acoustic angiography,
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like most non-invasive, in vivo imaging techniques cannot resolve vasculature at this

scale (< 30µm) [175, 176]. Therefore, the result that 2-3 mm tumors have elevated

tortuosity compared to controls in acoustic angiography images is significant because

it indicates that substantial vascular remodeling in vessels larger than 100 µm has

occurred by the time tumors are 2-3 mm in diameter. Angiogenesis at the capillary scale

can be inferred due to the enhanced contrast signal originating in these sub-resolution

vessels (and was quantified as vascular density), but the structure of individual vessels

is unknown below the resolution limit. Therefore, the results presented in this chapter

reinforce the fact that cancer angiogenesis produces vascular remodeling and abnormal

morphology across a wide range of scales, and is not only restricted to the capillary

scale.

This chapter has described the first step toward characterizing small tumors with

acoustic angiography by using ROIs to delineate different tissue of interest (tumor,

adjacent, distal, etc.). The use of growing ROIs for spatial analysis revealed that

abnormal tortuosity extends beyond the border of the tumor itself, into the surrounding

tissue located several millimeters from the boundary of a tumor. Thus, the extent of

vasculature affected by a tumor is larger than the tumor itself. The implication of this

finding is that if we consider abnormal vascular structure as the target we are trying to

identify in order to identify a tumor, the region of abnormal vasculature is likely to be

larger than the underlying tumor, giving us a larger “target” to identify. Figure 4.14,

below, shows rendered vasculature from one of the tumors included in the preceding

analysis with 2 different color-maps applied. The image on the left, in blue, shows

distance from the tumor, where the tumor vasculature is shown by the lightest vessels

and vessels in brighter shades of blue are located further from the tumor. This colormap

required selection of a tumor ROI in order to define the tumor location and measure

distances relative to the tumor. Therefore, while the image clearly shows the location
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of the tumor and the surrounding vasculature, it requires an individual to define the

tumor location and boundary. On the other hand, the image on the right is a color

map indicating each vessel’s sum of angles metric tortuosity value. Vessels shown in

yellow have the lowest tortuosity and brighter red vessels have higher sum of angles

tortuosity. Since each vessel is color-coded based on its tortuosity metric, no user input

is required beyond vessel segmentation. Despite the fact that the tumor location has

not been defined in any way, the tumor is highlighted by a predominance of bright red,

tortuous vasculature occurring in and around this tumor. Therefore, tortuosity may be

valuable for detecting tumors, in addition to the characterizing their structure as was

described in this chapter.

Figure 4.14: Segmented vessels are rendered and displayed in a color-map showing dis-
tance from the tumor margin (blue) and sum of angles tortuosity (red).
The panel on the right is reprinted, with permission, from SR Rao*, SE Shelton*,
PA Dayton. The fingerprint of cancer extends beyond solid tumor boundaries: assess-
ment with a novel ultrasound imaging approach. IEEE Transactions on Biomedical
Engineering, Vol. 63, No. 5, p. 1082-1086 (2016).

The following chapters will build upon these findings to try to classify images as
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tumor or normal without first defining a tumor location or region of interest. Instead,

classification will be based upon on only the vascular structure of the tumor and sur-

rounding tissue. Chapter 5 uses a reader study approach to test visual classification,

and chapter 6 combines the tortuosity metrics described in this chapter with vascular

density using a clustering approach.
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CHAPTER 5

QUALITATIVE ANALYSIS OF IMAGES: A READER STUDY
APPROACH

5.1 OVERVIEW

After considering the tortuosity results generated from analysis on tumor ROIs and

the spatial analysis of tissue surrounding tumors described in the previous chapter 4,

the remaining question is whether an entire image can be classified as containing a

tumor or as a normal image from a wild-type mouse. This goal of tumor detection

or binary classification is distinct from previous analysis as its goal is predictive in

nature. Given an angiography image, can we determine if it contains a tumor? This

is a more challenging objective than statistical descriptions and comparisons between

tumor ROIs and controls because we must develop an algorithm to allow us to label

an image rather than comparing two pre-labeled groups. Therefore, this classification

problem was approached in two ways, using visual assessment by trained readers, and

using quantitative metrics derived from the vessel segmentations. The visual assessment

includes a reader study completed by 7 readers who ranked the likelihood of belonging

to the tumor class on a 1-6 scale. The quantitative analysis uses clustering analysis

to integrate spatial information with multiple metrics of tortuosity and is described in

chapter 6. Regardless of the approach, the image classification problem is much more

akin to clinical detection and diagnosis of disease. For imaging technology to become

clinically relevant, it must provide useful predicitve information, and not be restricted
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to post hoc comparisons between groups.

5.2 READER STUDY DESIGN

A cohort of 48 mice were used in the reader study as well as for training the quanti-

tative classification model, a topic to be described in the following chapter (chapter 6).

Tumor images came from 31 C3(1)/Tag mice and control images came from 17 FVB/NJ

littermates. The animal model and imaging protocol are described more thoroughly

in chapter 3. A wide range of tumor sizes was selected in order to test the hypothesis

that detection is dependent on tumor size. Tumors were measured in high-frequency B-

mode images and ranged in diameter from 0.78 to 8.23 mm, with a mean and standard

deviation of 3.14 ± 2.16 mm. Control images came from healthy animals in the same

age and weight range as the tumor-bearing animals and were randomly distributed

between images of the left and right mammary pads.

Seven readers participated in the study, with variable levels of experience with con-

trast ultrasound imaging, from less than 1 year to over 5 years. Each of the 48 images

were presented the readers in random order, from a user interface developed using Mat-

lab (The Mathworks, Natick, MA). Readers were able to scroll through approximately

300-400 individual frames in the axial and coronal planes, and also viewed a maximum

intensity projection of the image volume in the coronal plane. Each image had a red

circle to direct the readers attention for making their assessment. In tumor images, the

point of interest was located roughly in the center of the tumor. In control images, the

point of interest was placed randomly in within the mammary pad. Placement of the

red points were determined using the co-aligned B-mode images during preparation of

the reader study. This methodology was adopted to recreate the anticipated clinical

workflow in which a suspicious lesion might be identified via mammography and that

region would then be subjected to follow-up imaging for diagnosis.
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Assessments were recorded as the readers progressed through the images, and most

readers reported spending approximately 1.5 to 2 hours to complete their assessments

for all 48 images. Image classification was based on a ordinal scale indicating the

perceived image type (control or tumor) and the level of confidence (low, moderate, or

high). Thus, each reader rated every image as 1 of the following 6 choices (from most

likely to be normal to most likely to be a tumor):

1. high confidence of control

2. moderate confidence of control

3. low confidence of control

4. low confidence of tumor

5. moderate confidence of tumor

6. high confidence of tumor

Analysis in STATA/SE 14.2 included receiver operating characteristic (ROC) curves,

area under the curve (AUC), optimal thresholds, and sensitivity, and specificity. Addi-

tionally, regression analysis was completed to determine whether tumor size influenced

the sensitivity of detection as well as overall performance.

5.3 RESULTS

The area under the curve for the overall assessment of the 7 readers, considering assess-

ments as ordinal variables, is 0.7981 with a 95% confidence interval of 0.7020-0.8941,

and 0.8494 (0.8072-0.8885) if we treat the assessments as numerical rather than ordi-

nal. The optimal cutoff is 3, with a sensitivity of 0.65 and specificity of 0.86 at this

threshold, for the ordinal case. Figure 5.2; shows the overall ROC curve determined

from the combined results of all 7 readers, modeling assessments as ordinals. Kendall’s
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coefficient of concordance takes a value of 0.778, indicating strong agreement among

readers.
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Figure 5.2: Reader study ROC curve for all 7 readers, treating assessments as ordinal
variables. The resulting area under the curve is approximately 0.8.

The influence of tumor size was evaluated using ordinal ROC regression using the

following regression equation [177].

ROCz(p) = Φ

{
K∑
k=1

Rkα0k + α1

K∑
k=1

RkF̂
−1
0,k (p) + βx

}
(5.1)

Where F̂−10,k is the empirical survival function with control covariates for each reader k

and β is the covariate for tumor diameter.

The regression analysis using the rocreg fuction in STATA showed that there was no

significant difference between reader effects, but that the tumor size parameter, β, sig-

nificantly affect the ROC function, with a coefficient of 0.343 and p = 0.018. Detection
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was more accurate for larger tumors, with a larger area under the ROC curve expected.

Figure 5.3 show the results of the regression, in which expected ROC curves are plotted

for different tumor diameters. The illustrative tumor diameters were selected based on

the quartiles of the data in the reader study. The first, second (median), and third

quartiles of the diameter of the 31 tumors included were 1.37 mm, 2.32 mm, and 5.09

mm. The ROC curves expected for these 3 tumor diameters are shown in figure 5.3,

resulting in AUCs and 95% confidence intervals (in parentheses) of 0.67 (0.593,0.766),

0.777 (0.723, 0.860), and 0.956 (0.907, 0.997), respectively. Confidence intervals were

determined using 1000 bootstrap replicates.
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Figure 5.3: Ordinal regression of tumor diameter against ROC function resulting in a
significant influence of tumor diameter on detection.

The results of regression analysis are shown in table 5.1 below, for 3 tumor sizes

selected from the quartiles of the data.

For each of the 3 tumor diameter quartiles, the sensitivity values are 0.461 (0.299,
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Table 5.1: Regression results for tumor size quartiles. Includes expected area under
the curve, confidence intervals (CI), and sensitivity at a specificity of 0.9.

Diameter (mm) AUC AUC CI Sensitivity Sensitivity CI
1.4 0.67 (0.59-0.77) 0.46 (0.30-0.57)
2.3 0.78 (0.72-0.86) 0.60 (0.45-0.70)
5.1 0.96 (0.97-1.0) 0.90 (0.78-0.99)

0.574), 0.601 (0.454, 0.704), and 0.902 (0.776, 0.993) to achieve a fixed specificity of

0.900. We can also visualize the dependence of the reader’s tumor detection on tumor

diameter by plotting the average score assigned to each tumor by every reader, against

the tumor diameter (figure 5.4). This figure shows that the readers’ ability to detect

tumors and their confidence in their assessments increased greatly for the smallest

tumors to tumors up to approximately 2 mm in diameter. For tumors over 1 mm in

diameter, the average reader score was over 3, and was above 3.5 for tumors larger than

2 mm in diameter. Once tumors reached 3 to 4 mm in diameter they were detected

very consistently with high confidence (except for one tumor which will be examined

in the discussion).
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Figure 5.4: This scatterplot shows the average of all 7 readers’ assessments for each
tumor image plotted against the tumor diameter to show that larger tumors were
detected more frequently with higher confidence.

5.4 DISCUSSION

Analysis of tumor detection using a reader study approach demonstrates the utility

of qualitative visual assessment of vascular images produced with acoustic angiography

superharmonic contrast imaging. Agreement between readers on an image-by-image

basis was fairly high, with a concordance of W=0.778 (Kendall’s coefficient of concor-

dance). Regression analysis did not observe a statistically significant difference between

readers, but the individuals with the highest accuracy tended to be those with the most

experience, suggesting that increased training could improve the results of the reader

study. Since acoustic angiography images are unlike other types of ultrasound or con-

trast images, familiarity with the modality could provide an additional advantage for
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tumor detection based the images. The results of the combined assessments of all

7 readers produced an area under the ROC curve of 0.8 indicating moderately high

sensitivity and specificity for the study.

Most importantly, perhaps, is the dependence of these classification outcome metrics

on the size of the tumor, which was assessed in a sample of 31 tumors ranging from 0.8

mm to over 8 mm, an order of magnitude difference in diameter. Figures 5.5 and 5.6

show examples of maximum intensity projections from 3 control images and 3 tumors

of different sizes. Specificity, or the true negative rate, is expected to be independent of

tumor size because tumors make up the positive class. However, sensitivity (the true

positive rate), or the rate at which tumors are correctly identified, was shown to be

significantly dependent upon tumor size. The sensitivity and area under the ROC curve

both increased with tumor diameter, according to the regression analysis described in

section 5.3. For 5 mm tumors, the sensitivity and specificity were both approximately

0.9 and the area under the curve was 0.96, indicating very good discrimination between

tumor and healthy. Therefore, we can expect excellent detection and discrimination

of tumors 5 mm in diameter and larger using visual analysis of acoustic angiography

images.

Figure 5.5: Maximum intensity projections of 3 control images, in the coronal plane.

Closer examination of figure 5.4 reveals that while there was a trend of increasing

scores assigned by readers as tumor size increases, there was much more variation
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Figure 5.6: Maximum intensity projections of tumor images, in the coronal plane. From
left to right, the tumors (indicated by the yellow dots) are 1.7, 5.5, and over 8 mm in
diamter.

between the scores of small tumors than for larger tumors. The greatest variation in

average reader assessment score occurred for tumors less than 2 mm in diameter. The

average assessment ranged from 1.5 to 5.7 for these 10 tumors smaller than 2 mm.

