104 research outputs found

    Extended segmented beat modulation method for cardiac beat classification and electrocardiogram denoising

    Get PDF
    none4noBeat classification and denoising are two challenging and fundamental operations when processing digital electrocardiograms (ECG). This paper proposes the extended segmented beat modulation method (ESBMM) as a tool for automatic beat classification and ECG denoising. ESBMM includes four main steps: (1) beat identification and segmentation into PQRS and TU segments; (2) wavelet-based time-frequency feature extraction; (3) convolutional neural network-based classification to discriminate among normal (N), supraventricular (S), and ventricular (V) beats; and (4) a template-based denoising procedure. ESBMM was tested using the MIT–BIH arrhythmia database available at Physionet. Overall, the classification accuracy was 91.5% while the positive predictive values were 92.8%, 95.6%, and 83.6%, for N, S, and V classes, respectively. The signal-to-noise ratio improvement after filtering was between 0.15 dB and 2.66 dB, with a median value equal to 0.99 dB, which is significantly higher than 0 (p < 0.05). Thus, ESBMM proved to be a reliable tool to classify cardiac beats into N, S, and V classes and to denoise ECG tracings.openNasim A.; Sbrollini A.; Morettini M.; Burattini L.Nasim, A.; Sbrollini, A.; Morettini, M.; Burattini, L

    ECG ARRHYTHMIA TIME SERIES CLASSIFICATION USING 1D-CONVOLUTION LSTM NEURAL NETWORKS

    Get PDF
    An electrocardiogram (ECG) can be dependably used as a measuring device to monitor cardiovascular function. The abnormal heartbeat appears in the ECG pattern and these abnormal signals are called arrhythmias. A faster and more accurate result can be reached by classifying and automatically detecting arrhythmia signals. Several machine learning approaches have been applied to enhance the accuracy of results and increase the speed and robustness of models. This research proposes a method based on Timeseries Classification using deep Convolutional -LSTM neural networks and Discrete Wavelet Transform to classify beats in three experiments, the first one is to classify 4 different types of Arrhythmia in the MIT-BIH Database. The second one for enhancement the first experimental results. The third one is for classifying the whole MIT-BIH database. According to the results, the suggested method gives predictions with an average accuracy of 97% in the first experiment, 99% in the second one, and 97.7% in the third experiment,without overfitting

    Current and Future Use of Artificial Intelligence in Electrocardiography.

    Get PDF
    Artificial intelligence (AI) is increasingly used in electrocardiography (ECG) to assist in diagnosis, stratification, and management. AI algorithms can help clinicians in the following areas: (1) interpretation and detection of arrhythmias, ST-segment changes, QT prolongation, and other ECG abnormalities; (2) risk prediction integrated with or without clinical variables (to predict arrhythmias, sudden cardiac death, stroke, and other cardiovascular events); (3) monitoring ECG signals from cardiac implantable electronic devices and wearable devices in real time and alerting clinicians or patients when significant changes occur according to timing, duration, and situation; (4) signal processing, improving ECG quality and accuracy by removing noise/artifacts/interference, and extracting features not visible to the human eye (heart rate variability, beat-to-beat intervals, wavelet transforms, sample-level resolution, etc.); (5) therapy guidance, assisting in patient selection, optimizing treatments, improving symptom-to-treatment times, and cost effectiveness (earlier activation of code infarction in patients with ST-segment elevation, predicting the response to antiarrhythmic drugs or cardiac implantable devices therapies, reducing the risk of cardiac toxicity, etc.); (6) facilitating the integration of ECG data with other modalities (imaging, genomics, proteomics, biomarkers, etc.). In the future, AI is expected to play an increasingly important role in ECG diagnosis and management, as more data become available and more sophisticated algorithms are developed.Manuel Marina-Breysse has received funding from European Union’s Horizon 2020 research and innovation program under the grant agreement number 965286; Machine Learning and Artificial Intelligence for Early Detection of Stroke and Atrial Fibrillation, MAESTRIA Consortium; and EIT Health, a body of the European Union.S

