14,838 research outputs found

    Detection of Distributed Attacks in Hybrid & Public Cloud Networks

    No full text
    International audienceIn this paper early detection of distributed attacks are discussed that are launched from multiple sites of the hybrid & public cloud networks. A prototype of Cloud Distributed Intrusion Detection System (CDIDS) is discussed with some basic experiments. The summation of security alerts has been applied which helps to detect distributed attacks while keeping the false positive at the minimum. Using the summation of security alerts mechanism the attacks that have slow iteration rate are detected at an early stage. The objective of our work is to propose a Security Management System (SMS) that can detect malicious activities as early as possible and camouflaging of attacks under the conditions when other security management systems become unstable due to intense events of attacks

    Security and Privacy Issues in Cloud Computing

    Full text link
    Cloud computing transforming the way of information technology (IT) for consuming and managing, promising improving cost efficiencies, accelerate innovations, faster time-to-market and the ability to scale applications on demand (Leighton, 2009). According to Gartner, while the hype grew ex-ponentially during 2008 and continued since, it is clear that there is a major shift towards the cloud computing model and that the benefits may be substantial (Gartner Hype-Cycle, 2012). However, as the shape of the cloud computing is emerging and developing rapidly both conceptually and in reality, the legal/contractual, economic, service quality, interoperability, security and privacy issues still pose significant challenges. In this chapter, we describe various service and deployment models of cloud computing and identify major challenges. In particular, we discuss three critical challenges: regulatory, security and privacy issues in cloud computing. Some solutions to mitigate these challenges are also proposed along with a brief presentation on the future trends in cloud computing deployment

    DCDIDP: A distributed, collaborative, and data-driven intrusion detection and prevention framework for cloud computing environments

    Get PDF
    With the growing popularity of cloud computing, the exploitation of possible vulnerabilities grows at the same pace; the distributed nature of the cloud makes it an attractive target for potential intruders. Despite security issues delaying its adoption, cloud computing has already become an unstoppable force; thus, security mechanisms to ensure its secure adoption are an immediate need. Here, we focus on intrusion detection and prevention systems (IDPSs) to defend against the intruders. In this paper, we propose a Distributed, Collaborative, and Data-driven Intrusion Detection and Prevention system (DCDIDP). Its goal is to make use of the resources in the cloud and provide a holistic IDPS for all cloud service providers which collaborate with other peers in a distributed manner at different architectural levels to respond to attacks. We present the DCDIDP framework, whose infrastructure level is composed of three logical layers: network, host, and global as well as platform and software levels. Then, we review its components and discuss some existing approaches to be used for the modules in our proposed framework. Furthermore, we discuss developing a comprehensive trust management framework to support the establishment and evolution of trust among different cloud service providers. © 2011 ICST

    Autonomic Cloud Computing: Open Challenges and Architectural Elements

    Full text link
    As Clouds are complex, large-scale, and heterogeneous distributed systems, management of their resources is a challenging task. They need automated and integrated intelligent strategies for provisioning of resources to offer services that are secure, reliable, and cost-efficient. Hence, effective management of services becomes fundamental in software platforms that constitute the fabric of computing Clouds. In this direction, this paper identifies open issues in autonomic resource provisioning and presents innovative management techniques for supporting SaaS applications hosted on Clouds. We present a conceptual architecture and early results evidencing the benefits of autonomic management of Clouds.Comment: 8 pages, 6 figures, conference keynote pape
    corecore