The average score for tumors less than 1 mm in diameter was 2.6, indicating that these

tumors were predominately identified as controls (cases of false negatives). On the other

hand, the average score of tumors only 1-2 mm in diameter jumped to 3.5, indicating

much better detection and classification as tumors. Tumors 2-3 mm in diameter had an

average assessment of 4.8, approaching the “moderate” confidence of tumor detection

level. For tumors larger than 3 mm in diameter, the average assessment was above 5.5,

indicating that the majority of these tumors were detected with high confidence.

However, there were individual tumors that did not follow the trends, making fur-

ther study of them worthwhile. One example was a very small tumor with a diameter of

0.89 mm that had a high average assessment of 4.14, much higher than the other tumors

smaller than 1 mm. This tumor, seen in figure 5.7, had high vascular density that made

it easy to identify, especially combined with tissue distortion due to the superficiality of

this tumor. Therefore, while not all small tumors were successfully identified as such,
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some small tumors might be classified with high sensitivity if they exhibit markedly

elevated vascular density. Throughout the study, vascular density proved to be a valu-

able predictive feature of tumors across all sizes, with more vascularized tumors being

assessed as tumors with higher confidence overall.

Figure 5.7: This 0.9 mm tumor had relatively high assessments for its small size, likely
due to high vascular density and its superficial nature.

Readers also indicated high confidence of tumor presence when they observed tortu-

osity, though each reader’s subjective determination of normal versus abnormal tortu-

osity was variable, indicating that the quantitative metrics described in chapters 1 and

4 are likely to provide additional information, and potentially more consistent classifica-

tion. Imaging tortuosity in tumors requires 3D imaging to capture vascular morphology

in a tissue volume, but displaying the 3D data is a challenge. This reader study used a

combination of stacks of 2D image frames and interactive scrolling through the frames,

alongside a maximum intensity projection of the vascular imaging data. Tortuosity can

be visualized in either image format, but neither is ideal for visualizing the tortuosity

of small vasculature which is common in tumors. In the maximum intensity projec-

tions large vessels are readily visible, but small vessels can often be obscured by the
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amount of data that is projected through the image depth. Therefore, individual slices

can make tortuous vessels more apparent if they lie within the imaging plane. Vessels

oriented out of plane can be tracked visually to determine tortuosity, though this is

likely to require more training and skill from the readers. Therefore, we hypothesize

that including quantifications of tortuosity or 3D renderings of the vasculature will aid

in the detection and diagnosis of tumors in angiography images. Chapter 6 discusses

quantitative classification in detail and compares a density based statistical clustering

method to the results of the reader study described in this chapter.
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CHAPTER 6

QUANTITATIVE IMAGE ANALYSIS: DENSITY-BASED
TORTUOSITY CLUSTERING

6.1 OVERVIEW

The goal of quantitative analysis of acoustic angiography images can be described

most simply as binary classification. For each image, we want to know: “Is it a tumor?”,

and there two possible answers, yes or no. The objective is to use information derived

from an image in order to determine which class it belongs to, based on some pre-defined

rule or algorithm. The following sections will describe the use of summary statistics

of tortuosity for classification, discuss their limitations, and present the justification

for more sophisticated classification methods. A few examples of classification are

compared, and the best performing method (clustering) will be presented in more detail.

Sections 6.3 through 6.4.3 describe quantitative analyses performed on the set of 48

images that were included in the reader study (chapter 5). This includes 17 controls and

31 tumors ranging in size from 0.78 to 8.23 mm. This data set including 48 different

mice was selected as a test group, both to make comparisons to the results of the

reader study and due to the wide range of tumor sizes which will enable correlations

between tumor size and classifier performance. Calculations of the mean radius of each

vessel, the distance metric, and sum of angles metric were performed in Matlab after

resampling vessel centerlines to match the image sampling, as described in chapter 3.

Additionally, the center point of each vessel was estimated in order to measure distance
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between vessels in the clustering analysis.

Every image contains tens to hundreds of resolvable vessels, but each image can be

summarized by taking the mean of a metric of interest. Previous studies have shown

that the distance metric and sum of angles metric are higher in tumor than controls,

when a region of interest (ROI) is selected, as described in chapter 4 [144,148]. However,

the aim of this chapter is to explore image classification without selecting a tumor ROI

that includes only a subset of vessels from the image. By eliminating a priori judgment

of tumor presence, we can classify an image based on all the resolvable vessels without

having to visually identify a tumor before analysis. The advantage of this approach is

twofold. First, we eliminate the need for subjective interpretation of the location and

boundary of a potential lesion, making whole-image analysis more robust than regional

analysis. Second, detection of smaller tumors and determination of the detection limit

will be facilitated by removing ROIs from the analysis. Very small ROIs are more

difficult to define and do not contain enough vessels for reliable statistical comparison,

so classification based on entire images is preferable if a method sensitive to these small

tumors can be developed.

However, there are challenges inherent to using entire images for image classification,

primarily due to the fraction of the image volume occupied by the tumor. Tumors do not

occupy 100% of the volume of an acoustic angiography image. The population of vessels

extracted from a image containing a tumor must include abnormal tumor vasculature,

normal healthy vasculature from surrounding tissue, as well as a transition zone between

the tumor and normal vasculature. Therefore, an image from a larger tumor will

contain proportionately more “tumor vasculature” than an image with a small tumor.

Furthermore, for the very small tumors we are interested in detecting (less than 2 mm),

the number of vessels within a small tumor of that size is relatively few compared to

the total number of vessels in the image. Thus, the mean becomes progressively less
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effective at capturing tumor tortuosity in images of smaller and smaller tumors, and

we expect classification based on summary statistics to be ineffective at detecting small

tumors.

6.2 CLASSIFICATION USING SUMMARY STATISTICS

I calculated the mean of the distance metric, sum of angles metric, and vessel radius

from all the segmented vessels in each image in the training data set. The mean and

standard deviation of these image means are as follows, separated by tumor or control

class, and also listed in table 6.1. Distance metric: control = 2.20 ± 2.72, tumor = 8.89

± 22.24. Sum of angles metric: control = 3.09 ± 0.57, tumor = 3.61 ± 0.38. Radius:

control = 131 ± 17 mm, tumor = 131 ± 11 mm. These metrics do not fit the normal

distribution, so the non-parametric Wilcoxon rank sum test was used to test the null

hypothesis that the tumor and control groups come from the same population. There is

no significant difference between the average vessel radii of the two groups (p = 0.88),

but a significant difference was observed between the 2 groups for the distance metric

(p = 0.03) and the sum of angles metric (p = 5.5 x 10−5). As was discussed in the

chapter describing the reader study (5), classification results are only representative of

the sample of images included because sensitivity depends on the sizes of the tumors

included in the sample. The results would be expected to vary if different size tumors

were selected. A sample of smaller tumors would show less difference from controls,

while a sample of larger tumors would show a greater difference from controls.

Table 6.1: Mean and standard deviation of tortuosity and vessel radius in tumor and
control images

DM SOAM (rad/mm) Average Radius (mm)
Tumor 8.89 ± 22.24 3.61 ± 0.38 131 ± 11
Control 2.20 ± 2.27 3.09 ± 0.57 131 ± 17

If we look at the performance of the mean value as a simple classifier, the area
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under the receiver operating characteristic (ROC) curve with binormal smoothing is

0.682 for the distance metric and 0.824 for the sum of angles metric, as seen in figure

6.1. These values indicate that using a mean tortuosity value to represent an entire

image is somewhat effective for classifying images, but perhaps could be improved by

combining metrics or using data other than mean data for each image.
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Figure 6.1: Receiver operating characteristic (ROC) curves for classifying images based
on the mean distance metric or sum of angles metric.

Individual metrics are loosely correlated with one another. Tortuous tumor vessels

often appear to be small caliber vessels, and indeed, the sum of angles metric is neg-

atively correlated to vessel radius, though the correlation is weak (R2 = 0.1446 and

p = 2.2 × 10−16). Figure 6.2 shows a scatter plot of vessel radius versus the sum of
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angles metric value for every vessel in the test data set. The distance metric is not

significantly correlated to the vessel radius or the sum of angles metric.
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Figure 6.2: Scatter plot of average vessel radius (mm) and the sum of angles metric
(radians/mm) showing a weak (R2 = 0.1446) but significant correlation (p = 2.2 ×
10−16).

6.3 MULTIVARIATE CLASSIFICATION

In order to improve upon classification based on the mean of one of the tortuosity

metrics, we may be able to improve prediction by combining these metrics since they

offer independent information about the images. One approach to combine the sum of

angles metric, distance metric, and vessel diameter into a single metric to classify images
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is a logistic regression model. Logistic regression is an extremely common method of

binary classification [178]. It allows a binary dependent variable and any number

of continuous, quantitative independent variables to be expressed as log-odds ratios

and fitted with standard linear regression. Unlike other related techniques, logistic

regression does not include the assumption of normality. Using the mean value of the

sum of angles metric, distance metric, and vessel diameter for each image, a logistic

regression model was fit in R. Classification using the logistic regression model resulted

in an area under the ROC curve of 0.865, shown in figure 6.3. This area under the

curve for the combination of sum of angles metric, distance metric, and vessel radius is

superior to the performance of each individual metric, but there is little improvement in

the AUC of the multivariate logistic regression (0.865) to the AUC of the best individual

metric, the SOAM (0.824).

6.3.1 LIMITATIONS TO CLASSIFIERS BASED ON THE MEAN

There are two major limitations of using the mean of these metrics to represent an

entire image, whether considering univariate or multivariate classification approaches.

First, the distribution of these metrics are not normal. Instead all 3 parameters de-

rived from individual vessels are right-skewed to various degrees, due to limits on the

minimum value (1 for the DM, 0 for the SOAM, and approximately 0.05 mm for the

radius), but effectively no limit on the maximum value. The distance metric is the most

skewed of the 3 parameters, and also subject to very large outliers. These outliers can

occur when a vessel segment has a loop or hook that results in the two endpoints of

the vessel being very close together. Since Euclidean distance between endpoints is the

denominator of the DM calculation, these types of vessels or artifacts can create influ-

ential outliers in the distance metric. Traditional outlier removal relies on interquartile

ranges or standard deviation, but these are not very effective on skewed distributions
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ROC Curve: Logistic Regression
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Figure 6.3: Receiver operating characteristic (ROC) curve for classifying images based
on a logistic regression model incorporating the mean distance metric, sum of angles
metric, and average vessel radius.

such as the distance metric. Furthermore, it is desirable for outlier removal to be based

on some fixed value so that newly acquired images can be subjected to the same thresh-

olds, rather than iteratively updating a threshold value determined by the statistical

distribution of a parameter. Therefore, in previous work, we set an empirical threshold

to eliminate outliers that were influencing the mean [149]. However, outlier removal

also risks removing truly high tortuosity values from real tumor vessels and introduces

an additional step in the analysis. Therefore, more robust classification methods that

are insensitive to outliers would be beneficial. The clustering analysis described later
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in this chapter was developed, in part, to avoid filtering the tortuosity data to remove

outliers and to avoid statistical techniques that are sensitive to the leverage of extreme

data points.

The second limitation of using the mean to represent an image is the role of tumor

size, as mentioned previously in this chapter. Simply put, larger tumors will contribute

a larger number of (tortuous) vessels to the total population of vessels within an image,

thus pushing the image mean closer to the mean of the tumor vessels. Therefore, we seek

a classification method that is sensitive to variations in tortuosity within an image. One

approach might be to imagine each tumor image as containing 2 population of vessels,

normal and tumor, which we seek to separate. However, previous work demonstrated

that the vasculature outside a tumor is affected by the presence of the tumor, and the

transition between “tumor” vasculature and “normal” is much more gradual rather than

a sharp boundary [149]. Furthermore, it is unclear what groups would be identifiable in

a normal image that lacks the “tumor” class. Any classification method that specifies

the number of groups (such as k-means clustering) is likely to form arbitrary groups

of vessels in a control image. Additionally, using intra-image inhomogeneity metrics

or class-separation will require subsequent optimization to characterize what level of

variation in the tortuosity distribution is normal and what level is indicative of disease.

The ideal image classification model is a method that allows multivariate analysis (to

combine tortuosity metrics) and analyzes these parameters at the individual vessel-level

rather than using statistical summaries of an entire image. Furthermore, it should be

insensitive to extreme values so that outlier removal is not necessary. Another practical

consideration is that the classification algorithm should use data from the full segmented

image rather than requiring subdivision of the raw image followed by segmentation

because segmentation is the most time-consuming step in the image analysis process.

Finally, another level of information available to us that has not been captured by
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Figure 6.4: Vasculature rendered and color coded by sum of angles tortuosity met-
ric. Brighter red indicates higher tortuosity, and the most tortuous vessels are found
clustered in the tumor regions.

the single-parameter or logistic analysis is spatial relationships between vessels. Not

only can we extract tortuosity and caliber from individual vessels, but also their lo-

cations and proximity to one another. Therefore, one approach for tumor detection

and localization might be the application of a sliding window to an image in order

to identify a region where the subset of vessels included in the analysis window have

elevated tortuosity. However this method would be sensitive to kernel size, and thus

detection will be dependent on tumor size and require iterative or adaptive changes

to kernel size. Such a method will be computationally expensive, and not straightfor-

ward to implement. Furthermore, secondary classification methods will be required to

determine how sub-region tortuosity values will be combined or compared in order to

classify an image as normal or tumor.