    Numerical implementation of the Hilbert transform

    Get PDF
    Many people have abnormal heartbeats from time to time. A Holter monitor is a device used to record the electrical impulses of the heart when people do ordinary activities. Holter monitoring systems that can record heart rate and rhythm when you feel chest pain or symptoms of an irregular heartbeat (called an arrhythmia) and automatically perform electrocardiogram (ECG) signal analysis are desirable.The use of the Hilbert transform (HT) in the area of electrocardiogram analysis is investigated. A property of the Hilbert transform, i.e., to form the analytic signal, was used in this thesis. Subsequently pattern recognition can be used to analyse the ECG data and lossless compression techniques can be used to reduce the ECG data for storage.The thesis discusses one part of the Holter Monitoring System, Input processing.Four different approaches, including the Time-Domain approach, the Frequency-Domain approach, the Boche approach and the Remez filter approach for calculating the Hilbert transform of an ECG wave are discussed in this thesis. By comparing them from the running time and the ease of software and hardware implementations, an efficient approach (the Remez approach) for use in calculating the Hilbert transform to build a Holter Monitoring System is proposed. Using the Parks-McClellan algorithm, the Remez approach was present, and a digital filter was developed to filter the data sequence. Accurate determination of the QRS complex, in particular, accurate detection of the wave peak, is important in ECG analysis and is another task in this thesis. A program was developed to detect the wave peak in an ECG wave.The whole algorithm is implemented using Altera’s Nios SOPC (system on a program chip) Builder system development tool. The performance of the algorithm was tested using the standard ECG waveform records from the MIT-BIH Arrhythmia database. The results will be used in pattern recognition to judge whether the ECG wave is normal or abnormal

    Electrocardiogram pattern recognition and analysis based on artificial neural networks and support vector machines: a review.

    Get PDF
    Computer systems for Electrocardiogram (ECG) analysis support the clinician in tedious tasks (e.g., Holter ECG monitored in Intensive Care Units) or in prompt detection of dangerous events (e.g., ventricular fibrillation). Together with clinical applications (arrhythmia detection and heart rate variability analysis), ECG is currently being investigated in biometrics (human identification), an emerging area receiving increasing attention. Methodologies for clinical applications can have both differences and similarities with respect to biometrics. This paper reviews methods of ECG processing from a pattern recognition perspective. In particular, we focus on features commonly used for heartbeat classification. Considering the vast literature in the field and the limited space of this review, we dedicated a detailed discussion only to a few classifiers (Artificial Neural Networks and Support Vector Machines) because of their popularity; however, other techniques such as Hidden Markov Models and Kalman Filtering will be also mentioned

    Fetal electrocardiograms, direct and abdominal with reference heartbeat annotations

    Get PDF
    Monitoring fetal heart rate (FHR) variability plays a fundamental role in fetal state assessment. Reliable FHR signal can be obtained from an invasive direct fetal electrocardiogram (FECG), but this is limited to labour. Alternative abdominal (indirect) FECG signals can be recorded during pregnancy and labour. Quality, however, is much lower and the maternal heart and uterine contractions provide sources of interference. Here, we present ten twenty-minute pregnancy signals and 12 five-minute labour signals. Abdominal FECG and reference direct FECG were recorded simultaneously during labour. Reference pregnancy signal data came from an automated detector and were corrected by clinical experts. The resulting dataset exhibits a large variety of interferences and clinically significant FHR patterns. We thus provide the scientific community with access to bioelectrical fetal heart activity signals that may enable the development of new methods for FECG signals analysis, and may ultimately advance the use and accuracy of abdominal electrocardiography methods.Web of Science71art. no. 20

    Electrocardiogram Pattern Recognition and Analysis Based on Artificial Neural Networks and Support Vector Machines: A Review

    Full text link

    ECG Signal Compression Using Discrete Wavelet Transform

    Get PDF
    corecore