29 research outputs found

    Fault detection for LPV systems using Set-Valued Observers: A coprime factorization approach

    Get PDF
    This paper addresses the problem of fault detection for linear parameter-varying systems in the presence of measurement noise and exogenous disturbances. The applicability of current methods is limited in the sense that, to increase accuracy, the detection requires a large number of past measurements and the boundedness of the set-valued estimates is only guaranteed for stable systems. In order to widen the class of systems to be modeled and also to reduce the associated computational cost, the aforementioned issues must be addressed. A solution involving left-coprime factorization and deadbeat observers is proposed in order to reduce the required number of past measurements without compromising accuracy and allowing the design of Set-Valued Observers (SVOs) for fault detection of unstable systems by using the resulting stable subsystems of the coprime factorization. The algorithm is shown to produce bounded set-valued estimates and an example is provided. Performance is assessed through simulations, illustrating, in particular that small-magnitude faults (compared to exogenous disturbances) can be detected under mild assumptions

    Design of Fault-Tolerant Control for Trajectory Tracking

    No full text
    International audienceThe paper proposes a fault-tolerant integrated control system with the brake and the steering for developing a driver assistance system. The purpose is to design a fault-tolerant control which is able to guarantee the trajectory tracking and lateral stability of the vehicle against actuator fault scenarios. Since both actuators affect the lateral dynamics of the vehicle, in the control design a balance and priority between them must be achieved. The method is extended with a fault-tolerant feature based on a robust LPV method, into which the detected fault information are incorporated. The control design is performed by using the Matlab/Simulink software and the verification of the designed controller is performed by using the CarSim software

    Self-Triggered and Event-Triggered Set-Valued Observers

    Get PDF
    This paper addresses the problem of reducing the required network load and computational power for the implementation of Set-Valued Observers (SVOs) in Networked Control System (NCS). Event- and self-triggered strategies for NCS, modeled as discrete-time Linear Parameter-Varying (LPV) systems, are studied by showing how the triggering condition can be selected. The methodology provided can be applied to determine when it is required to perform a full (``classical'') computation of the SVOs, while providing low-complexity state overbounds for the remaining time, at the expenses of temporarily reducing the estimation accuracy. As part of the procedure, an algorithm is provided to compute a suitable centrally symmetric polytope that allows to find hyper-parallelepiped and ellipsoidal overbounds to the exact set-valued state estimates calculated by the SVOs. By construction, the proposed triggering techniques do not influence the convergence of the SVOs, as at some subsequent time instants, set-valued estimates are computed using the \emph{conventional} SVOs. Results are provided for the triggering frequency of the self-triggered strategy and two interesting cases: distributed systems when the dynamics of all nodes are equal up to a reordering of the matrix; and when the probability distribution of the parameters influencing the dynamics is known. The performance of the proposed algorithm is demonstrated in simulation by using a time-sensitive example

    Robust inversion based fault estimation for discrete-time LPV systems

    Get PDF
    The article presents a state-space based Fault Diagnosis (FD) method for discrete-time, affine Linear Parameter Varying (LPV) systems. The goal of the technical note is to develop a robust and dynamic inversion based technique for systems with parameter varying representations when an additive, exogenous disturbance signal perturbs the system. After applying geometric concepts for explicit fault inversion, a robust strategy is proposed to attenuate the effect of the unknown disturbance input signal on the fault estimation error. The proposed robust observer is derived as a solution of off-line Linear Matrix Inequality (LMI) conditions. The technical note demonstrates the viability of the novel methodology through a numerical example

    H∞ and L2–L∞ filtering for two-dimensional linear parameter-varying systems

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Wiley-BlackwellIn this paper, the H∞ and l2–l∞ filtering problem is investigated for two-dimensional (2-D) discrete-time linear parameter-varying (LPV) systems. Based on the well-known Fornasini–Marchesini local state-space (FMLSS) model, the mathematical model of 2-D systems under consideration is established by incorporating the parameter-varying phenomenon. The purpose of the problem addressed is to design full-order H∞ and l2–l∞ filters such that the filtering error dynamics is asymptotic stable and the prescribed noise attenuation levels in H∞ and l2–l∞ senses can be achieved, respectively. Sufficient conditions are derived for existence of such filters in terms of parameterized linear matrix inequalities (PLMIs), and the corresponding filter synthesis problem is then transformed into a convex optimization problem that can be efficiently solved by using standard software packages. A simulation example is exploited to demonstrate the usefulness and effectiveness of the proposed design method

    Application of model-based LPV actuator fault estimation for an industrial benchmark

    Get PDF
    To bridge the gap between model-based fault diagnosis theory and the industry practice, a linear parameter varying H_/H∞ fault estimation approach is applied to a high fidelity nonlinear aircraft benchmark, to deal with the various actuator fault detection scenarios which can result in the abnormal aircraft configuration. To facilitate the industry calculating the computational load of the fault estimation approach, the design is fully coded using the flight control computer software library. Furthermore, the robustness performance of the fault estimation approach is evaluated using the parametric simulation and the Monte Carlo campaign supported by a functioning engineering simulator despite the aerodynamic database uncertainties and measurements errors over a wide range of the flight envelope

    Fault reconstruction using a LPV sliding mode observer for a class of LPV systems

    Get PDF
    Journal ArticleCopyright © 2012 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Journal of The Franklin Institute. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of The Franklin Institute (2012), DOI: 10.1016/j.jfranklin.2011.06.026This paper proposes a new sliding mode observer for fault reconstruction, applicable for a class of linear parameter varying (LPV) systems. Observer schemes for actuator and sensor fault reconstruction are presented. For the actuator fault reconstruction scheme, a virtual system comprising the system matrix and a fixed input distribution matrix is used for the design of the observer. The fixed input distribution matrix is instrumental in simplifying the synthesis procedure to create the observer gains to ensure a stable closed-loop reduced order sliding motion. The 'output error injection signals' from the observer are used as the basis for reconstructing the fault signals. For the sensor fault observer design, augmenting the LPV system with a filtered version of the faulty measurements allows the sensor fault reconstruction problem to be posed as an actuator fault reconstruction scenario. Simulation tests based on a high-fidelity nonlinear model of a transport aircraft have been used to demonstrate the proposed actuator and sensor FDI schemes. The simulation results show their efficacy. © 2011 The Franklin Institute. Published by Elsevier Ltd. All rights reserved
    corecore