Instead, a method utilizing statistical, density-based, spatial clustering is proposed.

The clustering algorithm will be applied to identify groups of similarly tortuous vessels

that are also located in close spatial proximity within an image. Thus, this algorithm

is used to look for a closely grouped collection of unusual objects, mimicking what a
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human viewer would do naturally, but using quantitative, statistical methods. The

clustering method used for this analysis is called Density Based Statistical Clustering

in Applications with Noise or DBSCAN [179,180].

6.4 CLUSTERING

Clustering is a classification technique in which related observations are grouped

together based on a pre-defined similarity metric. Partitional methods, such as k-

means clustering, require a known number of clusters and group observations in such a

way to maximize the distance between clusters [181]. Other methods base clusters on

similarity rules, thus the number of clusters formed depends on the underlying data.

Examples of such clustering algorithms that do not require a pre-defined number of

clusters include hierarchical clustering, and the density-based clustering utilized in this

work.

6.4.1 BACKGROUND

The Density Based Statistical Clustering of Applications with Noise (DBSCAN)

algorithm forms clusters based on 2 parameters: the neighborhood size (eps or ε) and

the minimum number of points (minPts) per cluster [171, 179]. Cluster points can be

defined as core points or border points. A core point has at least minPts observations

within the neighborhood ε distance from the core point. A border point is within the

neighborhood ε of a core point, but does not have the minimum number of points within

its own neighborhood. In the case of a border point that could belong to 2 different

clusters, it is assigned to the first cluster formed in the data. Therefore, the DBSCAN

algorithm is not deterministic and the classification of border points depends on the

organization of the data set. Points that do not fit either of these criteria are classified

as noise and not included in any cluster.
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One major advantage of DBSCAN clustering is the insensitivity to outliers. Unlike

other clustering methods that force every object to be a member of a cluster, in DB-

SCAN any point that is further than the pre-defined neighborhood ε from any cluster is

labeled as noise and not grouped into a cluster. Thus, tortuosity outliers do not need to

be removed in order to perform clustering classification because they will ultimately be

classified as noise. This robustness in regard to outliers is an important advantage for

the SOAM and DM, tortuosity metrics that tend to be right skewed instead of normally

distributed, since classical outlier removal techniques based on the interquartile range

or standard deviations are not appropriate.

6.4.2 CLUSTERING IMPLEMENTATION

Conventional use of clustering algorithms uses the cluster membership of a data

set to derive information about the data or to compare clusters to each other [180].

Such uses may include image segmentation, where different clusters represent individual

objects, or genetic and transcriptional clustering where clusters of genes may identify a

disease or a molecular pathway [182–187]. However, my use of the DBSCAN algorithm

is not to compare clusters within an image, but instead to produce a single metric

which can be used for image classification (maximum cluster size).

The hypothesis of this approach is that control images have heterogeneous vessel

patterns with any tortuous vessels that occur being distributed randomly across the

image. On the other hand, images containing tumors are likely to contain a sub-

population of tortuous vessels in close proximity to one another that will be joined

into a cluster. DBSCAN is a multidimensional data analysis tool, and the parameters

included in this analysis were the distance metric, sum of angles metric, average radius,

and the spatial location (x, y, and z coordinates) of each vessel. Thus, by setting the

neighborhood parameter, ε appropriately, groups of tortuous vessels in tumor regions
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are likely to form clusters. After performing DBSCAN clustering on all images with a

fixed minimum number of points and neighborhood size, the size of the largest cluster

generated for the image was used as the predictive classifier to define an individual

image as a tumor or control.

Though this is an unusual use of DBSCAN classification, other researchers have used

clustering results for secondary classification. Celebi et al. used DBSCAN to classify

lesions and healthy skin in color images (a conventional application of clustering),

but went a step farther to correlate the number of clusters generated with readers’

interpretations of lesion pigment heterogeneity [188]. Thus, number of clusters was

used as a secondary predictive feature in their analysis model.

DBSCAN has also been frequently used for “anomaly detection”, using the noise

class resulting from the classification algorithm. For example, Ren et al. used noise

points (observations that do not fit into a cluster) as a method for identifying un-

usual network activity to guard against cyber attacks, and reported a lower false-alarm

rate than another common method [189]. Another example of anomaly detection us-

ing DBSCAN clustering is by Celik et al. who used DBSCAN to detect temperature

anomalies within a month of monitoring data [190]. The tortuosity clustering imple-

mentation in this project is distinct from the traditional anomaly detection approach

because we make the assumption that data from healthy controls are not sufficiently

similar in tortuosity across space to coalesce into clusters, and are thus classified as

noise in the algorithm. Tumors, on the other hand, may have a spatially dense group

of tortuous neovasculature that generate clusters in DBSCAN. This utilization, with

noise considered “normal” and clusters generated indicating features of interest, may

be considered the inverse of existing anomaly detection uses in which noise points are

considered abnormal.

The DBSCAN algorithm requires 2 input parameters: the clustering neighborhood
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Table 6.2: Maximum cluster size statistics for training data (N=31 tumors, N=17
controls).

Mean Standard Deviation Minimum Maximum
Tumor 33.84 32.76 5 135
Control 5.41 1.42 4 9

(eps) and minimum number of points per cluster (minPts). MinPts was set at 4, as

suggested by Ester et al. in their paper describing the DBSCAN algorithm [179]. By

setting minPts as a low value, the cluster size is dependent on the eps parameter,

which I have selected by optimizing the area under the ROC curve for the training

data described here. In general, the smaller the neighborhood parameter, the fewer

points are included in clusters, and the more points are classified as noise. DBSCAN

clustering was performed on the 48 training images with minPts = 4 and a range

of values of eps tested, from 20 to 40. The best discrimination between tumors and

controls (as measured by the ROC AUC) was with eps = 27, which corresponds to a

neighborhood of 1.35 mm in physical space.

6.4.3 TRAINING DATA RESULTS

DBSCAN clustering with numPts=4 and eps=27 was completed on each of the

48 images in the training data set, and the number of vessels in the largest cluster

generated was used as the classification parameter. The mean and standard deviation

of the maximum cluster size in the tumor images was 33.84 ± 32.76, with values ranging

from 5 to 135 vessels per cluster. On the other hand, the control class had a much lower

mean of 5.41 ± 1.42, and a smaller range of 4 to 9 vessels per cluster. Figure 6.5 shows

boxplots comparing the maximum cluster size in both image types and table 6.2 lists

the mean and standard deviation. There is a signficant difference between the cluster

size in these two groups using a two-sided t-test (p = 3.8× 10−5).

Clustering resulted in an area under the curve of 0.95, shown in figure 6.6 with
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Figure 6.5: Tukey boxplots of the maximum cluster size generated with DBSCAN for
control and tumor classes.

binormal smoothing applied. Weighing sensitivity and specificity equally, the optimal

cutoff is a maximum cluster size of 8 vessels per cluster. This results in a sensitivity

of 0.871 with a 95% confidence interval of 0.677 to 1.0 and a specificity of 0.941 with

a 95% confidence interval of 0.765 to 1.0. Confidence intervals were computed using

2000 bootstrap replicates.

There were a significantly higher number of vessels segmented from tumor images

than from control images, with p = 9.9× 10−5). Therefore, one potential confounding

variable is the number of vessels per image, possibly resulting in larger clusters from

images with a higher number of segmented vessels. To address this concern, the number

of vessels segmented was plotted against the maximum cluster size for each image type
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ROC Curve: Cluster Size
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Figure 6.6: Receiver operating characteristic curve for image classification with the
density based statistical clustering in applications with noise algorithm.

to see if the differences in maximum cluster size can be related to number of vessels

segmented. What we notice in figure 6.7 is that while cluster size does tend to increase

with the total number of vessels segmented, this phenomenon is only evident in the

tumor class. The controls vary from approximately 100-180 vessels segmented per

image, and show no discernible correlation between the number of vessels segmented

and the maximum cluster size generated with DBSCAN. On the other hand, for the

tumor class, some of the images with the largest clusters also have the highest number

of vessels segmented. This suggests that the high vascular density observed in tumors

positively influences cluster aggregation in the tumor regions of the tumor images.
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Figure 6.7: The size of the largest cluster formed with DBSCAN clustering versus the
total number of vessels segmented per image. Tumors are shown in blue and controls
are shown in green. Note that tumor images with more vessels tend to form large
clusters, but there is no such relationship in the control images.

Larger tumors are expected to contain more numerous tortuous vessels, increasing

the likelihood of the formation of clusters. Therefore, linear regression between tumor

diameter and maximum cluster size generated with DBSCAN was used to test the

hypothesis that larger tumors form larger clusters. The results of the linear regression

revealed a significant correlation between the two variables, with a R2 value of 0.3798,

and p = 0.0001. The scatter plot and the line of best fit are plotted in figure 6.8.

Since tumor diameter and cluster size are correlated, we expect the overall per-

formance to vary based on the sampling of tumor diameters included in the analysis
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Figure 6.8: Size of the largest cluster formed with DBSCAN clustering versus tumor
diameter. There is a significant positive correlation using linear regression with R2 =
0.38 and p = 1× 10−4.

when cluster size is used as the classification parameter. To test this assumption, ROC

curves of the clustering results were computed on subsets of the images using different

thresholds for the minimum tumor diameter included in the data sample. Figure 6.9

shows a scatter plot of area under the ROC curve versus the minimum tumor size. For

data subsets with minimum tumor diameters of at least 2.2 mm and above, the average

area under the curve is 0.9974 ± 0.0008.

The area under the ROC curve depends on sensitivity and specificity of the clas-

sifier, and specificity refers to the rate at which negative cases (controls) are correctly
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Figure 6.9: Area under the ROC curve for DBSCAN using maximum cluster size as
influenced by increasing the cutoff of the minimum tumor diameter included in the
sample. For tumors larger than approximately 2.2 mm the AUC is above 0.995.

identified. Therefore, because specificity is calculated based on the classification of

controls (true negatives vs false positives), tumor size has no influence on this statistic.

Sensitivity, on the other hand, is directly related to the rate at which positive cases

(tumors) are correctly identified, and thus is tied to tumor diameter due to its cor-

relation with cluster size. Figure 6.10 shows a scatter plot of sensitivity vs minimum

tumor diameter, similar to the AUC plot shown in figure 6.9. Using a threshold of 8,

sensitivity is 1 and specificity is 0.8824 for tumors larger than 2.2 mm.
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Figure 6.10: Sensitivity of tumor detection using maximum cluster size with a threshold
of 8, as a function of minimum tumor diameter. For tumors larger than about 2.2 mm
the sensitivity equals 1.

The excellent results obtained on the training data suggest that density based clus-

tering is a very effective method for combining tortuosity metrics with spatial infor-

mation for image classification. Therefore this approach was applied to a larger data

set to test its validity on new data and ensure that the model is not overfit. Since

the training data showed sensitivity to be dependent on tumor size, the test data set

includes many small tumors in order to determine the approximate limit of detection

using this methodology.
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6.5 TEST DATA RESULTS

The data set used for testing the clustering algorithm consists of 77 image volumes,

including 43 tumor images and 34 controls images, acquired from 34 different mice.

Multiple images from a single animal may consist of opposite sides of the mammary

pads or from images acquired in tumors weeks apart (at least 1 week) to capture

different stages and sizes of tumor growth. Each image is assumed to represent an

independent data point in this analysis. The distribution of tumor sizes, shown in

table 6.3, included several tumors smaller than 1 mm in diameter, and ranged from

0.32 to 3.86 mm. The mean and standard deviation of the tumor diameter was 1.3 ±

0.85, with a median of 0.915 mm.

Table 6.3: Statistics of tumor diameter (in mm) from the 43 tumors in the test data
set.

Mean 1.3
Median 0.92

Standard deviation 0.85
Minimum 0.32
Maximum 3.86

Several results seen in the training data were recapitulated in the test data set. The

area under the ROC curve is not significantly different, with an AUC of 0.964 and a

95% confidence interval of 0.898-0.984. Figure 6.11 shows the smoothed ROC curve for

the test data set.

Furthermore, the optimal cutoff of the test data set is equal to 8 (vessels per clus-

ter), the same threshold found in the training data. At this threshold, the sensitivity

and specificity of classification are both above 90%, with a sensitivity of 0.907 and

a specificity of 0.912. Sensitivity, specificity, and their 95% confidence intervals were

computed with the pROC package in R [168], and are listed in table 6.4.

We can also adjust the threshold if higher sensitivity (lower threshold) or specificity
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ROC Curve: Test Data
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Figure 6.11: Smoothed ROC curve for classification using maximum cluster size derived
from DBSACN clustering with eps=27 and minPts=4.

(higher threshold) are desired. A higher sensitivity identifies more true cases of dis-

ease, at the expense of a greater number of false positives. On the other hand, higher

specificity reduces the number of false positives, but may miss additional cases of dis-

ease. We can adjust the classification threshold to favor either of these approaches or

to weigh sensitivity and specificity equally. Table 6.5, below, lists the sensitivity and

specificity achieved for thresholds between 6 and 21. At a cutoff of 6, the test has

perfect sensitivity (1), meaning that all cases of disease are correctly identified. At this

level of sensitivity, the specificity is 0.706, which means that there is a false positive

rate of 29.4%. At the other end of the spectrum, a threshold of 21 ensures that there
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Table 6.4: Sensitivity and Specificity values for classification of the test data set with
a cutoff threshold of 8. Median values and confidence intervals were computed using
2000 stratified bootstrap replicates.

Median 95% CI
Sensitivity 0.907 (0.814-0.977)
Specificity 0.912 (0.824-1)

are no false positives (a specificity of 1), but the sensitivity falls to 0.535.

Table 6.5: Median sensitivity and specificity calculated for several thresholds.

Threshold Sensitivity Specificity
6 1.0 0.706
7 0.930 0.794
8 0.907 0.912
9 0.837 0.941
10 0.814 0.941
11 0.791 0.971
21 0.535 1.0

We can also apply the same analyses to the test data as we completed on the

training data in order to compare the trends and improve our confidence in the model.

The plot of maximum cluster size versus total number of vessels per image shows a

similar trend as the training data, shown in figure 6.13. Using linear regression, neither

the tumor nor control images have a significant correlation between cluster size and

number of vessels, indicating that the number of vessels segmented from an image is

not a confounding factor in the clustering analysis.

Comparison of the maximum cluster size to the diameter of each tumor indicated

a positive linear correlation with p = 1.23 × 10−5 and R2 = 0.37. This data is seen in

figure 6.13 with the line of best fit plotted, and the optimal threshold of 8 indicated

with a dashed gray line. The trend is similar to that of the training data, which was

shown in figure 6.8. One way to assess the minimum detectable tumor size is to use

the regression line of best fit to extrapolate and predict at what tumor diameter the

expected maximum cluster size drops below 8 (the optimal cutoff). However, the line of
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Figure 6.12: Maximum cluster size plotted versus the total number of vessels segmented
from each image in the training data. Tumors are shown in blue and controls are
indicated in green.

best fit calculated with linear regression has an intercept of 10.5, so we cannot estimate

the minimum diameter using this method. Alternatively, we can set the intercept at

zero for the regression, which is analogous to assuming that no clusters form when

no tumor present. This was our hypothesis for the control cases at the initiation of

clustering analysis, so it may be a more appropriate restriction for using the existing

data to extrapolate. The slope of the regression line with 0 intercept is 17.4 ± 1.4.

From this value, we can estimate the size of the smallest detectable tumor by setting

y to our desired threshold (8) and calculating x. With a cutoff of 8, the estimated

detection limit for tumor diameter is 0.46, with a range of 0.42-0.5. However, due to

variability in the model, we see that a couple of tumors smaller than 0.5 mm were
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detected with more than 8 vessels per cluster, and a handful of tumors between 0.5

and 1 mm in diameter did not meet the cutoff for detection, so this estimate of the

detection limit is approximate.
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Figure 6.13: Maximum cluster size plotted versus tumor diameter with the line of best
fit and the optimal threshold of 8 indicated with a dashed gray line.

In addition to the maximum cluster size, which was used for classification, other

clustering parameters were significantly different between the tumor and control classes.

The number of clusters generated per image was significantly higher in tumor images

than in controls using a two sided t-test (p = 6.4 × 10−7). The control class had an

average of 2.8 ±2.3 clusters per image, while the tumor class had 5.7 ±2.4 clusters

per image. However, this parameter has considerably more overlap than the maximum
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Figure 6.14: Linear regression of maximum cluster size versus tumor diameter with a
fixed intercept of (0,0) to establish the detection limit. The estimated detection point
is where the regression line and the horizontal line indicating the threshold cross, at a
diameter of 0.459.

cluster size and resulted in an area under the curve of 0.818 (0.71-0.92). Total number

of vessels clustered was also significantly higher in tumors than in controls (p = 9.0×

10−14). Tumor images had approximately 4 times as many vessels included in clusters

than in control images, with 13.4 ± 12.8 vessels clustered in control images versus 53.5

± 24.1 in tumor images. The area under the curve for total number of vessels clustered

was 0.93 with a 95% confidence interval of 0.89-0.97. Of these 3 criteria derived from

density based clustering, maximum cluster size had the best performance for classifying

tumor images from controls with the highest area under the ROC curve (0.96).
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The mean sum of angles metric for each image was also higher in the tumor class

(3.79 ±0.34) than the control class (3.1 ± 0.38), and the difference is significant using

parametric (t-test) or non-parametric (Wilcoxon rank sum) tests, with p < 10−12.

However, mean sum of angles metric does not perform as well as maximum cluster size,

and has an area under the curve of 0.91 (0.82-0.96). Furthermore, it is not significantly

correlated to tumor size (see figure 6.15), so we can not estimate a minimum detection

size using the SOAM. The mean distance metric was not significantly different between

tumors and controls.
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Figure 6.15: Mean sum of angles for each image plotted against tumor diameter.
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6.6 DISCUSSION

The vascular density and morphological abnormalities that are associated with

cancer neovasculature can make angiography imaging a particularly useful diagnostic

method, especially when combined with sophisticated image analysis. Image classifi-

cation based on vascular features can provide a quantitative, robust method of tumor

detection by incorporating tortuosity metrics and spatial information. In this chapter

we have explored several methods for binary classification of acoustic angigography

images, and discussed the advantages and limitations of each method. The best classi-

fication method was the use of the Density Based Statistical Clustering in Applications

with Noise (DBSCAN) algorithm to assign clusters to the vessels in each image, fol-

lowed by using the maximum cluster size produced as the classfier. This approach

resulted in an area under the curve of approximately 0.95 for the training data and test

data sets used in the analysis.

These results indicate that quantitative, multivariate methods of tumor detection

based on vascular tortuosity were more successful at discriminating between tumors and

controls than visual classification using the reader study approach from chapter 5. The

approximate area under the curve using visual discrimination was 0.8, compared to 0.95

for the DBSCAN clustering approach. Using regression on the ROC curves from the

reader study, we estimated that tumors approximately 5.1 mm in diameter resulted in

an area under the curve of 0.96, indicating that readers required larger tumors in order

to match the performance of the quantitative classification described in this chapter.

However, one similarity between the results of the reader study and clustering-based

classification is their dependence on tumor size. Using both approaches, we observed

that area under the ROC curve was significantly correlated to tumor diameter, with

sensitivity improving with increasing tumor diameter.

We also compared a number of quantitative classification metrics and methods
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against each other. Single-metric classification based on the mean sum of angles metric

and distance metric showed moderate performance, with the sum of angles metric per-

forming significantly better than the distance metric with an AUC of 0.82. Combining

these two tortuosity metrics, along with vessel radius, resulted in a slightly improved

AUC of 0.87 using logistic regression.

However, the main disadvantage to these approaches is the susceptibility to outliers

inherent in using summary statistics to represent an entire image. Distributions of

tortuosity data are not well represented by normal distributions and frequently contain

outliers in one or more metrics that exert a strong influence on the mean. There are

several well accepted methods for outlier removal, but most are based on the assumption

of normality, which is broken by this data. Furthermore, extreme data points that

represent real blood vessels (high tumor tortuosity) are the information that we wish

to capture in order to detect tumors in angiography data, so extensive or arbitrary

removal of “outlier” data is undesirable. Therefore, the main goal of this chapter was

the development of a multivariate classification model that was robust and did not rely

on statistical summaries of the vessels within a single image.

Density Based Statistical Clustering in Applications with Noise enabled us not only

to combine multiple metrics of vessel morphology, but also to take spatial relationships

between vessels into account. Maximum cluster size was the best parameter for dis-

criminating between tumors and controls, but the total number of vessels included in all

clusters (excluding vessels classified as noise) also showed excellent classification with

an AUC of 0.93, slightly lower than the 0.96 AUC observed using maximum cluster

size to classify images. The other feature generated by DBSCAN clustering that could

be used for classification was the number of clusters generated, but this metric did not

perform as well as the other metrics derived from DBSCAN clustering.

Comparisons between the training data (n = 48 images) and test data (n = 77
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images) indicated that the use of maximum cluster size to perform classification was a

robust method that was not overfitted to the training data. Calculation of the ROC

curve for both sets of data resulted in no significant difference between the areas under

the curve of the two data sets, which resulted in AUCs of 0.95 and 0.96. Furthermore,

calculation of the optimal threshold for maximum cluster size resulted in a cutoff value

of 8 for both sets of data weighing sensitivity and specificity equally.

This clustering approach could be applied directly to other 2D or 3D images of

vasculature where tortuosity and vessel location can be identified. Additionally, the

concept of spatial, density-based clustering could be extended to other applications of

interest in medical image analysis. Any data set that can be divided into structures

with quantitative features could be amenable to density-based clustering akin to the

methodology described here.
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CHAPTER 7

MOLECULAR IMAGING

7.1 OVERVIEW

Ultrasound molecular imaging utilizes microbubbles targeted to extracellular pro-

teins expressed on endothelial cells in order to assess levels of expression of a vascular

target of interest. Through the use of microbubbles which can bind to a specific re-

ceptor or protein, the signal of bound bubbles can be differentiated from freely flowing

microbubbles to quantify molecular targeting. Typically this is accomplished by wait-

ing for the majority of circulating microbubbles to clear (on the order of minutes),

acquiring an image of the bound microbubbles, and calculating targeting signal by sub-

tracting contrast intensity images acquired before and after a destructive pulse or by

filtering contrast images to separate stationary (bound) microbubbles from ones in cir-

culation (unbound). Alternatively, one can monitor the image intensity during contrast

wash-in and wash-out in order to plot a time-intensity curve and compare curve-fitting

parameters to those derived from monitoring the same dose of a control microbubble.

Bound microbubbles produce sustained contrast signal in the wash-out phase, which

does not occur for unbound microbubbles. These methods generally involve monitoring

contrast intensity in real time using low mechanical index (MI) contrast-specific pulse

sequences. Therefore, the implementation of superharmonic molecular imaging poses

challenges due to the semi-destructive nature of the imaging method.
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Previous acoustic angiography imaging studies have been carried out during a con-

tinuous infusion of microbubble contrast to ensure that the microbubbles that are de-

stroyed during imaging are replenished via perfusion. However, molecular imaging relies

on an initial bolus injection, followed by quantification of the microbubbles which bind

to the vasculature, and replenishment is impossible. Furthermore, molecular imaging

is a modality in which sensitivity and specificity to contrast signal are of the highest

importance, given the relatively low concentration of targeted microbubbles that accu-

mulate at sites of pathology. Therefore, maximizing CTR while ensuring sensitivity to

low concentrations of contrast agent is important for effective molecular imaging.

One group demonstrated superharmonic molecular imaging using a low MI com-

bined with interframe filtering [141]. The resulting images were similar in quality to

the traditional multi-pulse imaging available on clinical ultrasound systems, and the

low MI used allowed them detect some superharmonic microbubble behavior without

immediately destroying microbubbles, which permitted them to perform time series

imaging and interframe filtering. In a subsequent study, they reported that superhar-

monic molecular imaging transmitting at 2 MHz and receiving at 15 MHz resulted in

spatial resolution of half that of conventional molecular imaging [142]. However, as dis-

cussed in chapter 2, previous work by our group has demonstrated that the strongest

superharmonic signals occur when microbubbles are destroyed, and a significantly lower

level of superharmonic behavior is also produced when bubbles are partially deflated,

but not destroyed in a single cycle [146]. Since CTR is linked to microbubble destruc-

tion, and therefore transmit pressure, low MI imaging schemes do not optimize CTR

and may not provide substantial benefits over conventional contrast imaging schemes.

Additionally, we would like to take advantage of the improved resolution achieved by re-

ceiving at 25-30 MHz in order to combine molecular imaging and images of well-resolved

vascular morphology.
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Most ultrasound molecular imaging takes advantage of the sensitivity to low con-

centrations gained by using contrast imaging modes that rely on the second harmonic

or non-linear imaging strategies in the low harmonics range. These methods have been

very effective at employing ultrasound molecular imaging for studying tumors and other

types of disease, but these imaging modes can suffer from strong tissue artifacts (low

CTR) and poor resolution at low frequencies (especially in the case of subharmonic

imaging) [191–199]. Acoustic angiography has demonstrated excellent resolution and

contrast to tissue ratios in previous in vivo studies using infusions of microbubbles,

but its performance at much lower contrast concentrations of bound microbubbles is

unknown. Therefore, this chapter describes the experiments designed to test this trade

off between sensitivity, CTR and resolution, in order to determine if and how molecular

acoustic angiography can be performed.

As described by Lindsey et al. [146], the production of a superharmonic response

relies upon microbubbles breaking or shrinking. This effect depends on the transmitted

pressure and frequency, and the microbubble diameter. Smaller microbubbles are more

susceptible to disruption than larger bubbles across all frequencies and pressures, and

large bubbles are able to persist for longer (more pulse cycles) than smaller bubbles

[146]. Also, lower transmit frequencies are more effective at producing microbubble

disruption (shrinking or breaking behavior), which is reinforced by the improved CTR

observed for low transmit pressures in another study by Lindsey et al. [159]. However,

across all microbubble sizes and transmit frequencies, increasing pressure produces

higher amplitude superharmonic responses up to the level where complete microbubble

destruction occurs. Since microbubble breakage produces signals with approximately 4

times higher amplitude than shrinking microbubbles, CTR is maximized by inducing

microbubble breakage while minimizing tissue response [147,159].
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The ultimate goal for superharmonic molecular imaging is to combine it with acous-

tic angiography images using untargeted microbubbles in order to visualize patterns

of both molecular targeting and vascular morphology. This goal was approached in

3 phases: determining what conditions enable high-resolution, high-contrast super-

harmonic molecular imaging, comparing the performance of superharmonic molecular

imaging to traditional, multi-pulse imaging, and finally, to combine molecular and vas-

cular morphological information in order to take full advantage of molecular acoustic

angiography.

7.2 IN VITRO EXPERIMENTS

7.2.1 IN VITRO METHODS

In vitro work used cellulose tubes and biotin-avidin binding to mimic molecular

imaging in vivo. Cellulose tubes (Spectrum Labs, Rancho Dominguez, CA) were first

filled with ethanol (100%) and flushed with air. Then tubes were filled with avidin

(Sigma-Aldrich, St. Louis, MO) prepared at 5 mg/mL in phosphate-buffered saline

(PBS, Fisher Scientific, Pittsburgh, PA) and left for 30 minutes at room temperature.

Next the avidin solution was removed from the tube by flushing with PBS. The tube was

then placed in a water bath for imaging and positioned at the focus of the transducer.

Biotinylated microbubbles were prepared by with equal parts DSPE-PEG2000 (1,2

- distearoyl - sn - glycero - 3 - phosphoethanolamine, PEG2000) and DSPE-PEG2000-

Biotin. The pegylated lipids were combined with DSPC (1,2 - distearoyl - sn - glycero

- 3 - phosphocholine) in a 1:1:18 ratio (Avanti Polar Lipids, Alabaster, AL). Microbub-

bles were created by replacing the headspace in 3 mL vials containing 1.5 mL of 1

mg/mL lipid solution with decafluorobutane (Fluoromed, Round Rock, TX) followed

by mechanical agitation using a VialMix mixer (Lantheus Medical Imaging, N. Biller-

ica, MA). Free lipid was removed using centrifugation. This resulted in a population
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of microbubbles approximately 1.4 µm in diameter, measured using an Accusizer 780

(Particle Sizing Systems, Santa Barbara, CA).

Once the avidin-coated cellulose tubes were positioned at the focus of the transducer,

microbubble targeting was achieved by infusing 300 µL of biotinylated microbubble

solution (containing a total of 5 ×104 microbubbles) through the tube at a rate of 30

µL/min, followed by 300 µL of PBS to clear unbound microbubbles. Then imaging

was performed to assess the magnitude of contrast signal received for different transmit

pressures and to measure the contrast signal change due to successive transmits in

order to evaluate microbubble destruction. The transmit pressures were verified using

a calibrated hydrophone (HNA 0400, Onda Corp., Sunnyvale, CA) in a water bath prior

to the imaging experiments. A single cycle, cosine-windowed sinusoidal pulse beginning

with a negative half cycle was used for the transmit in each experiment.

7.2.2 IN VITRO RESULTS

Optimizing CTR by maximizing microbubble breakage will result in the loss of

contrast agents during molecular imaging of bound microbubbles if the low frequency

transmit pulse subjects a large volume of tissue to extreme pressures. In dual-frequency

imaging, the beam width of the low frequency transmit is larger than the high frequency

receive, so the transmit pressure must be chosen carefully in order to avoid disturbing

surrounding microbubbles with the relatively large low frequency transmit beam width.

If the width of the tissue subjected to pressures high enough to cause microbubble

destruction is smaller than the line spacing chosen for high resolution imaging, then

bound contrast will be destroyed before it can be detected by the high frequency receive

element.

The hydrophone-measured plots (below) of the pressure field induced from the low

frequency transmit illustrate that while the full-width half-max beam width does not
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vary with pressure, the width of the field exposed to pressures that can cause microbub-

ble destruction is considerably different at the 3 pressures tested. Figure 7.1 shows the

ultrasound pressure field in the lateral dimension at 3 different peak negative pressure

(PNP) transmits at 4 MHz. We expect that pressure of approximately 200 kPa induces

microbubble shrinking, and fragmentation predominates for pressures above 400 kPa

when transmitting 4 MHz, for 1-2 µm bubbles, in vitro [146]. Therefore, horizontal

lines at 200 and 400 kPa and the shaded regions of the graph indicate the pressure lev-

els likely to induce microbubble disruption and destruction from a 4 MHz transmitted

pulse. Additionally, the transducer possesses radial symmetry, so the data shown in

this plot also apply to the elevation dimension.

Though the thresholds indicated for microbubble shrinkage (200 kPa) and microbub-

ble breakage (400 kPa) are approximate and also depend on the microbubble diameter

(which we have assumed to be approximately 1-2 mm here), this figure illustrates

the need to balance transmitted pressure and spacing of lines and frames in order

to minimize the destruction of microbubbles outside the high frequency field of view.

Transmitting a 200 kPa pulse limits microbubble disruption to the center of the fo-

cus, but this comes at the expense of reduced superharmonic generation. Transmitting

with higher pressures can increase the amount of superharmonic scattering generated

by microbubbles, but off-axis targets experience pressures greater than 200 kPa for the

transmit pulses at 350 and 500 kPa, indicating that microbubble disruption is likely to

be occurring outside of the high frequency receive. Since the approximate threshold for

microbubble destruction is approximately 400 kPa, for a 350 kPa transmit the off-axis

disruption is likely to be mostly shrinking, but there is a likelihood of additional mi-

crobubble destruction at 500 kPa, due to the wider area subjected to pressures above

400 kPa. Therefore, the transmitted pressure should be selected to provide enough

pressure to produce microbubble destruction at the focus, while minimizing disruptive
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Figure 7.1: Lateral pressure field of 4 MHz transmitted pulse at 200, 350, and 500 kPa.
Shaded regions indicate approximate extent of microbubble disruption, which is mostly
shrinking above about 200 kPa and includes more fragmentation above for pressures
higher than 400 kPa, assuming 1-2 µm diameter microbubbles.
Adapted and reprinted from Ultrasound in Medicine & Biology, Volume 42, Issue 3,
Sarah E. Shelton*, Brooks D. Lindsey*, James K. Tsuruta, F. Stuart Foster, Paul
A. Dayton, Molecular Acoustic Angiography: A New Technique for High-Resolution
Superharmonic Ultrasound Molecular Imaging, Pages 769-781, c©2016, with permission
from Elsevier.

pressures in adjacent regions.

In order to compare the effect of transmitted pressure on imaging of bound mi-

crobubbles, the backscattered contrast intensity received over 100 frames was compared

for pressures between 200 and 500 kPa in the biotin-avidin in vitro model of molecu-

lar imaging. Results from the avidin-coated tubes in water baths revealed that initial

backscattered superharmonic signal from bound biotin microbubbles increased while

increasing transmit pressure from 200-500 kPa (see figure 7.2).

The initial intensity received from bound microbubbles was approximately 5 times
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higher when transmitting at 500 kPa than at 200 kPa. However, at this higher pres-

sure, there was a significant amount of microbubble fragmentation and the intensity

of subsequent pulses dropped quickly as microbubbles were destroyed and the core gas

dissolved into the blood. Comparing the contrast intensity at pulse 1 and pulse 100,

the amount of backscattered contrast signal was lower at pulse 100 at every pressure

tested (as expected), and the largest decrease was for the highest pressure transmit of

500 kPa. At 350 and 500 kPa, the intensity continued to decrease between consecutive

frames across all 100 frames, but 2 the lower pressure transmit pulses showed a differ-

ent pattern. At 200 and 300 kPa, contrast signal decreased over the first few frames

(approximately 10), but then the contrast signal stabilized and did not continue to de-

crease significantly. However, the stable level of superharmonic contrast enhancement

observed in frames 10-100 was very low and close to the noise floor, especially for the

lowest transmit pressure tested (200 kPa).

The largest drop in contrast intensity occurred for the 500 kPa transmit pulse, and it

dropped below the amplitude of contrast signal exhibited by the 350 kPa pulse within 5

frames. However, the initial signal for the 500 kPa transmit was more than double that

of the 350 kPa pulse, so this suggests that one may design a transmit pressure regime

either for maximum contrast signal (at higher pressures) or to provide a somewhat

steady contrast signal across several frames (at moderate pressures).

These in vitro tests confirmed the hypothesis that transmit pressures designed to

maximize CTR through focused microbubble destruction are also appropriate for molec-

ular imaging of bound microbubbles, but that the maximal contrast signal is lost after

only a few frames at these pressures. Therefore, a superharmonic molecular imaging

protocol must ensure that data can be acquired with a single transmit pulse. Figure

7.3, below, shows images from the first transmit cycle applied to 2 tubes containing

equal concentrations of targeted bubbles imaged with pressures of either 350 kPa or 500
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kPa at the focus. These results confirm that the higher transmitted pressure provided a

much clearer image of the targeted microbubbles in the tube, and the highest contrast

to tissue ratio.

Additional studies were performed to translate these findings to in vivo imaging,

which requires higher pressures than in vitro studies due to attenuation, blood viscosity,

and the confinement effects of small diameter vasculature [200–202].
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Figure 7.2: Image intensity of biotin-targeted microbubbles in avidinated tubes across
100 consecutive frames at 4 different transmit pressures.
Adapted and reprinted from Ultrasound in Medicine & Biology, Volume 42, Issue 3,
Sarah E. Shelton*, Brooks D. Lindsey*, James K. Tsuruta, F. Stuart Foster, Paul
A. Dayton, Molecular Acoustic Angiography: A New Technique for High-Resolution
Superharmonic Ultrasound Molecular Imaging, Pages 769-781, c©2016, with permission
from Elsevier.

Figure 7.3: Biotinylated microbubbles targeted to avidin-coated cellulose tubes, sub-
jected to 350 kPa (top) or 500 kPa (bottom) transmit pressures. Images are the first
frame in which targeted bubbles were insonified.
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7.3 IN VIVO IMAGING

7.3.1 IN VIVO METHODS

In vivo experiments used the rat fibrosarcoma model described previously in chap-

ter 3. The targeting ligand selected is the αvβ3 integrin, which can be bound specif-

ically by a cyclic RGD peptide (Cyclo-Arg-Gly-Asp-D-Tyr-Cys, Peptides International,

Louisville, KY). Microbubbles bearing the RGD peptide were formulated using maleimide

cross-linking to bind DSPE-PEG2000 and the cyclic RGD peptide. The lipid solu-

tion was a 1:1:18 molar ratio of DSPE-PEG2000 cross linked to cyclic RGD, DSPE-

PEG2000, and DSPC. Microbubbles were prepared either as polydisperse size distri-

butions with a mode of 1.4 µm, after centrifugal washing to eliminate free lipids, or

were sorted via centrifugal separation to enrich a larger population of 3.8 µm microbub-

bles [203] for testing transmit pressures and microbubble diameter in vivo.

During imaging, tumors were first located in B-mode, and pre-contrast scans were

collected in dual-frequency mode to acquire images of any tissue signal visible in the

higher harmonic range within the bandwidth of the receive transducer (approximately

15-45 MHz). Microbubbles were injected through a tail-vein catheter and a waiting

period of 12 minutes allowed microbubbles to circulate and clear before performing

superharmonic imaging to acquire targeted images of bound microbubbles. The in-

terval of 12 minutes was chosen for the waiting period based on a preliminary study

investigating the clearance rate of untargeted microbubbles in rats (unpublished data).

After 12 minutes, there were a negligible number of microbubbles still circulating at

the bolus doses listed here, indicating that the contrast signal visible at 12 minutes can

be attributed to microbubbles which have bound and persisted. It was also verified

that no free bubbles remained after the 12 minute wait by performing a t-test to com-

pare the pre-injection contrast scans to images acquired after the destruction of the
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targeted bubbles (after molecular images were acquired), and no significant differences

were found. Spacing between frames was set to 250 µm to minimize microbubble de-

struction in adjacent planes during molecular imaging, but reduced to 100 µm during

angiography imaging.

Additionally, comparisons between the CTR of superharmonic molecular imaging

with multi-pulse imaging at different contrast doses were carried out using microbubbles

targeted to VEGFR2 (Visistar VEGFR2 (VS-102) Targeson, San Diego, CA), composed

of a single-chain VEGF fragment. Contrast enhancement was computed by comparing

the image intensity of contrast images in the tumor regions to pre-scan images acquired

before microbubbles were injected. The images acquired in contrast-specific imaging

mode represent tissue signal before microbubbles were injected. Regions of interest were

selected around the tumor in each image, and the same ROI locations were used in the

contrast image and pre-scan image in order to compute CTR. Further comparisons were

made using a selectin-targeted microbubble consisting of a glycoprotein that binds to

P- and E-selectin (Visistar Selectin (VS-105) Targeson, San Diego, CA).

Comparisons of superharmonic molecular imaging and conventional contrast multi-

pulse molecular imaging were made by acquiring images of each tumor on both the Vevo

770 system with the prototype dual-frequency transducer, and with a Siemens Sequoia

scanner using a 15L8 transducer operated in CPS (Cadence Pulse Sequence) mode.

Comparisons were made transmitting at a mechanical index (MI) of 0.6 for superhar-

monic imaging and at 0.2 for conventional CPS contrast imaging. VEGFR2-targeted

and selectin-targeted bubbles were injected sequentially to compare their relative tar-

geting intensity and to correlate patterns of targeting to vascular tortuosity.

Vasculature was segmented, and the distance metric was calculated using Ves-

selView (Kitware Inc., Carrboro, NC) and used as the metric of tortuosity. Vessel

centerline coordinates and molecular images were imported into Matlab in order to
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calculate distances between targeting sites and individual vessels. Targeting sites were

identified by applying a median filter to the molecular images, followed by thresholding.

Then we used a custom Matlab script to identify the center of mass of each object, and

Euclidean distance between each targeting site and each vessel was calculated. The

distance metric of each vessel was read as a text file generated using the VesselView

program.

7.3.2 IN VIVO RESULTS

In vivo imaging requires higher pressures than in vitro conditions due to attenu-

ation, viscous damping, and confinement effects of small diameter vessels [200–202].

Therefore, the peak negative pressures tested in vivo were increased to 700, 900, and

1200 kPa. Figure 7.4 shows the resulting contrast signal for each of the 3 different

transmitted peak negative pressures, across 4 consecutive transmit events.

Figure 7.4 shows that the highest transmitted pressure tested (1200 kPa) resulted

in the highest amplitude contrast signal from the cyclic-RGD microbubbles targeted

to the αvβ3 integrin. The contrast signal from the lowest pressure transmit (700 kPa)

was barely above the noise floor, and the intermediate pressure tested (900 kPa) pro-

duced approximately 20% as bright a signal as the higher pressure transmit. Each

transmit pressure tested showed contrast intensity decreasing with pulse number, as

microbubbles were immediately or gradually destroyed, resulting in the production of

the superharmonic signals detected by the high frequency transducer. The absolute

value of the slope of the line was higher for higher pressures, indicating that more mi-

crobubbles were disrupted with each transmit, as we would expect. During the fourth

pulse, the contrast intensity was near zero for all 3 pressures tested. However at the

first or second transmit, the contrast intensity was highest when transmitting a 1200

kPa PNP pulse, so this pressure was selected for optimal in vivo imaging.
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Figure 7.4: Cyclic-RGD contrast image intensity in vivo at 700, 900, or 1200 kPa across
4 successive transmit pulses.
Adapted and reprinted from Ultrasound in Medicine & Biology, Volume 42, Issue 3,
Sarah E. Shelton*, Brooks D. Lindsey*, James K. Tsuruta, F. Stuart Foster, Paul
A. Dayton, Molecular Acoustic Angiography: A New Technique for High-Resolution
Superharmonic Ultrasound Molecular Imaging, Pages 769-781, Copyright 2016, with
permission from Elsevier.

At 1200 kPa, we also compared the performance of larger 3.8 µm microbubbles to the

polydisperse population of microbubbles (approximately 1.4 µm) used up to this point.

Figure 7.5 shows the relative contrast intensity generated by equal concentrations of

the microbubble distributions approximately 1 µm and 4 µm in diameter, transmitting

at 1200 kPa.

When subjected to equal peak negative transmit pressures at 4 MHz, the larger

bubbles produced higher intensity contrast signals, more than twice that of the smaller

microbubbles. However, after the first frame, there is no significant difference between

the contrast generated by the two microbubble populations, and by frame number 4,
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Figure 7.5: Contrast intensity across 4 consecutive transmitted pulses of 1200 kPa for
microbubbles approximately 1 µm and 4 µm in diameter. N = 14 rats.
Adapted and reprinted from Ultrasound in Medicine & Biology, Volume 42, Issue 3,
Sarah E. Shelton*, Brooks D. Lindsey*, James K. Tsuruta, F. Stuart Foster, Paul
A. Dayton, Molecular Acoustic Angiography: A New Technique for High-Resolution
Superharmonic Ultrasound Molecular Imaging, Pages 769-781, c©2016, with permission
from Elsevier.

there is minimal contrast signal remaining for either diameter of microbubble. There-

fore, larger bubbles can improve the contrast signal in superharmonic molecular imag-

ing, but it did not significantly increase the number of frames that can be acquired

when transmitting at 4 MHz, 1200 kPa.

We also compared the contrast to tissue ratios achieved with superharmonic imaging

to traditional contrast pulse sequence imaging, and also compared the sensitivity of both

techniques to low concentrations of targeted microbubbles. Despite the relatively low

amplitude of high frequency superharmonic signals compared to the second harmonic,

superharmonic imaging has better contrast ratios due to the superior tissue rejection

[147]. Figure 7.6 illustrates the difference in contrast for conventional CPS contrast
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imaging and dual frequency superharmonic imaging of VEGFR2 targeted microbubbles

in the fibrosarcoma tumors across 3 microbubble doses, combined.

Figure 7.6: Molecular imaging of VEGFR2 targeted microbubbles in fibrosarcoma tu-
mors using either multi-pulse imaging on a Siemens Sequoia scanner (CPS mode) or
a superharmonic imaging with a dual frequency transducer to transmit at 4 MHz and
receive at 30 MHz. N = 14 rats.
Adapted from Molecular Imaging and Biology, Assessment of Molecular Acoustic An-
giography for Combined Microvascular and Molecular Imaging in Preclinical Tumor
Models, Volume 19, Issue 2, 2016, pages 194-202, Brooks D. Lindsey*, Sarah E. Shel-
ton*, F. Stuart Foster, Paul A. Dayton, with permission of Springer.

Superharmonic imaging produced significantly better CTR than multi-pulse imag-

ing, with p = 5× 10−10 using a paired t-test on pooled data from all microbubble doses

tested. Experiments also included comparisons across 3 different bolus doses of tar-

geted microbubbles at low concentrations. The three bolus doses tested were 7.6× 106,

1.3 × 107, and 2.5 × 107 microbubbles, with the highest dose being comparable to

numbers reported in the literature for molecular imaging with contrast-specific pulse

sequences in rats (weighing approximately 200 grams). Figure 7.7 shows boxplots of
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the contrast enhancement for each of the 3 contrast doses.

Figure 7.7: CTR at 3 different doses of microbubbles for multi-pulse contrast imaging
in CPS mode (left) and superharmonic molecular imaging (right).
Adapted from Molecular Imaging and Biology, Assessment of Molecular Acoustic An-
giography for Combined Microvascular and Molecular Imaging in Preclinical Tumor
Models, Volume 19, Issue 2, 2016, pages 194-202, Brooks D. Lindsey*, Sarah E. Shel-
ton*, F. Stuart Foster, Paul A. Dayton, with permission of Springer.

At each of the 3 contrast doses tested, superharmonic imaging had higher contrast

enhancement than conventional multi-pulse microbubble imaging. Additonally, dose

significantly influenced contrast enhancement in both imaging techniques, and ANOVA

analysis rejected the null hypothesis that enhancement was equal for all contrast doses,

with p < 0.01 for both detection techniques. Tukey Honest Significant difference post-

hoc analysis was then used to compare the 3 doses for each imaging imaging method.

Results indicated that there was no significant difference between the 7.6 × 106 and

1.3 × 107 doses for either multi-pulse (CPS) imaging or superharmonic imaging, but

that the largest dose (2.5 × 107) resulted in significantly increased the CTR for both
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techniques (p < 0.01).

Figure 7.8: The image on the left shows a frame of B-mode and VEGFR2 molucular
data (green) acquired using multi-pulse molecular imaging. The image on the right is
a maximum intensity projection of the acoustic angiography vascular image and the
superharmonic molecuar image (green).
c©2016 IEEE. Reprinted with permission from SE Shelton*, BD Lindsey*, PA Day-

ton, FS Foster. Molecular acoustic angiography: comparison of contrast-to-tissue ratio
with multi-pulse techniques and imaging multiple targeted microbubbles. IEEE Inter-
national Ultrasound Symposium.

The benefit of superharmonic molecular imaging is not restricted to the high con-

trast to tissue ratios achieved using this technique. The other benefits are the high

resolution made possible due to the high frequency received signals from microbubble

superharmonics and the ability to pair it with acoustic angiography images of vascula-

ture using untargeted, freely flowing microbubbles, as shown in figure 7.8. Conventional

molecular images are often overlaid on B-mode images for anatomical reference using

the tissue images, and this is also possible for superharmonic molecular images by also

acquiring B-mode images with the high frequency transducer before or after acquiring

the molecular image. However, the molecular images can also be combined with vascu-

lar images by performing acoustic angiography imaging with untargeted microbubbles

after completing the molecular imaging. Therefore, not only is anatomical reference

possible, but also reference to the underlying vascular structure, resolvable to approx-

imately 100-150 µm. Figure 7.9 shows overlaid images of molecular imaging with the
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cyclic RGD microbubbles, (binding to the αvβ3 integrin) B-mode, and acoustic angiog-

raphy images.

The advantage of combining molecular and vascular imaging is the ability to an-

alyze the relationship between markers of biological processes such as angiogenesis to

visible vascular morphology. Since ultrasound molecular imaging utilizes endothelial

markers of disease, simultaneously observing the geometry of the vessels could provide

additional information in pathologies involving the vasculature. Therefore, properties

of the vascular morphology were compared with patterns in the molecular imaging.

First, vessel diameters were compared to the prevalence of targeting the distribu-

tion of distances between resolvable vessels and targeting sites. All targeting occurs

within vessels because microbubbles are micron-sized, intra-vascular agents. However,

the resolution limit of acoustic angiography images is approximately 100-150 µm, and

targeting can occur in vessels smaller than this. We are able to detect these occurrences

of targeting in sub-resolution vasculature, but are unable to resolve the structure of the

individual vessels in which targeting occurred.

The majority of targeting sites (>50%) were located within 50 µm of a resolvable

vessel, as seen in figure 7.10, with the trend showing progressively fewer targeting sites

at larger distances from resolvable vessels. The second histogram in figure 7.10 displays

the mean diameter of the vessels closest to each targeting site. The diameters shown

in the histogram are the mean of the 5 vessels closest to each targeting site in order to

obtain a more representative sample of the vessels located near targeting sites. Several

targeting sites may be closest to a single vessel, so a small sample of the 5 closest vessels

was used instead of the single closest vessel.

Images of microbubbles targeted to VEGFR2 and P- and E-selectin were used to

compare targeting locations to vascular tortuosity. Distances between vessels and tar-

geting sites were calculated and compared to the vessel tortuosity, in order to test the
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Figure 7.9: Panel A shows the maximum intensity projection of a superharmonic molec-
ular imaging (green) overlaid on a slice of the B-mode image (gray), in the coronal plane.
Panel B instead combines the B-mode frame with the maximum intensity projection
of the acoustic angiography vascular image (red). Panel C combines the molecular and
vascular maximum intensity projections, and panel D combines all 3 images. Molecular
targeting used a microbubble targeted to the αvβ3 integrin.
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Figure 7.10: The histogram on the left shows the distances between targeting sites and
the closest vessels. The histogram on the right shows the mean diameter of the 5 closest
vessels to each targeting site.
Reprinted from Ultrasound in Medicine & Biology, Volume 42, Issue 3, Sarah E. Shel-
ton*, Brooks D. Lindsey*, James K. Tsuruta, F. Stuart Foster, Paul A. Dayton, Molec-
ular Acoustic Angiography: A New Technique for High-Resolution Superharmonic Ul-
trasound Molecular Imaging, Pages 769-781, c©2016, with permission from Elsevier.

hypothesis that targeting is more prevalent in tortuous vasculature. The boxplots in

figure 7.11 support this hypothesis, although the difference in tortuosity between vas-

culature located within 50 µm of targeting sites is not much greater than that of more

distant vasculature (300-400 µm away). However, the overall trend shows decreasing

tortuosity with increasing distance from both VEGFR2 and selectin targeting sites.

Another study using ultrasound molecular imaging showed more targeting for selectin-

targeted contrast than for VEGFR2-targeted microbubbles in a mouse model of colon

adenocarcinoma [204], but we were unable to show significant differences between tar-

geting levels of these two markers across the animals for the sample sizes used here

(VEGFR2: N=14, Selectin: N=5). Figure 7.12 shows maximum intensity projections

of acoustic angiography images using untargeted microbubbles (gray) with VEGFR2

(green) or selectin (red) targeted microbubbles, and the combination of all 3 images.
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Figure 7.11: Tukey boxplots relating vascular tortuosity and distance between vessels
and targeting sites: a. VEGFR2 (n = 14 animals) and b. Selectin (5 animals).
Reprinted from Molecular Imaging and Biology, Assessment of Molecular Acoustic An-
giography for Combined Microvascular and Molecular Imaging in Preclinical Tumor
Models, Volume 19, Issue 2, 2016, pages 194-202, Brooks D. Lindsey*, Sarah E. Shel-
ton*, F. Stuart Foster, Paul A. Dayton, with permission of Springer.
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7.4 DISCUSSION

The combination of molecular and anatomical imaging has been shown to improve

tumor diagnosis and localization in other clinical imaging modalities [205–210]. While

ultrasound molecular images are often combined with B-mode images of tissue, molec-

ular acoustic angiography allows molecular images to be overlaid on images of vascula-

ture with high contrast and resolution. The combination of molecular and angiographic

imaging allows us to relate molecular expression of endothelial markers and vascular

geometry for the first time.

Before combining molecular and acoustic angiography imaging, we began by estab-

lishing the feasibility of superharmonic molecular imaging and optimizing acquisition.

Because the production of superharmonic response from microbubbles requires suffi-

cient pressures to induce shrinking or breaking, it is a semi-destructive contrast imaging

technique [146]. Therefore, effective superharmonic molecular imaging required the bal-

ance of transmitting enough pressure at low frequency (4 MHz) to produce microbubble

disruption, while simultaneously minimizing the amount of disruption occurring in mi-

crobubbles located outside the focus of the high frequency receive. The line spacing

of the 2D imaging performed on the Vevo 770 described in this work is approximately

43 µm at the focus, which indicates that microbubbles in the focus could be disrupted

and even destroyed by an adjacent, off-axis transmit event before they can be detected

if too high a pressure is used. As a result, selection of the incident pressure and beam

spacing is important for molecular imaging where microbubbles are stationary and no

contrast replenishment is occurring.

We found that pressures of 500 kPa in vitro and 1200 kPa in vivo produced ex-

cellent contrast to tissue ratios (strong microbubble responses), without diminishing

the response of adjacent lines. However, these pressures did destroy microbubbles over

subsequent pulses and we observed the contrast signal decreasing over 100 frames in
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vitro and decrease to approximately the noise floor after only 3-4 frames in vivo. These

results also show that lower pressures can be used to preserve contrast intensity over

a greater number of frames, but at the expense of contrast enhancement. Figure 7.2

suggested that while the contrast intensity of the 500 kPa transmit drops below that

of the 350 kPa within the first 10 transmit pulses, the initial contrast itensity is much

higher, and thus the higher pressures perform better for imaging, especially for in vivo

imaging of very low concentrations of contrast.

As expected, larger microbubbles did increase the intensity of the superharmonic

response of the microbubbles, but it did not significantly prolong the lifetime of useful

contrast signal, as seen in figure 7.5. This indicates that the pressure selected for

imaging in vivo (1200 kPa) is likely causing the majority of microbubbles within the

field of view to rupture during the first transmit event. Therefore, this work reinforces

the results of previous studies, which found that the highest contrast to tissue ratios

occur with microbubble rupture [146].

In comparison to traditional multi-pulse molecular imaging implemented on a Siemens

Sequoia in Cadence Pulse Sequence mode, molecular superharmonic imaging is at least

as sensitive to low concentrations of targeted contrast agents, and produced higher

contrast to tissue ratios at each of the 3 doses tested. There have been concerns that

superharmonic imaging may not be as sensitive to contrast as multi-pulse non-linear

imaging methods at lower frequency because the amplitude of the high frequency su-

perharmonic signals is lower than the fundamental or first harmonic. However, there is

much less tissue artifact in the higher superharmonic range than occurs for multi-pulse

imaging at lower frequencies. We previously showed that transmit parameters which

produce minimal tissue artifact are best for acoustic angiography imaging, and produce

contrast images with much higher CTR than multi-pulse contrast imaging [147,150].
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This chapter described superharmonic molecular imaging with microbubbles tar-

geted to the αvβ3 integrin, vascular endothelial growth factor receptor 2 (VEGFR2),

and P- and E-selectin [150,211]. We observed that the majority of targeting sites were

located within vessels resolvable with acoustic angiography (at least 100 µm in diam-

eter), or less than 50 µm from a resolvable vessel (see figure 7.10). Additionally, the

targeting tended to occur in small vessels, and the histogram in figure 7.10 shows that

most of the targeting occurred in the smallest resolvable vessels. It is likely that the

endothlial markers tested in this study are likely to be most highly expressed in small

vasculature because they are molecules associated especially with angiogenesis, and also

inflammation. Sprouting occurs in small caliber vessels, so it is expected that high lev-

els of targeting of any markers of angiogenesis would be detected in microvasculature.

However, we are unable to exclude the physical factors that may also influence preferen-

tial targeting in small vessels as well. The geometry of microvasculature makes contact

between micrometer sized microbubbles and the vascular wall more likely. Low blood

velocity and shear may also contribute to preferential binding of targeted microbub-

bles in small vasculature. In the future, studies combining superharmonic molecular

imaging and methods designed to estimate relative flow rates in acoustic angiography

images could contribute to the relative importance of biological and physical factors in

the correlation between targeting and vessel diameter [151].

Combining molecular imaging and acoustic angiography imaging also allows us to

relate expression of these molecular markers to vascular tortuosity by segmenting the

vasculature visible in acoustic angiography images and quantifying tortuosity. Figure

7.13 shows segmented vasculature from one of these tumors in panel a, and with a

colormap expressing tortuosity using the distance metric in panel b. We can com-

bine these representations of vascular morphology to investigate relationships between

molecular targeting and tortuosity, and panels c and d show targeting data overlaid
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on the tortuosity renderings, with VEGFR2 targeting shown in green in panel c and

P- and E-selectin targeting in blue in panel d. The distances between these vessels

and targeting locations were calculated and the tortuosity minimum distance between

each vessel and targeting site was recorded. This data resulted in figure 7.11 which

shows that higher tortuosity vasculature is located closer to a molecular targeting site

for both VEGFR2 and selectin targeted microbubbles.

While, the association between VEGFR2 and tortuosity is expected due to the

features of tumor angiogenesis discussed in chapter 1, P- and E-selectin are commonly

thought of as markers of inflammation in ultrasound molecular imaging [198,212]. How-

ever, they are also related to tumor progression and metastasis through a number of

biological pathways [213–218]. Additionally, selectins are also involved in angiogen-

esis, both through interactions with VEGF and independently [219–224]. E-selectin

can induce angiogenesis in the cornea, and inhibiting E-selectin prevents angiogene-

sis in in vitro assays [219, 220]. In a P-selectin knockout mouse model, the knockout

mice had lower capillary density than wild type mice, indicating that P-selectin plays

a role in angiogenesis after ischemia [222]. Both E- and P-selectin are also related to

VEGF through leukocytes, expression of gene regulation, and through TNF-α signal-

ing [221,222,224]. While the relationships between molecular targeting and tortuosity

are not strong, the data presented here suggest that vasculature appearing tortuous in

acoustic angiography images is likely to have relatively higher levels of expression of

VEGFR2 and P- and E-selectin. Future work should repeat these studies in mice to

permit immunohistochemical (IHC) analysis of endothelial expression of these mark-

ers using validated antibodies, as IHC analysis of fixed tissue from this rat model of

fibrosarcoma was unable to produce satisfactory staining of VEGFR2, E-selectin, or

P-selectin.

The combination of vascular imaging, tortuosity analysis, and molecular imaging
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opens the door to countless new hypotheses relating vascular morphology and targeting

in disease. Further studies are required to determine if differences in targeting intensity

(such as comparing VEGFR2 images to selectin images) recapitulate true differences in

the expression of these proteins, or if other factors such as ligand affinity contribute to

the differences observed. Several other interesting endothelial adhesion proteins could

be targeted such as intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion

molecule 1 (VCAM-1), and several members of the integrin family. Spatial analysis of

tortuosity and molecular targeting could be useful for delineating tumor margins, or

even predicting response to therapy. The experiments and results present here are only

the beginning of a new way to relate endothelial biomarkers and vascular remodeling.
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Figure 7.13: Segmented imaging volume containing (a) microvascular imaging data
within the tumor, (b) microvascular imaging data with color-coded tortuosity (increas-
ing red indicates increasing tortuosity), (c) microvascular imaging data with color-coded
tortuosity and VEGFR2 targeting data (green), and (d) microvascular imaging data
with color-coded tortuosity and selectin targeting data (blue). Scale bar represents 2
mm.
Reprinted from Molecular Imaging and Biology, Assessment of Molecular Acoustic An-
giography for Combined Microvascular and Molecular Imaging in Preclinical Tumor
Models, Volume 19, Issue 2, 2016, pages 194-202, Brooks D. Lindsey*, Sarah E. Shel-
ton*, F. Stuart Foster, Paul A. Dayton, with permission of Springer.
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APPENDIX A

CLINICAL IMAGING

A.1 INTRODUCTION

Nearly 250,000 women were diagnosed with breast cancer in the United States in

2016, with over 40,000 deaths in the same year [225]. Currently, mammography is

used to screen women over the age of 40 and has been shown to increase survival

by about 20% [226, 227]. Based on mammographic results, the lesion is assigned a

score from 1 to 6 according to the Breast Imaging Reporting and Data System (BI-

RADS) [228]. For individuals with a suspicious mammogram (BI-RADS category 3-5),

follow-up imaging with other approaches, including diagnostic mammography, breast

tomosynthesis [229–231], magnetic resonance imaging [232, 233], and ultrasound [234],

may be utilized to clarify the nature of the lesion. Lesions ultimately categorized as

BI-RADS 4-5 have a high likelihood of malignancy and are directed toward biopsy or

surgical excision.

Pathology results from more than 26,000 patients receiving breast biopsies indicate

that 66.8% of the biopsies were benign, suggesting that many of these biopsies are

unnecessary [235]. In addition, breast biopsies are known to yield false negatives at a

This chapter is reprinted with permission from “First-in-Human Study of Acoustic Angiography
in the Breast and Peripheral Vasculature” S.E. Shelton, B.D. Lindsey, P.A. Dayton and Y.Z. Lee.
Ultrasound in Medicine and Biology, c©2017 Elsevier.
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rate of about 2% [236], and many patients are subjected to repeated biopsies depending

primarily on the physician’s judgment [237]. About 10% of lesions require repeat biopsy,

and only approximately 17% of these are malignant [238], suggesting many patients may

be subjected to multiple unnecessary biopsies. If a non-invasive, non-ionizing radiation

imaging approach could demonstrate sufficient specificity, it might be possible to reduce

the rate of unnecessary biopsies, sparing patients pain and anxiety [239].

In order for solid tumors to grow beyond a certain size (typically ≈2 mm), new

vessels must form (angiogenesis) [174,240]. In breast lesions in particular, elevated mi-

crovessel density is correlated with the occurrence of metastases and thus has been iden-

tified as a potential prognostic indicator, as microvessel density in the region of highest

neovascularization has been shown to predict overall and relapse-free survival [241,242].

Several non-invasive imaging techniques have sought to utilize this knowledge for di-

agnosis, including magnetic resonance imaging (MRI) [243], computed tomography

(CT) [244], color Doppler ultrasound [245], and conventional contrast-enhanced ultra-

sound imaging [246–250]. However, none of these approaches have yet demonstrated

the ability to improve diagnostic accuracy or reduce the need for biopsy in clinical

studies.

From an imaging perspective, a key challenge is the ability to resolve the microvessels

formed early in tumor angiogenesis, as the vessels observed in histological evaluation of

invasive carcinomas typically have diameters <100 µm [251]. In order to form vascular

or “angiographic” images, many imaging techniques utilize exogenous contrast agents

to image vascular structures in the breast, i.e. iodine in CT [244], gadolinium in

MRI [252], and perfluorocarbon-filled microbubbles in contrast-enhanced ultrasound

[248]. Even with the use of contrast agents, the ability to both detect and resolve the

microvessels of clinical interest remains challenging, as typical spatial resolutions for
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clinical imaging systems are ≈700 m for MRI [253], ≈600 m for CT [254], and 300-

500 m for conventional ultrasound [255]. Special small animal imaging systems have

demonstrated higher resolutions in all modalities, including as high as 100-200 m in

MRI [256], as high as 40 m in CT (for scan times >50 min) [257], and 30-200 m for

high-frequency ultrasound [258,259].

Contrast-enhanced ultrasound (CEUS) imaging has been performed in the breast

for tumor characterization and diagnosis. Ricci characterized CEUS enhancement as

having equal accuracy as MRI for breast cancer diagnosis in humans [260]. Subsequent

studies have described contrast enhancement and wash-out patterns, but contrast en-

hanced ultrasound imaging is still not routine in the breast [261, 262]. Ultrasound

molecular imaging also shows promise as a clinical indicator of malignancy. Microbub-

bles targeted to vascular endothelial growth factor receptor (VEGFR2) have been val-

idated in model systems [263, 264], and it was recently shown in humans that higher

targeting was observed in malignant lesions than in benign, and that targeting intensity

was related to the level of VEGFR2 expression as measured with immunohistochem-

istry [265].

We have recently developed a new contrast-enhanced ultrasound microvascular

imaging approach based on the superharmonic signal produced by microbubbles. In

this approach microbubbles are excited using a low frequency (<6 MHz) pulse and

images are formed from high frequency (>20 MHz) signals produced by microbubbles.

Resulting images have higher contrast-to-tissue ratio (CTR, ≈25 dB) and spatial res-

olution (100-200 µm) than conventional contrast-enhanced ultrasound [159]. Because

these images show vascular structures alone, we call this technique acoustic angiog-

raphy due to the similarity to other forms of angiographic imaging, i.e. computed

tomography angiography, magnetic resonance angiography [266]. In addition, these

images can be segmented and vessel tortuosity computed using previously-established
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quantitative metrics [267,268]. This is potentially useful because previous studies using

intravital microscopy in animal models have shown that tumor vascular remodeling oc-

curs when tumors consist of <100 cells [269], providing another potential quantitative

metric beyond microvessel density. In imaging a genetically-engineered mouse model

of ductal carcinoma, quantifying vessel tortuosity has enabled distinguishing 2-3 mm

tumors from healthy tissue [148].

In this work, we present the first translation of acoustic angiography imaging to

humans. Imaging volumes have been acquired of the vasculature in the wrist of healthy

volunteers, as well as in the breast of both healthy volunteers and patients. Due to

the high spatial resolution of this technique comparable to that of small animal CT

and MRI it represents a potential tool for quantifying the high microvascular density

associated with invasive tumors in the breast. Contrast-enhanced ultrasound imaging

utilizing the superharmonic response of microbubbles has been described in in vitro

and in vivo studies, but clinical studies in humans are limited, and were restricted

to examinations of the heart at low frequencies (0.8/2.8 MHz). While CEUS allows

imaging of tissue perfusion and power Doppler allows imaging of individual vessels

at these spatial scales, acoustic angiography reveals vascular morphology and enables

quantification of vessel tortuosity, a marker of malignancy.

A.2 METHODS

This study was approved by the Institutional Review Board (IRB) of the University

of North Carolina at Chapel Hill, and all participants were enrolled after voluntary

written informed consent. In the first phase of the study, we enrolled healthy male

and female volunteers for initial imaging in the wrist, hand, and breast. Images from

these subjects were used to assess the feasibility of superharmonic contrast imaging in

vivo and determine achievable resolution. A total of 6 individuals volunteered for wrist
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and hand imaging (3 males, 3 females), and 6 females volunteered for breast imaging.

The second phase of the study included a patient population of women with suspicious

breast lesions (BI-RADS 4 and 5) who were scheduled to receive a breast biopsy at

UNC Hospital. To date, 11 pre-biopsy patients have been imaged in this trial, with

enrollment ongoing.

Ten healthy volunteers received an intravenous bolus of 10 µL/kg of Definity (Lan-

theus Medical Imaging, Billerica, MA) followed by sterile saline, in accordance with the

prescribing information, and 2 volunteers received 20 µL/kg. Pre-biopsy participants

also received a bolus of Definity at either 10 µL/kg (n=6) or 20 µL/kg (n=5).

Imaging was performed with a VisualSonics Vevo 770 ultrasound scanner and a

modified RMV707 transducer (FUJIFILM VisualSonics Inc., Toronto, ON, Canada).

The modified transducer has an additional annular low frequency element (4 MHz center

frequency) confocal to the 707 transducer (30 MHz center frequency) in order to allow

dual-frequency imaging of microbubble superharmonics by transmitting with the low

frequency element and receiving with the high frequency element [143]. Dual-frequency

imaging was conducted at a mechanical index of 0.6 (non-derated), which is within the

range suggested for safe use with Definity (up to 0.8).

Three-dimensional image volumes were acquired using a linear motion stage, which

translated the transducer across the surface of the skin with a step size of 0.2 mm.

This motion stage (FUJIFILM VisualSonics Inc., Toronto, ON, Canada) was designed

to operate fixed to a platform for small animal imaging, so to enable more flexible

positioning for human patients, we mounted the motion stage to an adjustable arm

(Photo Variable Friction Arm, Manfrotto, South Upper Saddle River, NJ), supported

by a surgical microscope stand. Each image slice in a 3D volume was acquired at a

rate of 3 frames per second, with a 3D volume being acquired in approximately 1-2

minutes, depending on the length of the scan (20-30 mm). The transducer (attached to
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the motion stage) was positioned by a radiologist and then locked into place to acquire

3-D scans.

De-identified image data was exported for offline analysis and image reconstruction

in ImageJ and the VisualSonics Vevo770 imaging software. Volumetric data sets were

rendered using maximum intensity projections to display 3-D images in 2-D. Linear

interpolation was used to compensate for larger spacing in the elevation direction than

the axial-lateral dimension when reconstructing images in orientations other than the

acquisition plane.

A.3 RESULTS

This study has demonstrated the feasibility of superharmonic acoustic angiography

in human subjects for the first time. We were able to visualize contrast signal and

resolve individual vessels using the standard clinical dose of Definity microbubbles, 10

µL/kg. Additionally, we also tested twice the standard dose of Definity, 20 µL/kg, in

5 patients and 2 healthy volunteers and observed stronger contrast signal at the higher

dose. Figure A.1 shows examples of acquired images of the wrists of 2 different healthy

volunteers. These images are maximum intensity projections of the 3-D image volumes

and show the radial artery and the branch of the smaller palmar radiocarpal artery.

Both images were acquired immediately following a bolus of 10 µL/kg of contrast. On

the left (figure A.1A), an extent of approximately 2.5 cm of the radial artery is shown,

while the image on the right (A.1B) is enlarged to show detail from a different subject.

The diameters of the radial arteries visible in these images was measured to be between

1.5 and 2 mm wide, consistent with the range observed in other measurements of radial

artery size [270].

The images in Figure A.2 were acquired in healthy volunteers and show several

branching structures and vasculature of different sizes in normal breast tissue. Both
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Figure A.1: Figure 1. Maximum intensity projections of “acoustic angiography” images
acquired in the wrists of volunteers administered a bolus of 10 µL/kg of Definity.

of these subjects received the 10 µL/kg contrast dose. Additionally, these images also

reveal one of the limitations of the confocal, single-element transducer design: the

limited depth of field. The transducer elements are focused at a depth of 1.3 cm,

and the high frequency element has a depth of field of 2.2 mm, as reported by the

manufacturer. In practice, these images show that region of tissue where contrast is

visible in dual-frequency imaging spans approximately 8 mm, centered at the focus. In

Figure A.2A, the vessels seem to drop off as they plunge deeper into the tissue, and in

A.2B, the deep vessel that crosses the center of the image has a weaker signal than the

nearby vessels despite the fact that they are similar in size.

Figure A.3 shows a maximum intensity projection with several vessel diameters

measured and annotated on the image. This image is the same data as seen in Figure

A.2B, reconstructed with a maximum intensity projection at a slightly different angle.

In Figure A.3, we see small vessels measuring 0.17 mm wide, with low image contrast.

However, slightly larger 0.2 mm vessels have higher contrast, with the largest vessels

between 0.43 and 1.24 mm being the easiest to visualize.
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Figure A.2: Figure 2. Images of normal breast vasculature in healthy volunteers who
received a 10 L/kg bolus.

While the maximum intensity projections of the 3-D data are useful for resolving the

structure of vascular morphology throughout the tissue, there is additional information

available in individual image frames. Figure A.4 includes images from a pre-biopsy pa-

tient who received 20 µL/kg of Definity. Figure A.4A is a maximum intensity projection

showing large vessels branching as well as diffuse contrast signal from sub-resolution

vasculature in the surrounding tissue. Figure A.4B is an enlarged view of the main

branch, also shown as a maximum intensity projection. Figure A.4C, however, is a sin-

gle frame from the branching region showing that multiple small vessels are resolvable

in the individual frame, but less apparent in the projected data. Therefore, individ-

ual frames of acoustic angiography images could be used to understand the relative

positions and connections between sub-millimeter vessels.

Comparing the breast images shown in Figure A.5 to the wrist images in Figure

A.1, we can see more artifact due to respiration in Figure A.5. The borders of the

vessels in Figure A.5 are less smooth than those seen in Figure A.1 due to tissue

motion. However, in these examples, respiration motion on the order of 0.3 to 0.5 mm

(Figure A.4B, Figure A.5B) is not large enough to obscure the overall morphology.
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Figure A.3: Figure 3. A maximum intensity projection of breast vasculature from a
healthy volunteer annotated with vessel diameters.

Additionally, we can perform motion correction by applying B-spline registration to

consecutive frames in the image to produce smoothed images without altering the

overall vessel morphology, as demonstrated in Figure A.6.

No serious adverse reactions to the contrast occurred. However, four participants

reported mild events. One participant (out of 16) who received 10 µL/kg reported

transient back and chest discomfort, and 3 participants (out of 7) who received a bolus

of 20 µL/kg experienced mild, transient flushing with no significant changes in vital

signs. Although these mild reactions were anticipated in the package insert for Definity,

the incidence was higher than expected in our small sample size. It is unknown if this

might have been due to an issue with the contrast agent lot, the bolus administration
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Figure A.4: Figure 4. Images from a pre-biopsy patient who received a bolus of 20
µL/kg of contrast. 4A shows a maximum intensity projection of the image volume,
while 4B is enlarged to show detail at the main branching location. 4C is a single
frame at the same scale as 4B, showing several distinct vessels in the branching region.

rate, a random occurrence in our patient population, or some other variable. It is worth

noting that other groups have used the same contrast agent at the same dose without

any reported adverse reactions [249]. As the acoustic angiography imaging approach

uses standard clinical imaging parameters (4 MHz, MI = 0.6), it seems unlikely that

observed adverse reactions were related to the imaging technique itself.
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Figure A.5: Figure 5: Images from pre-biopsy patients showing vasculature ranging
in size from approximately 0.2 to 2 mm in diameter. Respiration motion artifacts are
visible, making the borders of the vessels appear serrated. Subjects received 10 µL/kg
of Definity.

Figure A.6: Figure 6: Image from a pre-biopsy patient who received 10 µL/kg of
Definity. 6A shows the original image, clearly subject to respiration motion. 6B shows
the smoothed image using B-spline registration to minimize motion artifacts.
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A.4 DISCUSSION

In this study, we only included lesions located within approximately 1.5 cm from

the skin surface due to the limited depth of field provided by the fixed focus transducer.

This prototype, confocal, single-element transducer has a lens with a fixed focus of 13

mm and an approximate field of view of 8 mm in dual-frequency contrast imaging mode.

Both the field of view and frame rate might be improved by the development of a dual-

frequency array. With a higher frame rate enabled by acquiring an entire imaging slice

in real-time without mechanically sweeping the confocally-aligned transducer elements,

motion artifacts could be minimized by acquiring the entire 3D image in single breath-

hold (≈10 sec) using a translation stage. There is also a clinical need to image lesions

deeper than 1.5 cm. Though it is estimated that 30% of breast lesions are located

within 1 cm of the skin surface, a larger imaging depth will be necessary to make

superharmonic contrast imaging feasible relevant to a greater number of patients [271].

Acoustic angiography can be performed with greater depth of penetration by selecting

a lower receive frequency, and we have demonstrated superharmonic contrast imaging

as deep as 4 cm using an endoscopic transducer designed to transmit at 4 MHz and

receive at 20 MHz [272]. Axial resolution at this frequency combination is expected to

be better than 200 µm [159].

Of note, the sensitivity and spatial resolution of the current system used in this

study allowed acquisition of images with vessels as small as 100-200 µm (Figure A.3),

similar to the resolution provided by pre-clinical MRI and CT systems [256, 257, 273].

Improvements in sensitivity would require either improved transducer sensitivity or

increased microbubble dose.

Super-resolution imaging techniques have demonstrated resolution below the diffrac-

tion limit, nearly at the capillary scale, using microbubble localization techniques

[126–131]. However, super-resolution imaging has not yet been demonstrated in the
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clinic and requires the acquisition of thousands to tens of thousands of images to cre-

ate a single frame. Even with ultrafast plane-wave imaging, the acquisition time for a

single frame is on the order of minutes in order to accumulate a sufficient number of

microbubble positions to reconstruct microvascular structure with fine detail. Though

superharmonic acoustic angiography cannot match the resolution scale promised by

super-resolution imaging, microvessels approximately 100-200 µm can be imaged with

a single transmit event, and a 3D image volume can be acquired in 1-2 minutes us-

ing a translation stage. Dual-frequency array transducers are expected to significantly

improve acquisition time for acoustic angiography in the future.

Improving spatial resolution would require either a larger aperture (which would

likely prove increasingly difficult to couple to the patient), or the use of a higher receiv-

ing frequency. Unfortunately, increasing the receiving frequency would result in a de-

crease in sensitivity, as the superharmonic signals used to form these images decrease in

amplitude with increasing frequency [159], in addition to increasing attenuation, which

would also decrease the depth of penetration. Nonetheless, if this technology could be

utilized in conjunction with breast ultrasound, existing resolution and sensitivity may

eventually prove sufficient for a diagnostic test with adequate specificity to preclude

biopsy in lesions lacking vessels greater than approximately 150 µm in diameter. It

is worth noting that this technology has demonstrated potential for use for imaging

other shallow vasculature such as the carotid arteries for assessment of atherosclerotic

disease.
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